首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, we investigated the environmental factors driving small mammal (rodents and shrews) assemblages in permanent habitat patches in response to a gradient of agricultural intensification. Small mammals were sampled using a trapping standard method in the hedgerow networks of three contrasted landscapes differing by their level of land-use intensity and hedgerow network density (BOC1: slightly intensified; BOC2: moderately intensified and POL: highly intensified). We hypothesized that habitat and landscape characteristics have to be considered to understand the structure of local community. In that way, we carried out a multi-scale study using environmental variables ranging from local habitat (structure and composition of the hedgerows) to hedgerows neighbourhoods in a radius of 300 m (land cover and connectivity around hedges) and to landscape units (three sites). During 1 year, 24 hedgerows were sampled seven times, representing a total of 1,379 captures (86% of rodents and 14% of shrews) and eight species, dominated by the wood mouse (Apodemus sylvaticus) and the bank vole (Clethrionomys glareolus). Inter-site variability was significant and accounted for 18% of total variation in small mammal species abundances. But intra-site variability was also highlighted: species abundance profiles may differ greatly among hedgerows within a site. The more explanatory variables were identified at the different scales of the study: the landscape unit POL was shown to be an important factor in structuring the community, but the predominant factors explaining differences of abundances among hedgerows were about local habitat. In fact, the width of hedges and the tree species richness appeared to be significant and explaining the greatest part of the total variation of the small mammal community composition.  相似文献   

2.
Assemblages of plants were studied at 14 sites in northern Patagonia corresponding to localities at which we (Monjeau et al. 1997) earlier studied the relationship between small mammal assemblages and landscape classifications. This allowed us to test predictions that both plants and small mammals correspond to the more inclusive hierarchical landscape divisions but that plants track better than small mammals the less inclusive divisions. Species presence or absence of plants at each locality was used in a series of multivariate analyses and compared by correlation analysis with those generated from small mammal species data. Assemblages of both plants and small mammals corresponded to the upper divisions, which are based on climatic and geomorphological features, but small mammal assemblages did not correspond to the lower divisions of the landscape classifications. Three factors are considered as explanations for the observed differences between plants and small mammals: a) small mammal habitat is determined more by plant growth form than by plant species; b) trophic level differences between the two groups; and c) species pool size affects the resolution of microhabitat correspondence. Our data indicate that both plant assemblages and small mammal assemblages respond to climatic and geomorphological features, which is in contrast to the paradigm that mammal assemblages simply follow plant assemblages. We also attempted to reconcile classification systems in Patagonia by proposing a nomenclatural system based on a hierarchical classification. In the system proposed, ecoregion is the lowest division small mammal assemblages can recognize in Patagonia. Finally, we conclude that the hierarchical nature of landscapes based on a holistic view of environments reflects real entities that are not just the perceptions of landscape ecologists.  相似文献   

3.
The matrix of altered habitats that surrounds remnants in human dominated landscapes has been considered homogeneous and inhospitable. Recent studies, however, have shown the crucial role of the matrix in maintaining diversity in fragmented landscapes, acting as a mosaic of units with varying permeability to different species. Inclusion of matrix quality parameters is especially urgent in managing fragmented landscapes in the tropics where agriculture frontiers are still expanding. Using standardized surveys in 23 sites in an Atlantic forest landscape, we evaluated matrix use by small mammals, the most diverse ecological group of mammals in the Neotropics, and tested the hypothesis that endemic species are the most affected by the conversion of original forest into anthropogenic habitats. By comparing species distribution among forest remnants and the predominant adjacent habitats (native vegetation in initial stages of regeneration, eucalyptus plantations, areas of agriculture and rural areas with buildings), we found a strong dissimilarity in small mammal assemblages between native vegetation (including initial stages) and anthropogenic habitats, with only two species being able to use all habitats. Endemic small mammals tended to occupy native vegetation, whereas invading species from other countries or open biomes tended to occupy areas of non-native vegetation. Our results highlight that future destruction of native vegetation will favor invading or generalist species which could dominate highly disturbed landscapes, and that some matrix habitats, such as regenerating native vegetation, should be managed to increase connectivity among populations of endemic species.  相似文献   

