首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), galanin (GAL), substance P (SP) and calcitonin gene-related peptide (CGRP) was studied in neurons and nerve fibers of the porcine otic ganglion. ChAT-positive neurons were very numerous while VAChT-positive nerve cells were moderate in number. The number of neurons containing NPY and VIP was lower and those containing SOM, GAL, SP or CGRP were observed as scarce, or single nerve cells. The above mentioned substances (except SOM) were present in nerve fibers of the ganglion. ChAT- and VAChT-positive nerve fibers were numerous, while the number of nerve terminals containing NPY, VIP and SP was lower. GAL- and CGRP-positive nerve fibers were scarce.  相似文献   

2.
The present study was aimed at disclosing the chemical coding of nerve structures in the porcine ciliary ganglion (CG) using immunohistochemical methods. The substances under investigation included markers of "classical" neurotransmitters, choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DbetaH) as well as neuropeptides, somatostatin (SOM), galanin (GAL), substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP) and neuropeptide Y (NPY). Immunoreactivity to ChAT and VAChT was found virtually in all the neuronal somata and in numerous intraganglionic, varicose nerve fibres which often formed basket-like formations around the nerve cell bodies. Many CG neurons contained immunoreactivity for SOM (46%) or GAL (29%). Interestingly, a small number (approx. 1%) of the cholinergic somata stained for TH but not for DbetaH; nevertheless, some extra- and intraganglionic nerve fibres displayed immunoreactivity for DbetaH or TH. The CG perikarya stained neither for vasoactive intestinal polypeptide (VIP) nor for neuropeptide Y (NPY), but some NPY- or VIP-positive nerve terminals were observed within nerve bundles distributed outside the ganglion. SP- and CGRP-immunoreactivity was found in some intraganglionic nerve fibres only. The present study revealed that the porcine CG consists of cholinergic neurons many of which contain SOM and GAL. Thus, it can be assumed that in the pig, these neuropeptides are involved, complementary to acetylocholine, in the parasympathetic postganglionic nerve pathway to structures of the eye including the ciliary and iris sphincter muscles.  相似文献   

3.
The expression of neuropeptide Y (NPY), galanin (GAL), vasoactive intestinal polypeptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), somatostatin (SOM) and substance P (SP) was studied in the neurons of the inferior mesenteric ganglion (IMG) projecting to the uterine horn and uterine cervix after uterus extirpation-induced axotomy in sexually immature gilts. The expression was studied with immunohistochemistry, in situ hybridization and RT-PCR. Uterus-projecting neurons were identified by retrograde tracing with Fast Blue (FB). Immunohistochemistry revealed that FB-positive (FB+) uterus-projecting neurons in control animals contained only immunoreactivities to NPY (ca. 50%) and GAL (single neurons). Uterus extirpation increased the occurrence of NPY and GAL in FB+ neurons. No other studied neuropeptides were found in axotomized uterus-projecting neurons. Hybridization in situ revealed the reduction of NPY expression and induction of GAL expression in FB+ neurons. RT-PCR detected induction of GAL expression in the IMG after uterus extirpation. The expression level of NPY and SOM was significant and was not affected by axotomy. The expression level of PACAP was very low and did not differ between IMG of control, partially and totally hysterectomized animals. No VIP and SP expression was detected in all ganglia. The presented data show clear axotomy-related changes in the expression of GAL and NPY in the uterus-projecting neurons of the porcine IMG.  相似文献   

