首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to determine the live weights at which large-, medium-, and small-framed feeder steers and heifers attain a degree of finish associated with a carcass quality grade of low Choice and to examine the relationship of feeder cattle muscle thickness to carcass yield grade traits. Feeder steers (n = 401) and heifers (n = 463) representing three age classes (calf, yearling, long yearling) were selected randomly at a commercial feedlot to exhibit wide ranges in frame size and muscularity. Individual weights were recorded and a panel of five experienced evaluators scored each animal for frame size, muscle thickness, and flesh condition. The cattle were finished on a high-concentrate finishing diet and harvested at an estimated carcass fat thickness of 10 mm. Final weights and USDA carcass grade data were collected for all cattle. Frame size scores effectively predicted finished weight at a marbling end point of Small(00) for both heifers (r2 = 0.89, SE = 16 kg) and steers (r2 = 0.94, SE = 13 kg). For heifers, the Small/Medium and Medium/ Large frame score intersects corresponded to live weights of 460 kg and 520 kg, respectively. For steers, the Small/Medium and Medium/Large frame score lines corresponded to live weights of 504 kg and 577 kg, respectively. These weights were greater than weights specified in the 1979 USDA grade standards. Evaluations of feeder cattle muscling, based on 1979 USDA Standards, were associated (P < 0.05) with differences in longissimus muscle area but were not related (P = 0.08) to differences in numerical carcass yield grades. An alternative muscle thickness classification scheme, involving the use of four thickness classes, was effective for stratifying feeder cattle according to eventual differences (P = 0.004) in carcass yield grade. Our findings suggest that USDA feeder cattle grade standards developed in 1979 are no longer adequate for describing today's population of feeder cattle.  相似文献   

2.
Pork carcasses (n = 133) were used to investigate the influence of carcass fatness and muscling on composition and yields of pork primal and subprimal cuts fabricated to varying levels of s.c. fat. Carcasses were selected from commercial packing plants in the southeastern United States, using a 3 x 3 factorial arrangement with three levels of 10th rib backfat depth (< 2.03, 2.03 to 2.54, and > 2.54 cm) and three levels of loin eye area (LEA; < 35.5, 35.5 to 41.9, and > 41.9 cm2). Sides from the selected carcasses were shipped to the University of Georgia for carcass data collection by trained USDA-AMS and University of Georgia personnel and fabrication. Sides were fabricated to four lean cuts (picnic shoulder, Boston butt, loin, and ham) and the skinned belly. The four lean cuts were further fabricated into boneless cuts with s.c. fat trim levels of 0.64, 0.32, and 0 cm. The percentages of four lean cuts, boneless cuts (four lean cuts plus skinned, trimmed belly) at 0.64, 0.32, and 0 cm s.c. fat, fat-free lean, and total fat were calculated. Data were analyzed using a least squares fixed effects model, with the main effects of 10th rib backfat and LEA and their interaction. Fatness and muscling traits increased (P < 0.05) as 10th rib backfat and LEA category increased, respectively. However, fat depth measures were not affected greatly by LEA category, nor were muscling measures greatly affected by backfat category. The percentage yield of cuts decreased (P < 0.05) as backfat category increased. Cut yields from the picnic shoulder, Boston butt, and belly were not affected (P > 0.05) by LEA category, whereas the yield of boneless loin and ham increased (P < 0.05) as LEA category increased. Compositionally, the percentage of four lean cuts, boneless cuts at varying trim levels, and fat-free lean decreased incrementally (P < 0.05) as backfat depth increased, whereas parentage total fat and USDA grade increased (P < 0.05) as backfat depth increased. As LEA increased, percentage boneless cuts trimmed to 0.32 and 0 cm s.c. fat and fat-free lean increased and total fat decreased; however, the difference was only significant in the smallest LEA category. Collectively, these data show that decreased carcass fatness plays a greater role in increasing primal and subprimal cut yields and carcass composition than muscling even in lean, heavily muscled carcasses.  相似文献   