4.
While several studies have demonstrated that roads can act as barriers to small mammal movement, the relationship between road density and small mammal abundance has not yet been investigated. In southeastern Ontario, Peromyscus leucopus (white-footed mice) suffer high over-winter mortality rates, resulting in small springtime populations and frequent local extinctions. Peromyscus leucopus movement is known to be inhibited by roads, which should result in lower rates of immigration into and recolonization of habitats in landscapes with high road density. We tested two predictions: (1) Forest sites situated in landscapes with high road densities have a higher chance of P. leucopus being absent during the early spring than forest sites situated in landscapes with low road densities and (2) P. leucopus populations during the summer are smaller in forest sites situated in landscapes with high road densities than in landscapes with low road densities. We sampled P. leucopus in focal patches within nineteen landscapes (7 rural, low-road-density landscapes; 7 rural, high-road-density landscapes; 5 urban landscapes). There was no significant relationship between road density and the presence/absence of P. leucopus during the early spring. We found a significant positive effect of road density on P. leucopus relative abundance during the summer, even when we excluded the urban landscapes and based the analysis on only the 14 rural landscapes. Our results suggest that any negative effect of roads on P. leucopus populations, created by their inhibition to moving across roads, is far outweighed by some positive effect of roads on P. leucopus abundance. We suggest that the two most likely explanations are that roads are positively correlated with an important as-yet-undetermined component of habitat quality, or that roads positively affect P. leucopus by negatively affecting their predators.  相似文献   

5.
6.
Clearcutting is the main method of harvesting boreal forests, to some extent mimicking natural disturbances by fire and wind-felling. Effects of clearcutting on vertebrate fauna in managed forests was examined by small mammal trapping in spring and autumn, winter censuses of mammal snow tracks and censuses of birds in spring and summer in one central and one edge (125 m) section of large clearcuts and mature forests, respectively. There was a separate clearcut fauna, at least on large clearcuts, that was well distinguished from the forest fauna. There was not any physiognomic ecotone but the forest fauna showed a marked edge effect with larger numbers of many species in the peripheral parts of the forest. In the forests examined, with a Western European bird fauna, there were no typical interior forest species, in contrast to northern taiga forests. The present forest species easily changed distributions seasonally and according to variations in snow conditions and food abundance. Such generalist species in the boreal forest will therefore vary considerably in local density according to landscape composition but will also show large-scale persistence. They may have been selected for as a result of man's restructuring of temperate and boreal landscapes, e.g. by forest management. Edge effects seem to arise for several reasons but will probably only apply to generalist species.  相似文献   

7.
Protecting semi-natural grasslands may through spill-over benefit species richness and abundance of flower-visiting insects in linear habitats, such as uncultivated field boundaries, in agricultural landscapes. However, whether local diversity increases both with decreasing distance from potential source habitats and increasing landscape heterogeneity is poorly known due to a general lack of studies replicated at the landscape scale. We analysed if local assemblages of bumblebees, butterflies and hoverflies in linear uncultivated habitats increased with increasing distance to the nearest semi-natural grassland in 12 replicated landscapes along a gradient of landscape heterogeneity in Scania, Southern Sweden. Species richness and abundance of bumblebees and butterflies, but not hoverflies, decreased with increasing distance to semi-natural grasslands, but none of these groups were related to increasing landscape heterogeneity. Further analyses on trait-specific groups revealed significant decreases in the abundance of sedentary and grassland specialist butterflies with increasing distance to assumed source populations, whereas this was not the case concerning mobile species and grassland generalists. The abundance of all bumblebee trait groups decreased with increasing distance to semi-natural grasslands, but only some species (those nesting above ground, with long colony cycles and with small colony sizes) also increased with increasing landscape heterogeneity. We conclude that local species assemblages of flower-visiting insects in linear habitat elements were mainly affected by the occurrence of nearby semi-natural grasslands. In order to conserve diverse assemblages of flower-visiting insects, including the ecological services they provide, it is important to conserve semi-natural grasslands dispersed throughout agricultural landscapes.  相似文献   

8.

Purpose

Most of the agricultural landscape in Europe, and elsewhere, consists of mosaics with scattered fragments of semi-natural habitat like small forest fragments. Mutual interactions between forest fragments and agricultural areas influence ecosystem processes such as nutrient cycling, a process strongly mediated by the macrodetritivore community, which is however, poorly studied. We investigated macrodetritivore distribution patterns at local and landscape-level and used a key functional trait (desiccation resistance) to gain mechanistic insights of the putative drivers.