4.
OBJECTIVE: To determine distribution of catecholaminergic and peptidergic nerve fibers in canine tracheas by use of immunohistochemistry. SAMPLE POPULATION: 10 tracheas collected from healthy adult dogs after euthanasia. PROCEDURE: Structure of the nerve network and distribution of tyrosine hydroxylase (TH)- and 6 types of neuropeptide-containing nerves in canine tracheas were immunohistochemically studied, using neurochemical markers. RESULTS: Intraepithelial free nerve endings with immunoreactivity for calcitonin gene-related peptide (CGRP) and substance P (SP) were observed.Tyrosine hydroxylase-, SP-, vasoactive intestinal peptide (VIP)-, and galanin (GAL)-immunoreactive nerve fibers were observed within and around the submucosal seromucous gland. In the smooth muscle layer, numerous TH- and GAL-immunoreactive nerve fibers, a moderate number of VIP- and neuropeptide Y (NPY)-immunoreactive nerve fibers, and a few SP- and methionine enkephalin (ENK)-immunoreactive nerve fibers were observed. Numerous nerve cell bodies with VIP and GAL immunoreactivity and a few with SP ENK, and NPY immunoreactivity were observed. Many TH-immunoreactive fibers were arranged in a meshwork around blood vessels. Nerves with CGRP-, SP-, VIP-, GAL-, ENK-, and NPY-immunoreactivity were also observed around blood vessels. CONCLUSIONS: Complex innervation, including catecholamine- and neuropeptide-containing nerves, which may be related to regulation of muscle contraction and glandular secretion, are found in canine tracheas.  相似文献   

5.
In the present study, both the ELISA test and immunohistochemical staining were used to investigate the influence of artificially induced ileitis on the chemical coding of enteric neurons in the pig. The ileum wall in experimental (E) pigs was injected in multiple sites with 4% paraformaldehyde to induce inflammation, while in the control (C) animals, the organ was injected with 0.1M phosphate buffer (pH 7.4). Three days after ileitis induction, samples of ileum wall from all the animals were evaluated for VIP, SP, CGRP, NPY, GAL and SOM concentration (ELISA test) and the expression of these biologically active substances by the enteric neurons (immunohistochemical staining). Quantitative results showed that ileitis decreased tissue concentration of VIP, CGRP and SOM but increased tissue concentration of SP, NPY and GAL. Immunochemistry revealed that in both the experimental and control pigs, VIP-positive (VIP+) nerve fibers supplied mainly ileal blood vessels, and the labeled pericarya were located in the inner (ISP) and outer submucous plexus (OSP). SP+ and CGRP+ nerve terminals were found in both the mucous and muscular membrane, while the labeled pericarya were found in ISP, OSP and myenteric plexus (MP). In both C and E pigs, the very few nerve terminals containing NPY and SOM were located mainly in the mucous membrane. NPY- or/and SOM-immunopositive nerve cell bodies were found in ISP, OSP and MP. GAL+ nerve fibers supplied all layers of the ileum and were most numerous in the muscular membrane, while the labeled pericarya were present in all the enteric plexuses. The present results suggest that enteric neurons are highly plastic in their response to inflammation.  相似文献   

6.
The occurrence and density of distribution of nerves and endocrine cells that are immunoreactive for neuropeptides in the bovine pancreas were studied by immunohistochemistry. The six neuropeptides localized were galanin (GAL), substance P (SP), methionine-enkephalin (MENK), neuropeptide Y (NPY), calcitonin gene-related peptide (CGRP) and vasoactive intestinal polypeptide (VIP). The exocrine pancreas was shown to have an appreciable number of GAL- and SP-immunoreactive nerve fibres but few fibres showing immunoreactivity for VIP and CGRP. Numerous MENK-, GAL-, SP-, and NPY-immunoreactive nerve fibres were seen in the endocrine portion of the pancreas. Nerve cell bodies in the intrapancreatic ganglia showed immunoreactivity for all of the neuropeptides except CGRP. Endocrine cells showing immunoreactivity for GAL and SP were observed in the large islets and islets of Langerhans, respectively. The present results indicate a characteristic distribution of neuropeptides in the bovine pancreas, which may regulate both exocrine and endocrine secretions of pancreas.  相似文献   