3.
Growth, development, and carcass composition in five genotypes of swine.   总被引:3,自引:0,他引:3  
An experiment with 127 barrows representing five genotypes, 1) H x HD, 2) SYN, 3) HD x L[YD], 4) L x YD, and 5) Y x L (H = Hampshire, D = Duroc, SYN = synthetic terminal sire line, L = Landrace, and Y = Yorkshire), was conducted to evaluate growth and development of swine from 59 to 127 kg live weight. Animals were allowed ad libitum access to a pelleted finishing diet containing 18.5% CP, .95% lysine, and 10.5% fat, with an energy density of 3,594 kcal of ME/kg. Pigs were serially slaughtered at either 59, 100, 114, or 127 kg live BW. After slaughter, carcasses were chilled and backfat was measured at four locations. The right side of each carcass was fabricated into primal cuts of ham, loin, Boston Butt, picnic, and belly. Composition of each primal cut was determined by physical dissection into lean, fat, bone, and skin. Estimated allometric growth coefficients for carcass length, carcass weight, and longissimus muscle area relative to BW; carcass lean, fat, bone, and skin relative to both BW and carcass weight; and lean in each of the primal cuts relative to total carcass lean did not differ (P greater than .05) among genotypes. Relative to BW, the pooled growth coefficient(s) for carcass weight was (were) greater (P less than .001) than unity, whereas those for carcass length, longissimus muscle area, and backfat at first rib were smaller (P less than .001) than unity. Those for other backfat measurements were close to 1.00. Relative to either BW or carcass weight, the pooled coefficient(s) for fat was (were) greater (P less than .001) than unity, whereas those for lean, bone, and skin were smaller (P less than .001) than unity. Growth of lean, backfat, bone, and skin in the carcass were nearly linearly associated with increases in BW. The increase in fat weight was curvilinear as the pig grew and was accelerated in later growth stages, indicating that carcass fat percentage increased with increased BW.  相似文献   

4.
Live animal and carcass data were collected from market barrows and gilts (n = 120) slaughtered at a regional commercial slaughter facility to develop and test prediction equations to estimate carcass composition from live animal and carcass ultrasonic measurements. Data from 60 animals were used to develop these equations. Best results were obtained in predicting weight and percentage of boneless cuts (ham, loin, and shoulder) and less accuracy was obtained for predicting weight and ratio of trimmed, bone-in cuts. Independent variables analyzed for the live models were live weight, sex, ultrasonic fat at first rib, last rib, and last lumbar vertebra, and muscle depth at last rib. Independent variables for the carcass models included hot carcass weight, sex of carcass, and carcass ultrasonic measurements for fat at the first rib, last rib, last lumbar vertebra, and muscle depth at last rib. Equations were tested against an independent set of experimental animals (n = 60). Equations for predicting weight of lean cuts, boneless lean cuts, fat-standardized lean, and percentage of fat-standardized lean were most accurate from both live animal and carcass measurements with R2 values between .75 and .88. The results from this study, under commercial conditions, suggest that although live animal or carcass weight and sex were the greatest contributors to variation in carcass composition, ultrasonography can be a noninvasive means of differentiating value, especially for fat-standardized lean and weight of boneless cuts.  相似文献   

5.
The objective of this study was to develop prediction equations for estimating proportional carcass yield to a variety of external trim levels and bone-in and boneless pork primal cuts. Two hundred pork carcasses were selected from six U.S. pork processing plants and represented USDA carcass grades (25% USDA #1, 36% USDA #2, 25% USDA #3, and 14% USDA #4). Carcasses were measured (prerigor and after a 24 h chill) for fat and muscle depth at the last rib (LR) and between the third and fourth from last rib (TH) with a Hennessy optical grading probe (OGP). Carcasses were shipped to Texas A&M University, where one was randomly assigned for fabrication. Selected sides were fabricated to four lean cuts (ham, loin, Boston butt, and picnic shoulder) then fabricated progressively into bone-in (BI) and boneless (BL) four lean cuts (FLC) trimmed to .64, .32, and 0 cm of s.c. fat, and BL 0 cm trim, seam fat removed, four lean cuts (BLS-OFLC). Total dissected carcass lean was used to calculate the percentage of total carcass lean (PLEAN). Lean tissue subsamples were collected for chemical fat-free analysis and percentage carcass fat-free lean (FFLEAN) was determined. Longissimus muscle area and fat depth also were collected at the 10th and 11th rib interface during fabrication. Regression equations were developed from linear carcass and OGP measurements predicting FLC of each fabrication point. Loin muscle and fat depths from the OPG obtained on warm, prerigor carcasses at the TH interface were more accurate predictors of fabrication end points than warm carcass probe depth obtained at the last rib or either of the chilled carcass probe sites (probed at TH or LR). Fat and loin muscle depth obtained via OGP explained 46.7, 52.6, and 57.1% (residual mean square error [RMSE] = 3.30, 3.19, and 3.04%) of the variation in the percentage of BI-FLC trimmed to .64, .32, and 0 cm of s.c. fat, respectively, and 49.0, 53.9, and 60.7% (RMSE = 2.91, 2.81, and 2.69%) of the variation in the percentage of BL-FLC trimmed to .64, .32, and 0 cm of s.c. fat, respectively. Fat and loin muscle depth from warm carcass OGP probes at the TH interface accounted for 62.4 and 63.5% (RMSE = 3.38 and 3.27%) of the variation in PLEAN and FFLEAN, respectively. These equations provide an opportunity to estimate pork carcass yield for a variety of procurement end point equations using existing on-line techniques.  相似文献   