Methods

Macrodetritivores were sampled in forest edges-centres of 224 European forest fragments across 14 landscapes opposing in land use intensity. We used a multilevel analysis of variance to assess the relative contribution of different spatial scales in explaining activity-density and Shannon-diversity of woodlice and millipedes, together with a model-based analysis of the multivariate activity-density data testing the effect on species composition. Secondly, we tested if desiccation resistance of macrodetritivores varied across communities at different spatial scales using linear mixed effect models.

Results

Forest edge-centre and landscape use intensity determined activity-density and community composition of macrodetritivores in forest fragments, while fragment characteristics like size and continuity were relatively unimportant. Forest edges and higher intensity landscapes supported higher activity-density of macrodetritivores and determined species composition. Forest edges sustained woodlouse communities dominated by more drought tolerant species.

Conclusions

Landscape use intensity and forest edges are main drivers in macrodetritivore distribution in forest fragments with desiccation resistance a good predictor of macrodetritivore distribution. Key functional traits can help us to predict changes in community structure in changing landscapes.
  相似文献   

9.
The rapid expansion of the world’s urban population is a major driver of contemporary landscape change and ecosystem modification. Urbanisation destroys, degrades and fragments native ecosystems, replacing them with a heterogeneous matrix of urban development, parks, roads, and isolated remnant fragments of varying size and quality. This presents a major challenge for biodiversity conservation within urban areas. To make spatially explicit decisions about urban biodiversity conservation actions, urban planners and managers need to be able to separate the relative influence of landscape composition and configuration from patch and local (site)-scale variables for a range of fauna species. We address this problem using a hierarchical landscape approach for native, terrestrial reptiles and small mammals living in a fragmented semi-urban landscape of Brisbane, Australia. Generalised linear modelling and hierarchical partitioning analysis were applied to quantify the relative influence of landscape composition and configuration, patch size and shape, and local habitat composition and structure on the species’ richness of mammal and reptile assemblages. Landscape structure (composition and configuration) and local-scale habitat structure variables were found to be most important for influencing reptile and mammal assemblages, although the relative importance of specific variables differed between reptile and mammal assemblages. These findings highlight the importance of considering landscape composition and configuration in addition to local habitat elements when planning and/or managing for the conservation of native, terrestrial fauna diversity in urban landscapes.  相似文献   

10.
Most landscape definitions in the western world are based on soil, climatic, or physiographic features and do not integrate humans as an integral part of the landscape. We present an approach where landscape types have been delineated in southern Québec, Canada based on current land use where anthropogenic and agricultural activities are concentrated as a practical application of the holistic approach in landscape definition. Landsat-TM satellite images were classified and the 27 habitat classes were regrouped into 5 general land cover classes (cash crop, dairy farming, forest, anthropogenic, wetlands) and overlaid onto soil landscape polygons to characterize natural boundary units. Cluster analyses were used to aggregate these polygons into seven agricultural types of land scape forming a gradient from urban and high-intensity cash crop farming activities to landscapes dominated by a mosaic of agriculture and forested areas. Multivariate analyses of raw data and of socio-economic and farming practices variables were used to describe the defined types of landscape and these were projected over three established land classification systems of southern Québec (Canadian ecoregions, North American Bird Conservation Initiative regions and Corn Heat Unit regions) to compare their similarity in terms of land cover and for planning of future ecological studies. Because agricultural landscapes are highly dynamic, they are bound to undergo changes in the near future. Our landscape delineation may serve as an experimental setup where land scape dynamics and wildlife populations and community structures could be monitored. Because the information we used to delineate and characterize agricultural landscape types is readily available in other countries, our approach could easily be adapted to similar data sources under and a wide variety of landscape types. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.

Context

Landscape spatio-temporal heterogeneity is regarded as an important driver of biodiversity. In agricultural landscapes, the composition and configuration of cultivated fields and their multi-year dynamics should be considered. But the habitat-matrix paradigm in landscape ecology has resulted in little consideration of cropped areas.

Objectives

The main objective of our study was to determine the influences of spatial and multi-year temporal heterogeneity of the crop mosaic on carabid beetle assemblages of agricultural landscapes.