7.
The present study investigated the arrangement and chemical coding of intramural nerve structures supplying the porcine stomach. Tissue samples comprising all layers of the wall of the ventricular fundus were collected from juvenile female pigs (n = 4), which were first deeply anaesthetized and then transcardially perfused with buffered paraformaldehyde. The cryostat sections were processed for double‐labelling immunofluorescence to study the distribution of the intramural nerve structures (visualized with antibodies against protein gene‐product 9.5) and their neurochemical characteristics using antibodies against vesicular acetylcholine transporter (VAChT), nitric oxide synthase (NOS), galanin (GAL), vasoactive intestinal‐polypeptide (VIP), somatostatin (SOM) and substance P (SP). The study confirmed the presence of three distinct nerve plexuses within the wall of the porcine stomach including one myenteric plexus and two, outer and inner, submucous plexuses. The outer and inner submucous plexuses (OSP and ISP, respectively) were similar in respect to the chemical coding of neurons they contained. Most of the neurons expressed immunoreactivity to SP (ISP 58%; OSP 60%) or to VAChT (ISP 56%; OSP 56%), some of them stained for GAL (ISP 18%; OSP 15%) and solitary nerve cells were SOM‐positive (in ISP only). No neurons in the submucous plexuses displayed immunoreactivity to VIP or NOS. In the myenteric plexus, some neurons stained for NOS (20%), VAChT (15%), GAL (10%), VIP (8%) or SP (8%) while no neurons immunoreactive for SOM were encountered. In both submucous and myenteric plexuses, many varicose nerve fibres expressed immunoreactivity to VAChT, GAL or SP, while VIP‐, SOM‐ or NOS‐positive nerve terminals were less numerous. The comparison of the present results with those obtained by other authors has revealed distinct inter‐species differences regarding the arrangement and chemical coding of nerve structures supplying the mammalian stomach.  相似文献   

8.
In the male pig, the bulbourethral gland (BG) is a particulary well developed accessory genital gland (AGG) which produces complex secretion contributing to the fluid component of semen. The secretory and motor function of AGGs is thought to be under the autonomic nervous system control. Although relatively much is known about the innervation of the prostate gland and, to a lesser degree, of the seminal vesicle, the paucity of data dealing with the innervation of BG is striking. Therefore, combined retrograde tracing and double-labelling immunofluorescence have been used to investigate the distribution and immunohistochemical properties of autonomic and primary afferent neurons projecting to this gland in the pig. BG-projecting neurons were found in some ipsilateral (I) and contralateral (C) sympathetic chain ganglia (SChG), the caudal mesenteric ganglion (CaMG), pelvic ganglia (PG) and some dorsal root ganglia (DRG). Immunohistochemistry revealed that the vast majority of CaMG and SChG BG-projecting neurons contained tyrosine hydroxylase (TH) and dopaminebeta-hydroxylase (DbetaH), and some neuropeptides including neuropeptide Y (NPY), somatostatin (SOM) and galanin (GAL). Three subpopulations of PG neurons supplying BG could be distinguished: 1) cholinergic neurons [vesicular acetylcholine transporter (VAChT)-positive] which also contained vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), SOM and NPY, 2) adrenergic neurons (TH-positive) which also stained for NPY, GAL or leu5-enkephalin (LEU), and 3) non-adrenergic, non-cholinergic neurons (NANC). DRG BG-projecting neurons contained mostly substance P (SP) and/or calcitonin gene-related peptide (CGRP) which sometimes colocalized with GAL. The possible functional significance of the substances found within the neurons is discussed.  相似文献   

9.
The present study investigated the arrangement and chemical coding of intramural nerve structures supplying the porcine stomach. Tissue samples comprising all layers of the wall of the ventricular fundus were collected from juvenile female pigs ( n  = 4), which were first deeply anaesthetized and then transcardially perfused with buffered paraformaldehyde. The cryostat sections were processed for double-labelling immunofluorescence to study the distribution of the intramural nerve structures (visualized with antibodies against protein gene-product 9.5) and their neurochemical characteristics using antibodies against vesicular acetylcholine transporter (VAChT), nitric oxide synthase (NOS), galanin (GAL), vasoactive intestinal-polypeptide (VIP), somatostatin (SOM) and substance P (SP). The study confirmed the presence of three distinct nerve plexuses within the wall of the porcine stomach including one myenteric plexus and two, outer and inner, submucous plexuses. The outer and inner submucous plexuses (OSP and ISP, respectively) were similar in respect to the chemical coding of neurons they contained. Most of the neurons expressed immunoreactivity to SP (ISP 58%; OSP 60%) or to VAChT (ISP 56%; OSP 56%), some of them stained for GAL (ISP 18%; OSP 15%) and solitary nerve cells were SOM-positive (in ISP only). No neurons in the submucous plexuses displayed immunoreactivity to VIP or NOS. In the myenteric plexus, some neurons stained for NOS (20%), VAChT (15%), GAL (10%), VIP (8%) or SP (8%) while no neurons immunoreactive for SOM were encountered. In both submucous and myenteric plexuses, many varicose nerve fibres expressed immunoreactivity to VAChT, GAL or SP, while VIP-, SOM- or NOS-positive nerve terminals were less numerous. The comparison of the present results with those obtained by other authors has revealed distinct inter-species differences regarding the arrangement and chemical coding of nerve structures supplying the mammalian stomach.  相似文献   

