首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to evaluate radial and among-family variations of wood properties in Picea jezoensis. A total of 174 trees were randomly selected from 10 open-pollinated families in a progeny trial for measuring stem diameter, dynamic Young’s modulus of log (DMOElog), annual ring width (ARW), air-dry density (AD), modulus of elasticity (MOE), and modulus of rupture (MOR). Mean values of DMOElog, AD, MOE, and MOR were 9.60 GPa, 0.41 g/cm3, 9.44 GPa, and 76.6 MPa, respectively. Significant differences among families were observed in all properties. F values obtained by analyzing variance in wood properties were higher than those generally observed in growth traits. In addition, F values in wood properties remained relatively higher from the 1st to 25th annual ring from the pith, although F value in ARW rapidly decreased with each increase in annual ring number. These results indicate that genetic factors largely contributed to the variance in wood properties compared with the growth traits.  相似文献   

2.
The purpose of this study was to determine the modulus of elasticity (MOE) and the modulus of rupture (MOR) in the radial bending test for small, clear specimens of Finnish birch (Betula pendula Roth and B. pubescens Ehrh) wood originating from mature trees. The dependency of MOE and MOR on the specific gravity of birch wood was studied, and the relationship between MOE and MOR was modelled at the different heights and at the different distances from the pith of the tree. For B. pendula, the mean values for MOE and MOR were 14.5 GPa and 114 MPa, whereas B. pubescens had means of 13.2 GPa and 104 MPa, respectively. At the corresponding specific gravity, the bending stiffness and strength values did not differ between the two species. The results indicated a linear relationship between the MOE and MOR, irrespective of the birch species or the within-stem location. Both MOE and MOR increased clearly from the pith towards the surface of the tree and decreased slightly from the base to the top of the tree. It seems that if products with as high stiffness and bending strength as possible are wanted, sorting of raw materials into different grades according to their within-tree origin can be of value.  相似文献   

3.
Development of optimal ways to predict juvenile wood stiffness, strength, and stability using wood properties that can be measured with relative ease and low cost is a priority for tree breeding and silviculture. Wood static modulus of elasticity (MOE), modulus of rupture (MOR), radial, tangential, and longitudinal shrinkage (RS, TS, LS), wood density (DEN), sound wave velocity (SWV), spiral grain (SLG), and microfibril angle (MFA) were measured on juvenile wood samples from lower stem sections in two radiata pine test plantations. Variation between inner (rings 1–2 from pith) and outer (rings 3–6 from pith) rings was generally larger than that among trees. MOE and MOR were lower (50%) in inner-rings than in outer-rings. RS and TS were higher (30–50%) for outer-rings than inner-rings, but LS decreased rapidly (>200%) from inner-rings to outer-rings. DEN had a higher correlation with MOR than with MOE, while MFA had a higher correlation with dry wood MOE than with MOR. SLG had higher significant correlation with MOE than with MOR. DEN and MOE had a weak, significant linear relationship with RS and TS, while MOE had a strong negative non-linear relationship with LS. Multiple regressions had a good potential as a method for predicting billet stiffness (R 2 > 0.42), but had only a weak potential to predict wood strength and shrinkage (R 2 < 0.22). For wood stiffness acoustic velocity measurements seemed to be the most practical, and for wood strength and stability acoustic velocity plus core density seemed to be the most practical measurements for predicting lower stem average in young trees.  相似文献   

4.
A total of 360 bark-to-bark-through-pith wood strips were sampled at breast height from 180 trees in 30 open-pollinated families from two rotation-aged genetic trials to study inheritance, age-age genetic correlation, and early selection efficiency for wood quality traits in radiata pine. Wood strips were evaluated by SilviScan® and annual pattern and genetic parameters for growth, wood density, microfibril angle (MFA), and stiffness (modulus of elasticity: MOE) for early to rotation ages were estimated. Annual ring growth was the largest between ages 2–5 years from pith, and decreased linearly to ages 9–10. Annual growth was similar and consistent at later ages. Wood density was the lowest near the pith, increased steadily to age 11–15 years, then was relatively stable after these ages. MFA was highest (35°) near the pith and reduced to about 10° at age 10–15 years. MFA was almost unchanged at later ages. MOE increased from about 2.5 GPa near the pith to about 20 GPa at ages 11–15 years. MOE was relatively unchanged at later ages. Wood density and MOE were inversely related to MFA. Heritability increased from zero near the pith and stabilised at ages 4 or 5 for all four growth and wood quality traits (DBH, density, MFA and MOE). Across age classes, heritability was the highest for area-weighted density and MFA, lowest for DBH, and intermediate for MOE. Age-age genetic correlations were high for the four traits studied. The genetic correlation reached 0.8 after age 7 for most traits. Early selection for density, MFA and MOE were very effective. Selection at age 7–8 has similar effectiveness as selection conducted at rotation age for MFA and MOE and at least 80% effective for wood density.  相似文献   