Methods

Carabids were sampled in 40 cereal fields in western France, and their species richness, total abundance and abundance of species groups with different dispersal abilities were measured. For each sampling site, we computed different metrics that characterized crop mosaic spatial and temporal heterogeneity. We quantified relationships between carabid assemblages and heterogeneity metrics and tested their significance.

Results

Total carabid abundance increased with increase in temporal heterogeneity of the crop mosaic. However, all species were not influenced in the same way by spatial and temporal heterogeneity metrics. Some species with high dispersal power such as Trechus quadristriatus were more abundant in landscapes with high spatial heterogeneity, whereas the abundance of less mobile species such as Poecilus cupreus were only positively influenced by temporal crop dynamics.

Conclusions

Our results suggest that both the spatial and temporal heterogeneity of the crop mosaic affects farmland biodiversity, at least for species that use crops during their life cycle or disperse through fields. We highlight the importance of taking this heterogeneity into account in further ecological studies on biodiversity in agricultural landscapes.
  相似文献   

12.
The purpose of our study was to compare the number, proportion, and species composition of introduced plant species in forest patches situated within predominantly forested, agricultural, and urban landscapes. A previous study suggested that agricultural landscape context does not have a large effect on the proportion of introduced species in forest patches. Therefore, our main goal was to test the hypothesis that forest patches in an urban landscape context contain larger numbers and proportions of non-native plant species. We surveyed the vegetation in 44 small remnant forest fragments (3–7.5 ha) in the Ottawa region; 15 were situated within forested landscapes, 18 within agricultural landscapes, and 11 within urban landscapes. Forest fragments in urban landscapes had about 40% more introduced plant species and a 50% greater proportion of introduced plant species than fragments found in the other two types of landscape. There was no significant difference in the number or proportion of introduced species in forest fragments within forested vs. agricultural landscapes. However, the species composition of introduced species differed among the forest patches in the three landscape types. Our results support the hypothesis that urban and suburban areas are important foci for spread of introduced plant species.  相似文献   

13.
The aim of this study was to assess the impact of isolation on forest bird communities in agricultural landscapes in The Netherlands. We studied the avifauna of 235 small (0.1–39 ha) woodlots composed of mature deciduous trees in 1984–1985. These woodlots were selected in the eastern and central/southern part of the country within 22 regions showing great differences in landscape structure,i.e., degree of isolation. Multiple regression analysis indicated that woodlot size was the best single predictor of species number and probability of occurrence of most species. It turned out that the isolation variables, area of wood, number of woods, interpatch distance, and proximity and density of connecting elements, explained small but significant parts of the residual variances in species number. No single species was significantly affected by the density of connecting elements. Biogeographical differences between two groups of regions were emphasized. Evidence of four woodland species suggested that regional abundance affected the probability of occurrence in small isolates.  相似文献   

14.
Hard (high-contrast with pastures) and soft (low-contrast with old-fields) forest edges created by slash-and-burn agriculture have become common landscape features in regions dominated by neotropical montane forest. However, little is know about the impacts of such edge types on forest regeneration dynamics. The consequences of varying forest edge permeability for oak acorn dispersal were investigated in a forest mosaic in the Highlands of Chiapas, Mexico. Rates of acorn production and removal, as well as the abundance and composition of small mammal seed consumers, were monitored along these different edge types (hard vs. soft) at specific distances from forest edges into forest patches and adjacent grasslands during two consecutive years. Results show that acorn removal declined significantly only in grasslands of sites characterised by hard edges (Logistic regression, P < 0.05). Movements of metal-tagged acorns support the hypothesis that soft edges are more permeable to small mammals, with rodents moving acorns up to 15 m into grasslands of sites with soft edges. In sites with hard edges, higher rates of acorn dispersal were recorded from the forest edge towards the forest interior. Peromyscus spp. were the main acorn predators and/or dispersers of acorns present in our study sites. Rates of acorn removal during a non-masting year were greater than the subsequent mast-seeding year (85% removal within 138 days vs. 75% within 213 days), demonstrating that mast seeding may allow some seeds to escape predation. The implications of these results for oak dispersal and regeneration along edges in fragmented tropical forest landscapes are discussed.  相似文献   