10.
Immunohistochemical properties of nerve fibres supplying the joint capsule were previously described in many mammalian species, but the localization of sensory neurons supplying this structure was studied only in laboratory animals, the rat and rabbit. However, there is no comprehensive data on the chemical coding of sensory neurons projecting to the hip joint capsule (HJC). The aim of this study was to establish immunohistochemical properties of sensory neurons supplying HJC in the sheep. The study was carried out on 10 sheep, weighing about 30–40 kg. The animals were injected with a retrograde neural tracer Fast Blue (FB) into HJC. Sections of the spinal ganglia (SpG) with FB‐positive (FB+) neurons were stained using antibodies against calcitonin gene‐related peptide (CGRP) substance P (SP), pituitary adenylate cyclase‐activating peptide (PACAP), nitric oxide synthase (n‐NOS), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), Leu‐5‐enkephalin (Leu‐Enk), galanin (GAL) and vesicular acetylcholine transporter (VACHT). The vast majority of FB+ neurons supplying HJC was found in the ganglia from the 5th lumbar to the 2nd sacral. Immunohistochemistry revealed that most of these neurons were immunoreactive to CGRP or SP (80.7 ± 8.0% or 56.4 ± 4.8%, respectively) and many of them stained for PACAP or GAL (52.9 ± 2.9% or 50.6 ± 19.7%, respectively). Other populations of FB+ neurons were those immunoreactive to n‐NOS (37.8 ± 9.7%), NPY (34.6 ± 6.7%), VIP (28.7 ± 4.8%), Leu‐Enk (27.1 ± 14.6) and VACHT (16.7 ± 9.6).  相似文献   

11.
The aim of this study was to investigate the chemical coding of mammary gland‐projecting SChG neurons using double‐labelling immunohistochemistry. Earlier observation showed that after injection of the retrograde tracer fast blue (FB) into the second, right thoracic mamma, FB+ mammary gland‐projecting neurons were found in Th1‐3, Th9‐14 and L1‐4 right SChG. The greatest number of FB+ nerve cell bodies was observed in Th10 (approx. 843) and Th11 (approx. 567). Neurons projecting to the last right abdominal mamma were found in L1‐4 SChG. The greatest number of FB+ neurons was observed in L2 (approx. 1200). Immunohistochemistry revealed that the vast majority of FB+ mammary‐projecting neurons contained immunoreactivities to TH (96.97%) and/or DßH (95.92%). Many TH/DßH‐positive neurons stained for SOM (41.5%) or NPY (33.2%), and less numerous nerve cells expressed VIP (16.9%). This observation strongly corresponds to the results of previous studies concerning the immunohistochemical characterization of nerve fibres supplying the porcine mammary gland.  相似文献   