6.
Twenty-four barrows (approximately 25 kg initial wt) were used in each of three 2 X 2 factorially arranged trials to study effects of exercise (not exercised vs walking 30 min/d, 6 d/wk on a treadmill) and diet (low energy vs high energy) on performance during the growing-finishing period. Average daily gain (ADG) of barrows not exercised was greater (P less than .07) than that of those exercised. Barrows fed the high-energy diet had greater (P less than .05) ADG, lower (P less than .01) feed intake and lower (P less than .01) feed-to-gain ratio than barrows fed low-energy diets. In trials 1 and 2, pigs were slaughtered when removed from test and selected carcass measurements and internal organ weights were obtained. Exercise did not significantly affect carcass length, backfat thickness, loin muscle area or lean cuts (as a percentage of off-test weight). Pigs fed the high-energy diet had more (P less than .01) backfat than those fed the low-energy diet. Neither the exercise program nor the diet had a significant effect on organ weights. Pigs not exercised had a higher (P less than .05) plasma albumin-to-globulin ratio and lower (P less than .05) plasma creatinine concentration than did pigs that were exercised. Also, pigs not exercised had slightly higher (P less than .08) plasma albumin and glucose, but lower (P less than .06) plasma globulin levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
An experiment was conducted to test the hypothesis that field peas may replace soybean meal in diets fed to growing and finishing pigs without negatively influencing pig performance, carcass quality, or pork palatability. Forty-eight pigs (initial average BW 22.7 +/- 1.21 kg) were allotted to 1 of 3 treatments with 2 pigs per pen. There were 8 replications per treatment, 4 with barrows and 4 with gilts. The treatments were control, medium field peas, and maximum field peas. Pigs were fed grower diets for 35 d, early finisher diets for 35 d, and late finisher diets for 45 d. Pigs receiving the control treatment were fed corn-soybean meal diets. All diets fed to pigs receiving the medium field peas treatment contained 36% field peas and varying amounts of corn; soybean meal was also included in the grower and the early finisher diets fed to pigs on this treatment. In contrast, no soybean meal was included in diets fed to pigs on the maximum field peas treatment, and field peas were included at concentrations of 66, 48, and 36% in the grower, early finisher, and late finisher diets, respectively. Pig performance was monitored within each phase and for the entire experimental period. At the conclusion of the experiment, carcass composition, carcass quality, and the palatability of pork chops and pork patties were measured. Results showed that there were no effects of dietary treatments on ADFI, ADG, or G:F. Likewise, there were no differences in carcass composition among the treatment groups, but gilts had larger (P = 0.001) and deeper (P = 0.003) LM, less backfat (P = 0.007), and a greater (P = 0.002) lean meat percentage than barrows. The pH and marbling of the LM, and the 10th rib backfat were not influenced by treatment, but there was a trend (P = 0.10) for more marbling in barrows than in gilts. The subjective color scores (P = 0.003) and the objective color score (P = 0.06) indicated that dietary field peas made the LM darker and more desirable. Pork chops from pigs fed field peas also had less (P = 0.02) moisture loss compared with chops from pigs fed the control diet. Treatment or sex did not influence palatability of pork chops or pork patties. In conclusion, field peas may replace all of the soybean meal in diets fed to growing and finishing pigs without negatively influencing pig performance, carcass composition, carcass quality, or pork palatability.  相似文献   

8.
Backfat thickness, carcass length, area of M. longissimus and carcass composition were determined for 253 Large White barrows and gilts to examine the genetic influence on the main characteristics of the carcass and the correlation of these traits with body measurements and fat characteristics at 8 d of age. Pigs were born to 32 sows mated to the same boar. At the age of 8 d, weight, body length and backfat thickness and cellularity were measured. Pigs were slaughtered at 95 and 145 kg live weight. Heritability and genetic correlations were estimated with dam component of variance. Higher adiposity of carcasses was noted for barrows than for gilts and for those animals slaughtered at the heavier vs at the lighter weight. High h2 values were observed for carcass length (.89 +/- .29), area of the M. longissimus (.67 +/- .26) and backfat thickness at the gluteus medius (.77 +/- .28). Percentage of commercial cuts also had high heritabilities. Phenotypic and genetic correlations between the characteristics at 8 d and backfat thickness, carcass length and M. longissimus area at slaughter were not statistically significant. However, significant phenotypic correlations were found between cellularity of the outer and inner layers at 8 d and percentage of major cuts (e.g., rp = .27 with total fat cuts); cellularity of the outer layer at 8 d also was correlated genetically with carcass composition (e.g., rg = .50 +/- .19 with total fat cuts). Genetic predisposition toward intensive fat deposition was more clearly predicted by cellularity than by thickness of adipose tissue in newborn pigs.  相似文献   