15.
Globally, modification of landscapes for agriculture has had a strong influence on the distribution and abundance of biota. In particular, woodland-dependent birds are under threat across agricultural landscapes in Britain, North America and Australia, with their decline and extirpation attributed to the loss and fragmentation of habitat. Other native species have become over-abundant in response to anthropogenic landscape change and have strong interactive effects on avian assemblage structure. In eastern Australia, the hyper-aggressive noisy miner (Manorina melanocephala) often dominates woodlands in agricultural landscapes through interspecific competition, resulting in declines of species richness of woodland-dependent birds. We aimed to determine the relative influence and importance of interspecific competition, in situ habitat structure and landscape structure for woodland-dependent bird species at the landscape level. We recorded species-specific landscape incidence of woodland-dependent birds in 24 agricultural-woodland mosaics (25 km2) in southern Queensland, Australia. We selected extensively cleared landscapes (10–23 % woodland cover) where fragmentation effects are expected to be greatest. We applied generalised linear models and hierarchical partitioning to quantify the relative importance of the landscape-level incidence of the noisy miner, mistletoe abundance, shrub cover, woodland extent, woodland subdivision and land-use intensity for the incidence of 46 species of woodland birds at the landscape-scale. The landscape-level incidence of the noisy miner was the most important explanatory variable across the assemblage. Both in situ habitat structure and landscape structure were of secondary importance to interspecific aggression, although previous research suggests that the increasing incidence of the noisy miner in fragmented agricultural landscapes is itself a consequence of anthropogenic changes to landscape structure. Species’ responses to fragmentation varied from positive to negative, but complex habitat structure had a consistently positive effect, suggesting in situ restoration of degraded habitats could be a conservation priority. Landscape wide conservation of woodland-dependent bird populations in agricultural landscapes may be more effective if direct management of noisy miner populations is employed, given the strong negative influence of this species on the incidence of woodland-dependent birds among landscapes.  相似文献   

16.
Fisher  Jason T.  Merriam  Gray 《Landscape Ecology》2000,15(4):333-338
Eastern grey squirrels (Sciurus carolinensis) and North American red squirrels (Tamiasciurus hudsonicus) were studied among wooded patches within an agricultural mosaic. Fifteen sites south of Ottawa, Canada, with differing landscape and local features were censused using tracking boards placed in a woods or wooded fencerow. Regression analyses of landscape compositional and physiognomic variables within a 1-km radius isolated the best predictors of grey and red squirrel abundance and activity. Grey squirrels were found in both small woods and fencerows in farm landscapes but were not found in large woods. A polynomial regression of wooded patch size explained 79% of the variance in grey squirrel abundance. Grey squirrel activity was correlated with the percent cover of soybeans in the landscape. Red squirrels were found in fencerows, small and large woods; activity was correlated with the percent cover of both woods and corn crop in the surrounding landscape. These results indicate that distributions of both species are influenced by multiple landscape elements, but that grey squirrels may rely on fragmented agricultural landscapes whereas red squirrels make more use of both native woodland and altered landscapes.  相似文献   

17.
We evaluated the influence of scale on habitat use for three wetland-obligate bird species with divergent life history characteristics and possible scale-dependent criteria for nesting and foraging in South Dakota, USA. A stratified, two-stage cluster sample was used to randomly select survey wetlands within strata defined by region, wetland density, and wetland surface area. We used 18-m (0.1 ha) fixed radius circular-plots to survey birds in 412 semipermanent wetlands during the summers of 1995 and 1996. Variation in habitat use by pied-billed grebes (Podilymbus podiceps) and yellow-headed blackbirds (Xanthocephalus xanthocephalus), two sedentary species that rarely exploit resources outside the vicinity of nest wetlands, was explained solely by within-patch variation. Yellow-headed blackbirds were a cosmopolitan species that commonly nested in small wetlands, whereas pied-billed grebes were an area-sensitive species that used larger wetlands regardless of landscape pattern. Area requirements for black terns (Chlidonias niger), a vagile species that typically forages up to 4 km away from the nest wetland, fluctuated in response to landscape structure. Black tern area requirements were small (6.5 ha) in heterogeneous landscapes compared to those in homogeneous landscapes (15.4–32.6 ha). Low wetland density landscapes composed of small wetlands, where few nesting wetlands occurred and potential food sources were spread over large distances, were not widely used by black terns. Landscape-level measurements related to black tern occurrence extended past relationships between wetlands into the surrounding matrix. Black terns were more likely to occur in landscapes where grasslands had not been tilled for agricultural production. Our findings represent empirical evidence that characteristics of entire landscapes, rather than individual patches, must be quantified to assess habitat suitability for wide-ranging species that use resources over large areas.  相似文献   