12.
Our previous study revealed the expression of substance P (SP) and calcitonin gene‐related peptide (CGRP) in sensory distal ganglion of the vagus (nodose ganglion) neurons in the pig. As these neuropeptides may be involved in nociception, the goal of these investigations was to determine possible expression of vasoactive intestinal polypeptide (VIP), SP and CGRP in the pituitary adenylate cyclase‐activating polypeptide‐immunoreactive (PACAP‐IR) porcine nodose perikarya. Co‐expression of these substances was examined using a double‐labelling immunofluorescence technique. To reveal the ganglionic cell bodies, the pan‐neuronal marker protein gene product 9.5 (PGP 9.5) was used. Quantitative analysis of the neurons revealed that 67.25% of the PGP 9.5+ somata in the right‐side ganglion and 66.5% in the left side, respectively, co‐expressed PACAP‐IR. Moreover, 60.6% of the PACAP‐IR cells in the right‐side ganglion and 62.1% in the left, respectively, co‐expressed VIP. SP‐IR was observed in 52.2 and 39.9% of the right and left ganglia, respectively. CGRP was found in 27.7 and 34.1% of the right and left distal ganglion of the vagus, respectively. High level of co‐expression of PACAP with VIP, SP and CGRP in the distal ganglia of the vagus sensory perikarya directly implicates studied peptides in their functional interaction during nociceptive vagal transduction.  相似文献   

13.
With 4 figures and 1 table In this study, the presence of several neurotransmitters and transmitter synthesizing enzymes was studied in hypoglossal nucleus (HN) of the juvenile (4 months old) female pigs (n = 3). Double‐labeling immunofluorescence revealed neurones expressing cholinacetyltranspherase (ChAT), calcitonin gene‐related peptide (CGRP), nitric oxide synthase (NOS), and somatostatin (SOM). Nerve fibers within HN were ChAT, CGRP, NOS, SOM, substance P (SP), Leu‐5‐enkephalin (Leu‐5‐Enk), ß‐dopamine hydroxylase (DßH), neuropeptide Y (NPY) positive. Virtually all the perikarya contained ChAT, whereas CGRP was present in 47% of the neurones. Nerve cell bodies containing NOS or SOM were only occasionally observed. Immunoreactive nerve fibers were found in a close vicinity of the perikarya, often forming baskets around nerve cell bodies. The results obtained were compared with similar data obtained in other species. The presence of immunoreactive structures, origin of the nerve fibers, and functional significance of the findings are discussed.  相似文献   

14.
The ileocaecal junctions of 5 horses and 2 donkeys were examined by using antisera to the following peptides: somatostatin, glucagon, gastrin, neurotensin, vasoactive intestinal peptide (VIP), peptide histidine isoleucine (PHI), calcitonin gene-related peptide (CGRP), substance P (SP) and neuropeptide Y (NPY). Antisera to somatostatin, neurotensin and NPY demonstrated endocrine cells in the ileal- and caecal parts of the ileocaecal junction, while immunoreactivity for glucagon was demonstrated in endocrine cells of the ileal part only. Nerve cell bodies showing immunoreactivity to SP, VIP, CGRP and PHI were demonstrated in the myenteric and submucosal plexuses and were associated with small blood vessels in the submucosa of all the regions tested. Ramified nerve fibres in the submucosa immunoreactive to SP, VIP, CGRP and PHI extended to the mucosa and to small blood vessels in the submucosa. Nerve fibres showing immunoreactivity to SP, VIP and PHI extended to the circular smooth muscle layer of the ileocaecal junction.  相似文献   

15.
Immunohistochemistry was applied to determine the distribution patterns of nerve fibres containing tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DbetaH), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and vesicular acetylcholine transporter (VAChT) in the prostate, seminal vesicle (SV) and bulbourethral glands (BU) of male sheep. In all organs studied, cholinergic innervation was more developed than noradrenergic innervation. Numerous VAChT-immunoreactive (IR) nerve fibres were found in the muscular layer and mucosa of the SV and BU as well as in the prostate. A similar abundance of noradrenergic nerve fibres (showing immunoreactivity both to TH and DbetaH) was also found in both layers of the SV and BU (but not in the prostate). In the prostate a moderate density of VIP-IR nerve fibres was present but only very scarce NPY-IR nerve fibres were shown. All the studied accessory sexual glands (ASG) of male sheep contained VIP-IR nerve fibres in a similar frequency. Double immunohistochemistry revealed that the vast majority of noradrenergic nerve fibres also contained NPY. None of the noradrenergic nerve fibres showed the presence of VAChT or VIP. The possible functional significance of these findings is discussed.  相似文献   