9.
Two genetic lines with different lean gains were evaluated for various body measurements and indices of lean tissue in barrows and gilts from 20 to 125 kg of BW. One genetic line was identified as the low-lean line [280 g of fat-free lean (FFL)/d], and the second line was the high-lean line (375 FFL gained/d). The experiment was conducted as a completely randomized design using a 2 x 2 x 5 factorial arrangement of treatments in 6 replicates (n = 120 pigs). The 2 genetic lines and sexes were provided ad libitum access to cornsoybean mixtures that met or exceeded their required amino acid requirements for their respective lean gain potentials. Six pigs of each sex and genetic line were slaughtered initially and at 25-kg of BW intervals to 125 kg of BW. Pigs slaughtered were measured for height, width, and length using metal calipers. Backfat and LM area were measured using real-time ultrasound, with backfat depth also measured using A-mode ultrasound technology. Longissimus muscle area and back-fat thickness at the 10th rib were measured on the chilled carcass. Data was analyzed using the MIXED procedure of SAS, with the animal as the experimental unit. Shoulders (P < 0.05) and lumbars (P < 0.05) were wider in the low-lean genetic line and in barrows. Gilts and the high-lean genetic line had less backfat and greater LM areas than the low-lean genetic line. As BW increased, there was a greater increase in FFL tissue and lower backfat depths in the high-lean vs. the low-lean genetic line. This resulted in a greater divergence of measurement values as BW increased. Femur weight, length, and cortical wall thickness were greater in the high-lean genetic line, but the differences were not significant. The high-lean genetic line had a greater (P < 0.01) organic matrix content in the femur and less ash, resulting in a lower percentage of bone ash (P < 0.01). The results indicate that differences occurred phenotypically between pigs having more muscle (wider hams) or more fat (wider shoulder and lumbar). As BW increased, the high-lean pigs had an increase in lean tissue, particularly after 75 kg of BW, and less backfat and less bone mineralization, whereas the low-lean line pigs had increased backfat and greater bone mineralization. Real-time ultrasound measurements using various formulas to estimate lean tissue produced values close to those determined from carcass measurements at 100 and 125 kg of BW.  相似文献   

10.
Effects of ractopamine on genetically obese and lean pigs   总被引:2,自引:0,他引:2  
Twenty-eight genetically obese and 24 lean barrows (65.0 and 68.7 kg average BW, respectively) were allotted within genotype to a 16% CP corn-soybean meal basal diet or this basal diet + 20 ppm ractopamine (a phenethanolamine beta-adrenergic agonist) and allowed ad libitum access to feed for 48 d. Compared to lean pigs, obese pigs had lower ADG, gain to feed ratio, longissimus muscle area, predicted amount of muscle, and weights of trimmed loin and ham, ham lean, heart, spleen, kidney and gastrointestinal tract (P less than .05). Obese pigs also had shorter carcass but higher dressing percentage, backfat thickness, fat depth, fat area, untrimmed loin weight and fasting plasma urea N concentration (P less than .05). Dietary supplementation with 20 ppm ractopamine reduced daily feed intake and improved gain to feed ratio in both lean and obese pigs (P less than .05). Pigs fed ractopamine had shorter carcasses, less fat depth and fat area, smaller weights of stomach and colon plus rectum, but higher dressing percentages, longissimus muscle areas, weights of trimmed Boston butts, picnics and loins, ham lean and predicted amounts of muscle than pigs not fed ractopamine (P less than .05). Supplemental ractopamine had no effect on fasting plasma concentrations of urea N, nonesterified fatty acids, triglyceride or glucose (P greater than .05). No genotype x ractopamine interactions for the criteria described above were detected (P greater than .05). These results suggest that ractopamine will improve the efficiency of feed utilization and carcass leanness in swine with different propensities for body fat deposition.  相似文献   