18.
Population declines for many bat species are associated with rapid, human-induced ecosystem changes. In this context, the available species pool is determined in part by historical adaptation to the native ecosystem, but the resulting community structure may be determined principally by the ability of evolved traits to function in the novel context of a human-dominated ecosystem. To investigate the role of human disturbance as a determinant of bat communities, we surveyed assemblages and species occurrence rates in 27 agriculturally dominated landscapes exhibiting a gradient of human-induced forest fragmentation in Indiana, USA. We used multiple linear regression to explore the relationship of landscape environmental variables to species diversity. We then examined the relationship between community structure, evolved species traits and fragmentation conditions across a landscape using RLQ analysis. Overall, species diversity was positively related to the amount of forest and negatively correlated with amount of urban development in a landscape. We also observed a significant relationship between evolved species traits and landscape-level variables that is consistent with globally anticipated trends for bat species extinction risk. Our findings suggest that responses of bat species to human modification of ecosystems on the scale of a few kilometers could drive distributional dynamics at larger spatial and longer temporal scales.  相似文献   

19.

Context

Intensive agricultural management practices and landscape homogenisation are the main drivers of biodiversity loss in agricultural landscapes. Agricultural fields are regularly disturbed and provide unstable habitats due to crop management regimes. This may lead to movement of arthropods into neighbouring non-arable habitats, as natural and semi-natural habitats provide suitable overwintering sites.

Objectives

Here we assessed the effect of landscape composition and configuration on the overwintering spider and carabid fauna of grassy field margins and hedgerows.

Methods

We sampled ground-dwelling arthropods at field edges of different types (grassy field margin and hedgerows), landscape composition (diverse and simple) and configuration (mosaic and large-scale agricultural landscapes).

Results

We detected larger spiders in hedgerows than in grassy field margins and in complex landscapes rather than in simple landscapes. We found a significant effect of interaction between landscape composition and edge type on ballooning propensity of spiders. Agrobiont carabids were more abundant in field edges of compositionally simple and large-scale agricultural landscapes. Furthermore, we showed an effect of interaction between landscape composition and edge type on agrobiont spiders. We collected larger carabids in grassy field margins than in hedgerows and carabids were smaller in simple landscapes than in diverse landscapes. The spider community was affected by edge type, and landscape composition had a significant effect on the carabid community.

Conclusions

Small-scale agricultural landscapes may have higher overall densities of ground-dwelling spiders and carabids than large scale landscapes due to the relatively high edge density and the higher quantity of available overwintering sites.
  相似文献   

20.

Context

In agricultural landscapes, riparian forests are used as a management tool to protect stream ecosystems from agricultural activities. However, the ability of managers to target stream protection actions is limited by incomplete knowledge of scale-specific effects of agriculture in riparian corridor and catchment areas.

Objectives

We evaluated scale-specific effects of agricultural cover in riparian corridor and catchment areas on stream benthic macroinvertebrate (BMI) communities to develop cover targets for agricultural landscapes.

Methods

Sixty-eight streams assigned to three experimental treatments (Forested Riparian, Agricultural Riparian, Agricultural Catchment) were sampled for BMIs. Ordination and segmented regression were used to assess impacts of agriculture on BMI communities and detect thresholds for BMI community metrics.

Results

BMI communities were not associated with catchment agricultural cover where the riparian corridor was forested, but were associated with variation in catchment agriculture where riparian forests had been converted to agriculture. Trait-based metrics showed threshold responses at greater than 70% agricultural cover in the catchment. Increasing agriculture in the riparian corridor was associated with less diverse and more tolerant BMI communities. Eight metrics exhibited threshold responses ranging from 45 to 75% agriculture in the riparian corridor.

Conclusions

Riparian forest effectively buffered streams from agricultural activity even where catchment agriculture exceeds 80%. We recommend managers prioritize protection of forested riparian corridors and that restore riparian corridors where agricultural cover is near identified thresholds be a secondary priority. Adoption of catchment management actions should be effective where the riparian corridor has been converted to agriculture.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号