16.
The effect of estradiol-17β (E(2)) on the number and distribution of neurons in the caudal mesenteric ganglion (CaMG) supplying the ovary of adult pigs was investigated. Also, the numbers of ovarian dopamine-β-hydroxylase (DβH-), neuropeptide Y (NPY-), somatostatin (SOM-), galanin (GAL-) and estrogen receptor (ER)-immunoreactive perikarya as well as the density of the intraganglionic nerve fibers containing DβH and/or NPY, SOM, GAL were determined. E(2) was administered i.m. from day 4 of the first studied estrous cycle to the expected day 20 of the second studied cycle. Injections of E(2) (1) increased the E(2) level in the peripheral blood approximately 4-5 fold, (2) decreased the number of small-sized Fast Blue-positive postganglionic neurons in the CaMG, (3) decreased the number of small perikarya in the ventral, dorsal and central regions of the CaMG, (4) decreased the number of large perikarya in the dorsal and central regions, (5) decreased the number of small and large perikarya in the CaMG that were DβH(+)/NPY(+), (6) decreased the number of small DβH(+) but NPY(-) perikarya, (7) decreased the number of small perikarya coded DβH(+)/SOM(+) and DβH(+)/SOM(-), (8) decreased the number of small DβH(+)/GAL(-) perikarya, (9) decreased the number of small and large perikarya expressing ER subtypes α and β and (10) decreased the total number of nerve fibers in the CaMG containing DβH and/or NPY and DβH and/or GAL. These results show that long-term E(2) treatment of adult gilts downregulates the populations of both noradrenergic and ERs expressing ovarian neurons in the CaMG. Our findings suggest also that elevated E(2) levels that occur during pathological states may regulate gonadal function(s) by affecting ovary supplying neurons.  相似文献   

17.
Immunohistochemical studies were performed on male and female bladder and urethra collected from 4 adults dogs and 10 foetal specimens with crown-rump length from 53 to 155 mm (medium-sized breeds, presumptive 38 days of gestation to term). A panel of antisera was tested, including PGP 9.5 to describe the general intramural innervation, ChAT and TH to depict the cholinergic and nor-adrenergic components and NOS1, CGRP, SP, NPY, VIP, SOM, GAL, 5-HT to investigate the possible nitrergic, peptidergic and aminergic ones. A rich cholinergic innervation was present in adult bladder and urethra, along with a lesser number of adrenergic nerves and a small number of nitrergic ones. Either bladder or urethra received numerous CGRP-, SP-, NPY-, VIP-containing nerve fibres which were distributed throughout the muscle layers. All over the lower urinary tract strong to weak ChAT-, CGRP-, SP- and NPY-immunoreactivity was detected in intramural ganglia, in peripheral nerve bundles and around blood vessels. 5-HT-immunoreactive endocrine cells were present in the urethral epithelium. Early foetal organs were supplied only by cholinergic nerve fibres. Few NOS-, CGRP- and SP-ergic components appeared at the end of pregnancy. It can be guessed that sensory mediators such as CGRP and SP increase in postnatal ages while other neuropeptides, such as NPY and VIP, appear only after birth, as the urinary reflex consolidates.  相似文献   

18.
The expression of calbindin D-28k (CB), calretinin (CR), substance P (SP) and calcitonin gene-related peptide (CGRP) in the stomach myenteric plexus of the Korean native goat stomach was investigated by immunohistochemistry. The results demonstrated the presence of nerve fibers and cell bodies immunoreactive (IR) to CB, CR, SP and CGRP. In tissues of rumen, reticulum, omasum and abomasum, some distinct neuronal populations could be distinguished according to their morphologic and neuronal chemical properties: Dogiel type I cells which have irregular lamellar dendrites and a single axon, Dogiel type II cells which have large ovoid cell bodies and several long axon-like processes, and small filamentous interneurons. CB-, CR-, SP- and CGRP-IR neurons and fibers were observed in the myenteric plexus of stomach, and varicose nerve fiber immunostained to SP and CGRP also were found in the muscle layer. In myenteric plexus of the stomach, CB- and SP-positive neurons were characterized by Dogiel type II and CR-IR neurons were classified Dogiel type I with lamellar dendrites, and immunoreactivity of CGRP was very weak in the somata. SP- and CGRP-IR nerve fibers formed dense networks within the myenteric ganglia. SP-IR cell bodies and their fibers were found in the myenteric plexus, and the immunoreactivity and number of cell bodies were more than CB-, CR-, and CGRP-IR neurons. These results suggest that SP, CGRP, CB and CR in the myenteric neurons of Korean native goat stomach may have play an important role in the dynamic movement.
(Support contributed by: Korean Research Foundation 2003-015-E00195).  相似文献   