11.
Duroc, Meishan, Fengjing, and Minzhu boars were mated to crossbred gilts during two breeding seasons. From each sire breed group each season, six pens of approximately eight barrows each were slaughtered. A pen of pigs from each sire breed group was slaughtered at 7-d intervals from 168 to 203 d of age each season. Breed of sire effects were significant for all age-adjusted carcass traits except carcass length, fat thickness at the last rib, color score, and firmness score. At 184 d of age, Duroc crosses had the heaviest (P less than .05) slaughter and carcass weights; Minzhu crosses were lighter (P less than .05) than Meishan crosses but not lighter than Fengjing crosses. Differences among age-constant traits reflect differences in BW. After adjustment to a constant carcass weight of 78 kg, the three Chinese breeds had very similar carcass characteristics. Carcasses sired by Durocs had significantly less backfat and larger longissimus muscle area than carcasses sired by the Chinese breeds. Weight of each trimmed wholesale lean cut and their total weight were significantly higher for Duroc crosses than for Chinese crosses. Breed of sire means did not differ significantly for belly weight, but Duroc crosses had less (P less than .05) weight of leaf fat. Relative to Chinese crosses, longissimus muscles from Duroc crosses had more marbling (P less than .05). Sire breed groups did not differ significantly for color or firmness score. Pigs sired by Meishan, Fengjing, and Minzhu produced carcasses with significantly less lean content at a carcass weight of 78 kg than did pigs sired by Duroc.  相似文献   

12.
A total of 120 pigs (60 barrows and 60 gilts; TR4 × PIC 1050; 54.4 kg initial BW) were used in an 83-d study to evaluate the effects of added fat in corn- and sorghum-based diets on growth performance, carcass characteristics, and carcass fat quality. Treatments were arranged in a 2 × 3 factorial with grain source (corn or sorghum) and added fat (0, 2.5, or 5% choice white grease; CWG) as factors. There were 2 pigs (1 barrow and 1 gilt) per pen and 10 replicate pens per treatment. Pigs and feeders were weighed on d 14, 22, 39, 53, 67, and 83 to calculate ADG, ADFI, and G:F. At the end of the trial, pigs were slaughtered and jowl fat and backfat samples were collected and analyzed for fatty acid profile. No interactions were observed for growth performance. Pigs fed sorghum-based diets had greater (P < 0.01) ADG than pigs fed corn-based diets. Adding CWG improved (linear, P < 0.01) ADG. Pigs fed corn-based diets tended to have greater (P < 0.09) carcass yield, 10th-rib backfat, and percentage lean than pigs fed sorghum-based diets. Adding CWG increased (linear, P = 0.02) 10th-rib backfat, tended to increase (linear, P = 0.08) HCW, and tended to decrease (linear, P = 0.07) percentage lean. There was no grain source × fat level interaction for iodine value (IV) in backfat, but an interaction (P = 0.03) was observed for IV in jowl fat. Adding CWG increased (P < 0.01) IV in jowl fat for pigs fed sorghum- and corn-based diets; however, the greatest increase was between 0 and 2.5% CWG in sorghum-based diets and between 2.5 and 5% CWG in corn-based diets. Pigs fed corn-based diets had less (P = 0.01) C18:1 cis-9 and MUFA but greater (P = 0.01) C18:2n-6, PUFA, and backfat IV than pigs fed sorghum-based diets. Increasing CWG in the diet increased (linear, P = 0.01) backfat IV. Of the 2 fat depots, backfat generally had a reduced IV than jowl fat. In summary, feeding sorghum-based diets reduced carcass fat IV and unsaturated fats compared with corn-based diets. As expected, adding CWG increased carcass fat IV regardless of the cereal grain in the diet.  相似文献   

13.
A total of 120 pigs [Duroc × (Landrace × Large White); initial average BW: 100.3 ± 2.5 kg] were used to investigate the effects of sex (barrows and gilts) and dietary total Lys restriction (7.0, 6.5, and 6.0 g·kg(-1)) on growth performance and carcass, meat, and fat characteristics. Pigs were intended for high-quality dry-cured ham from Spain (called Teruel ham), and a minimum fat thickness at the gluteus medius muscle (GM) is required (16 mm) for carcasses to be acceptable. Animals were slaughtered when they reached 129.0 ± 3.6 kg of BW. There were 6 treatments arranged factorially (2 sexes × 3 dietary Lys concentrations) and 4 replicates of 5 pigs per treatment. Barrows consumed more feed (P = 0.001) and tended to have less G:F (P = 0.06) than gilts. Carcasses from barrows were fatter (P = 0.001) and had heavier main trimmed lean cuts (P = 0.008) than gilts. A greater proportion of final acceptable carcasses for Teruel ham (P = 0.001) was observed in barrows than in gilts because of the greater percentage of carcasses that fulfill the minimum fat depth at GM required (P = 0.001). Meat from barrows had greater content of intramuscular fat (P = 0.02) than meat from gilts. Also, subcutaneous fat from barrows had less proportion of PUFA than fat from gilts (P = 0.02). A reduction in dietary Lys concentration decreased ADG (P = 0.004) and ADFI (P = 0.001) in pigs. In addition, backfat depth (P = 0.007) and fat at GM (P = 0.07) increased as dietary Lys decreased. The proportion of carcasses that fulfilled the minimum fat depth at GM required for Teruel ham increased as dietary Lys decreased in feed, but this effect was greater in gilts than in barrows (sex × Lys, P = 0.02). Meat and fat quality was not influenced by dietary treatment. We conclude that different feeding programs with different dietary Lys concentrations may be needed for barrows and gilts intended for production of dry-cured hams where a minimum carcass fat depth is required.  相似文献   