5.
The bending and growth characteristics of large fresh stems from four silver fir (Abies alba Mill.) and three Norway spruce (Picea abies (L.) Karst.) trees were studied. Twenty logs taken from different stem heights were subjected to four-point bending tests. From the bending test records, we calculated stress-strain curves, which accounted for detailed log taper, shear deformation and self weight. From these curves we determined, among other parameters, the modulus of elasticity (MOE), the modulus of rupture (MOR) and the work absorbed in bending (W). No significant differences were found between species for the wood properties examined. Values of MOE, MOR and W generally decreased with stem height, with MOR in the range of 43 to 59 MPa and MOE ranging from 10.6 to 15.6 GPa. These MOE values are twice or more those reported for stems of young Sitka spruce (Picea sitchensis (Bong.) Carr.) trees. Based on the radial growth properties measured in discs from the logs, we calculated predicted values of MOE and MOR for the stem cross section. The predictions of MOE were precise, whereas those of MOR were approximate because of a complex combination of different failure mechanisms. Methods to test and calculate MOE, MOR and W for the stems of living trees are discussed with the aim of improving analyses of tree biomechanics and assessments of forest stability protection.  相似文献   

6.
With emphasis on tree breeding for wood quality in Picea jezoensis, we aimed to evaluate radial and between-family variations in the microfibril angle (MFA) of the S2 layer in the latewood tracheids in 10 open-pollinated families of 43-year-old P. jezoensis trees. In addition, the relationships between MFA/wood density with the modulus of elasticity (MOE) or modulus of rupture (MOR) were investigated. Significant differences in MFA between families were found from the pith toward the bark. MFA showed higher values around the pith area, although some families showed relatively lower values than others around this area. In addition, due to a larger coefficient of variations of MFA near the pith, the potential for juvenile wood MFA improvement may be greater compared with mature wood. MOE was correlated with MFA in juvenile wood and with wood density in mature wood, whereas MOR was mainly correlated with wood density at radial positions in both woods. Therefore, to improve the MOE and MOR of P. jezoensis wood, both MFA and wood density would be factors to consider in both juvenile and mature woods. On the other hand, there are indications that, only wood density would be an important criterion for improving mature wood properties.  相似文献   

7.
Within-stem variations in the mechanical properties of 17–19-year-old Melia azedarach planted in two sites in northern Vietnam were examined by destructive and nondestructive methods. Wood samples were collected from 10, 50, and 90% of the radial length from pith on both sides (North and South) at 0.3, 1.3, 3.3, 5.3, and 7.3 m heights above the ground. The mean values in whole trees of wood density (WD), modulus of rupture (MOR), modulus of elasticity (MOE), and dynamic modulus of elasticity (Ed) at 12% moisture content were 0.51 g/cm3, 78.58 MPa, 9.26 GPa, and 10.93 GPa, respectively. Within the stem, the radial position was a highly (p?<?0.001) significant source of variation in mechanical properties. MOR, MOE, and Ed increased from pith to bark. WD had a strong positive linear relationship with both MOR (r?=?0.85, p?<?0.001) and MOE (r?=?0.73, p?<?0.001). This suggests that it is potentially possible to improve mechanical properties through controlling WD. MOR had also a strong linear relationship with Ed (r?=?0.84, p?<?0.001). This indicates that Ed is a good indicator to predicting the strength of wood if the density of measured element is known. Besides, the stress wave method used in this study provides relatively accurate information for determining the stiffness of Melia azedarach planted in northern Vietnam.  相似文献   