19.
OBJECTIVE: To determine the distribution of nerve fibers containing calcitonin gene-related peptide (CGRP), substance P (SP), vasoactive intestinal peptide (VIP), and intermediate neurofilaments in nasal mucosa of horses. ANIMALS: 6 horses without evidence of nasal disease. PROCEDURE: Full-thickness nasal tissue specimens were obtained from the rostral portion of the nasal septum at necropsy, and fluorescence immunohistochemistry was performed to assess mucosal distribution of nerve fibers. RESULTS: Nerve fibers with CGRP-like immunoreactivity (CGRP-Li) formed a dense subepithelial network, and a large number of fibers were found coursing between epithelial cells. Fibers with CGRP-Li were also associated with blood vessels and mucous glands. Fibers with SP-like immunoreactivity (SP-Li) had a similar distribution and density. In contrast, there were few fibers with VIP-like immunoreactivity. Fibers containing intermediate neurofilaments were prominent and appeared as large nerve fiber bundles mainly adjacent to the nasal septum but also close to mucous glands and within the lamina propria. Intermediate neurofilaments were also identified in single nerve fibers at all sites, but the density of fibers with intermediate neurofilaments did not match that of fibers with CGRP- or SP-Li. CONCLUSIONS: The density and distribution of nerve fibers containing SP- or CGRP-Li in nasal mucosa of horses was similar to that reported for other species. However, expression of VIP in nerve fibers was low. Antibodies against intermediate neurofilaments identified many nerve fibers in nasal mucosa of horses but did not appear to identify small diameter fibers expressing SP or VIP.  相似文献   

20.
The present study was designed to investigate the expression of biologically active substances by intramural neurons supplying the stomach in normal (control) pigs and in pigs suffering from dysentery. Eight juvenile female pigs were used. Both dysenteric (n = 4; inoculated with Brachyspira hyodysenteriae) and control (n = 4) animals were deeply anaesthetized, transcardially perfused with buffered paraformalehyde, and tissue samples comprising all layers of the wall of the ventricular fundus were collected. The cryostat sections were processed for double-labelling immunofluorescence to study the distribution of the intramural nerve structures (visualized with antibodies against protein gene-product 9.5) and their chemical coding using antibodies against vesicular acetylcholine (ACh) transporter (VAChT), nitric oxide synthase (NOS), galanin (GAL), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), Leu(5)-enkephalin (LENK), substance P (SP) and calcitonin gene-related peptide (CGRP). In both inner and outer submucosal plexuses of the control pigs, the majority of neurons were SP (55% and 58%, respectively)- or VAChT (54%)-positive. Many neurons stained also for CGRP (43 and 45%) or GAL (20% and 18%) and solitary perikarya were NOS-, SOM- or VIP-positive. The myenteric plexus neurons stained for NOS (20%), VAChT (15%), GAL (10%), VIP (7%), SP (6%) or CGRP (solitary neurons), but they were SOM-negative. No intramural neurons immunoreactive to LENK were found. The most remarkable difference in the chemical coding of enteric neurons between the control and dysenteric pigs was a very increased number of GAL- and VAChT-positive nerve cells (up to 61% and 85%, respectively) in submucosal plexuses of the infected animals. The present results suggest that GAL and ACh have a specific role in local neural circuits of the inflamed porcine stomach in the course of swine dysentery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号