14.
Birth and rearing conditions were evaluated for their effects on pig growth, body composition, and pork quality using 48 barrows during the spring and summer months. Pigs were either farrowed in indoor crates or outdoor huts. At weaning, indoor-born and outdoor-born pigs were randomly allotted to indoor or outdoor treatments for growing/finishing. Body weight data were collected. Pigs were transported 5 h to a commercial processing plant, allowed 2 h of rest, and then processed as a group under commercial conditions. Boneless loins were collected from the left side of each carcass and aged for 14 d. Objective and subjective color measurements were taken on the longissimus muscle at the 10th rib on d 14 postmortem. Loin chops were evaluated for sensory attributes, shear force, and retail display features. Pigs born outdoors were heavier and had greater ADG at all growth intervals after weaning (d 28, 56, 112, and final weight, P < 0. 05) than pigs born indoors. Outdoor-born pigs had heavier carcass weights (91.2 vs 81.3+/-3.4 kg, P < 0.001), larger loineye areas (54.6 vs 49.7+/-0.2 cm , P < 0.05), and higher pork flavor intensity scores (6.5 vs 6.1+/-0.10, P < 0.01) than indoor-born pigs. Birth x rearing environment interactions were not significant for most measures. Backfat measurements at the last rib were greater (3.2 vs 2.8+/-0.05 cm, P < 0.05) for the pigs reared outdoors than for the pigs reared indoors. Pigs finished outdoors had more reddish pink color scores, lower shear force values, and lower L* values, indicating darker-colored pork, compared with pigs finished indoors (P < 0.05). Pig birth environment played a significant role in improving growth rates of outdoor-born pigs and increasing pork flavor intensity scores of loin chops from pigs born outdoors. Finishing pigs outdoors may improve pork color and tenderness but also may increase backfat thickness when they are fed conventional diets.  相似文献   

15.
Twelve different mating types among the Hampshire and Landrace breeds were used to determine direct, maternal, heterosis, and recombination effects for performance and carcass traits. Mating types used were two purebred, two F1, two F2, two F3, and four backcross. Carcass data were collected on 238 barrows and 262 gilts over four replications. Traits measured were length (LENG), 10th rib off midline backfat (BF10), longissimus muscle area (LMA), and dressing percentage (DRS%). Average backfat (AVBF) was calculated as the mean of three midline fat depths measured opposite the first rib, last rib, and last lumbar vertebra. The model used to evaluate the carcass traits included main effects of mating type, farrowing season, and sex and included slaughter weight as a covariate. The performance traits of ADG, feed efficiency (FE), daily feed consumption (DFC), lean gain per day (LNGN), and lean efficiency (LNEF) were measured on a pen basis. Comparisons of reciprocal F1 crosses showed that carcasses from pigs sired by Hampshire boars were leaner and had more LMA than those sired by Landrace boars. Heterosis percentages were significant for AVBF (7.2%; P less than .01), BF10 (8.8%; P less than .01), DRS% (1.5%; P less than .01), ADG (11.5%; P less than .01), DFC (10.2%; P less than .01), LNGN (10.6%; P less than .01), and LNEF (6.0%; P less than .05). Epistatic recombination losses in the offspring were significant for LENG (3.6 cm; P less than .05) and approached significance for BF10 (6.1 mm; P less than .10).  相似文献   

16.
The objectives were to develop equations for predicting fat-free lean in swine carcasses and to estimate the prediction bias that was due to genetic group, sex, and dietary lysine level. Barrows and gilts (n = 1,024) from four projects conducted by the National Pork Board were evaluated by six procedures, and their carcass fat-free lean was determined. Pigs of 16 genetic groups were fed within weight groups one of four dietary regimens that differed by 0.45% in lysine content and slaughtered at weights between 89 and 163 kg. Variables in equations included carcass weight and measures of backfat depth and LM. Fat-free lean was predicted from measures of fat and muscle depth measured with the Fat-O-Meater (FOM), Automated Ultrasonic System (AUS), and Ultrafom (UFOM) instruments, carcass 10th-rib backfat and LM area (C10R), carcass last-rib backfat (CLR), and live animal scan of backfat depth and LM area with an Aloka 500 instrument (SCAN). Equations for C10R (residual standard deviation, RSD = 2.93 kg) and SCAN (RSD = 3.06 kg) were the most precise. The RSD for AUS, FOM, and UFOM equations were 3.46, 3.57, and 3.62 kg, respectively. The least precise equation was CLR, for which the RSD was 4.04 kg. All procedures produced biased predictions for some genetic groups (P < 0.01). Fat-free lean tended to be overestimated in fatter groups and underestimated in leaner ones. The CLR, FOM, and AUS procedures overestimated fat-free lean in barrows and underestimated it in gilts (P < 0.01), but other procedures were not biased by sex. Bias due to dietary lysine level was assessed for the C10R, CLR, FOM, and SCAN procedures, and fat-free lean in pigs fed the lowlysine dietary regimen was overestimated by CLR, FOM, and SCAN (P < 0.05). Positive regressions of residuals (measured fat-free lean minus predicted fat-free lean) on measured fat-free lean were found for each procedure, ranging from 0.204+/-0.013 kg/kg for C10R to 0.605+/-0.049 kg/kg for UFOM, indicating that all procedures overestimated fat-free lean in fat pigs and underestimated it in lean pigs. The pigs evaluated represent the range of variation in pigs delivered to packing plants, and thus the prediction equations should have broad application within the industry. Buying systems that base fat-free lean predictions on measures of carcass fat depth and muscle depth or area will overvalue fat pigs and undervalue lean pigs.  相似文献   

17.
Reciprocal cross differences have been reported for growth rate and carcass traits in F1 pigs with the Duroc (D) as a parent breed. Such differences are synonymous with maternal effects if effects of sex linkage and genomic imprinting are negligible. In the present study, transfer of embryos (ET) to paternal breed recipients partitioned effects occurring at or before fertilization from postfertilization effects for growth and carcass traits in F1 D-Landrace (L) pigs. Fifteen boars sired 115 F1 litters, 49 produced by ET. Growth rate of 349 barrows and 361 gilts and carcass measurements on 256 barrows and 159 gilts were analyzed assuming mixed linear models with animal and litter as random effects. Contrasts among genotype (D x L, L x D)- treatment (ET, non-ET) means were tested. Reciprocal cross differences were not detected for growth rate or for carcass weight, length, average backfat thickness, estimated carcass lean, or lean per day of age. Reciprocal cross differences for 10th rib backfat thickness (BF) and longissimus muscle area (LMA) were detected only in barrows. The sexual dichotomy for reciprocal cross differences followed expectations for a Y-linked gene(s), consistent with the fact that reciprocal D-L crossbred barrows exhibited a paternal effect, with responses more like the sire breed than the dam breed. Barrows that were non-ET from D sires and L dams had 3.9 cm2 larger LMA and 5.8 mm less BF than barrows from L sires and D dams (P less than .001). Barrows from ET sired by D boars had 3.8 cm2 larger LMA than did barrows from ET sired by L boars (P less than .001), although no difference was detected for BF. Barrows sired by D boars reared in a D postfertilization environment (ET) had 6.2 cm2 greater LMA and 4.1 mm less BF (P less than .05) than barrows sired by L boars gestated and reared by D dams (non-ET). Barrows sired by D boars reared by L dams (non-ET) had 1.5 cm2 greater LMA and 2.3 mm less BF (P greater than .10) than barrows sired by L boars reared by L dams (ET). In conclusion, reciprocal cross differences detected for BF and LMA in barrows were established before or at fertilization and seemed to be Y-linked.  相似文献   

18.
An experiment using 264 crossbred barrows was conducted to examine the interaction between space allocation and dietary ractopamine addition on pig performance and carcass characteristics using a 2 x 2 factorial arrangement of treatments. Treatments were 0.55 (19 pigs per pen) or 0.74 (14 pigs per pen) m2/pig from start (29.7 +/- 0.1 kg BW) to slaughter (108 kg BW) in a fully slatted facility and 0 or 10 ppm (as-fed basis) ractopamine for 28 d before slaughter. There were few treatment interactions. Pigs given 0.55 m2/pig had a lower ADG (P = 0.010), ADFI (P = 0.088), 10th-rib backfat depth on d 86 (P = 0.010), and carcass loin muscle depth (P = 0.011) than pigs given 0.74 m2/pig. There was no difference in feed conversion (P = 0.210) as a result of space allocation. Pigs fed diets containing 10 ppm ractopamine had decreased (P = 0.004) ADFI and improved (P = 0.001) feed conversion efficiencies for the 28-d feeding period, along with greater loin depth (P = 0.005) and carcass lean percent (P = 0.001). The improvements in 28-d carcass lean growth associated with feeding 10 ppm ractopamine resulted in an improvement in overall daily fat-free lean gain (P = 0.046). Under these experimental conditions, the response to dietary ractopamine was similar for crowded and uncrowded pigs.  相似文献   

19.
A total of 144 barrows and gilts (initial BW = 44 kg) were used in an 82-d experiment to evaluate the effects of dietary fat source and duration of feeding fat on growth performance, carcass characteristics, and carcass fat quality. Dietary treatments were a corn-soybean meal control diet with no added fat and a 2 × 4 factorial arrangement of treatments with 5% choice white grease (CWG) or soybean oil (SBO) fed from d 0 to 26, 54, 68, or 82. At the conclusion of the study (d 82), pigs were slaughtered, carcass characteristics were measured, and backfat and jowl fat samples were collected. Fatty acid analysis was performed, and iodine value (IV) was calculated for all backfat and jowl fat samples. Pigs fed SBO tended to have increased (P = 0.07) ADG compared with pigs fed CWG. For pigs fed SBO, increasing feeding duration increased (quadratic, P < 0.01) ADG and G:F. For pigs fed CWG, increasing feeding duration improved (quadratic, P < 0.01) G:F. For pigs fed SBO or CWG, increasing feeding duration increased carcass yield (quadratic, P < 0.04) and HCW (quadratic, P < 0.02). Dietary fat source and feeding duration did not affect backfat depth, loin depth, or lean percentage. As expected, barrows had greater ADG and ADFI (P < 0.01) and poorer G:F (P = 0.03) than gilts. Barrows also had greater last-rib (P = 0.04) and 10th-rib backfat (P < 0.01) and reduced loin depth and lean percentage (P < 0.01) compared with gilts. Increasing feeding duration of CWG or SBO increased (P < 0.10) C18:2n-6, PUFA, PUFA:SFA ratio, and IV in jowl fat and backfat. Pigs fed SBO had greater (P < 0.01) C18:2n-6, PUFA, PUFA:SFA ratio, and IV but decreased (P < 0.01) C18:1 cis-9, C16:0, SFA, and MUFA concentrations compared with pigs fed CWG in jowl fat and backfat. Barrows had decreased (P = 0.03) IV in jowl fat and backfat compared with gilts. In summary, adding SBO or CWG increased the amount of unsaturated fat deposited. Increasing feeding duration of dietary fat increases the amount of unsaturated fatty acids, which leads to softer carcass fat.  相似文献   

20.
The rate of gain, carcass measurements and three muscles were evaluated in 65 crossbred boars representing 13 litters that were allotted at 4 wk of age to slaughter weight and treatment groups as follows: 1) 105 kg, castrated; 2) 105 kg, intact; 3) 118 kg, intact; 4) 132 kg, intact and 5) 145 kg, intact. One barrow and four boars within a litter constituted a replicate and each replicate was penned separately. The growth rate of all boars to 105 kg constituted one group and was compared with the growth rate of barrows to 105 kg live body weight. Average daily gain from 4 wk until 105 kg did not differ significantly between boars and barrows. Growth rate of the boars continued at an increasing rate until they reached 87.3 kg live weight, while maximum daily gain of barrows occurred at 76.3 kg live weight or 11 kg less than that of boars. At 105 kg, boars had 31.3% less 10th rib backfat thickness and 2.9% greater carcass length than barrows, but longissimus muscle area did not differ. Barrows had greater backfat thickness at 105 kg than 145-kg boars. As live weight increased from 105 to 145 kg, carcass length, 10th rib backfat thickness and longissimus area of boars increased (P less than .01) linearly. Fat-free muscle weights of the brachialis (BR), semitendinosus (ST) and longissimus (L) did not differ between boars and barrows at 105 kg. Boars at 105 kg had 1.3 and 1.7% more moisture in the BR and ST, respectively, than barrows. Percentage protein, total intramuscular fat and fiber diameter in the BR, ST and L muscles did not differ between boars and barrows at 105 kg or with increasing live weight in boars. Total RNA increased linearly (P less than .05) in the BR and ST as boars increased in live weight from 105 to 145 kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号