8.
To provide data and methods for analyzing stem mechanics, we investigated bending, density and growth characteristics of 207 specimens of fresh wood from different heights and radial positions of the stem of one mature Norway spruce (Picea abies L. Karst.) tree. From the shape of each stress-strain curve, which was calculated from bending tests that accounted for shear deformation, we determined the modulus of elasticity (MOE), the modulus of rupture (MOR), the completeness of the material, an idealized stress-strain curve and the work involved in bending. In general, all mechanical properties increased with distance from the pith, with values in the ranges of 5.7-18 GPa for MOE, 23-90 MPa for MOR and 370-630 and 430-1100 kg m(-3) for dry and fresh wood densities, respectively. The first three properties generally decreased with stem height, whereas fresh wood density increased. Multiple regression equations were calculated, relating MOR, MOE and dry wood density to growth properties. We applied these equations to the growth of the entire stem and considered the annual rings as superimposed cylindrical shells, resulting in stem-section values of MOE, MOR and dry and fresh densities as a function of stem height and cambial age. The standing tree exhibits an inner stem structure that is well designed for bending, especially at a mature stage.  相似文献   

9.
Abstract

This study assessed variation in modulus of elasticity of trees and logs of Scots pine (Pinus sylvestris) trees. The study used 192 sample trees (c. 90–150 years) selected from 24 clear-felling forests in central and southern Sweden. Modulus of elasticity (MOE) assessed with transit-time technology on standing tree stems at 0.5–2.0m on the southern and northern side of each tree varied from 8.6 to 17.6 GPa. No systematic MOE difference was found between the southern and northern side of tree stems. The sometimes large MOE variations seen in some individual trees are probably a result of wood variation and wood defects. MOE assessed with resonance-based technology varied between 7.4 and 14.1 GPa for logs cut at similar height (<6.0 m). Models of MOE variation were derived from factors related to growth conditions at stand and tree level, with an R 2 adj of c. 0.46–0.62. The models indicate that growth and tree attributes associated with and/or creating less stem taper would yield trees with higher MOE.  相似文献   

10.
In this paper, the compressive deformation of hybrid poplar wood (Populus deltoides?×?Populus trichocarpa) at high temperature (150, 160, and 170°C) and under various conditions of steam pressure was studied. Temperature and conditions of steam environment affected the relative density change and creep deformation during compression, as well as properties of the resulting densified material. While the temperature significantly affected the compression deformation of specimens compressed under transient and superheated steam conditions, temperature within the range studied had little effect on the compressive deformation in saturated steam. In all tested conditions, compression deformation was achieved without cell wall fractures. Higher temperature of compression, regardless of steam condition, resulted in lower equilibrium moisture content. In specimens compressed under saturated steam, the modulus of rupture (MOR) and modulus of elasticity (MOE) were increased proportionally to the increase in density, while the compression under superheated steam produced lower increase in the MOE and MOR than expected based on the increase in density. Compression in transient steam conditions at 170°C produced densified wood with higher MOE and MOR than expected based on the increase in density.  相似文献   

11.
Although wood/cellulose-plastic composites (WPC) of low wood/cellulose content have been more accepted worldwide and are promoted as low-maintenance, high-durability building products, composites containing high wood/cellulose content are not yet developed on an industrial scale. In this study, flow properties, mechanical properties, and water absorption properties of the compounds of cellulose microfiber/polypropylene (PP) and maleic anhydride-grafted polypropylene (MAPP) were investigated to understand effects of the high cellulose content and the dimensions of the cellulose microfiber. The molding processes studied included compression, injection, and extrusion. It was found that fluidity is not only dependent on resin content but also on the dimension of the filler; fluidity of the compound declined with increased fiber length with the same resin content. Dispersion of the composite was monitored by charge-coupled device (CCD) microscope. Increasing the plastic content in the cellulose-plastic formulation improved the strength of mold in addition to the bond development between resin and filler, and the tangle of fibers. The processing mode affected the physicomechanical properties of the cellulosic plastic. Compression-molded samples exhibited the lowest modulus of rupture (MOR) and modulus of elasticity (MOE) and the highest water absorption, while samples that were injection-molded exhibited the highest MOR (70 MPa) and MOE (7 GPa) and low water absorption (2%).  相似文献   

12.
杉木材性株内变异的研究Ⅰ.木材力学性质和木材密度   总被引:2,自引:0,他引:2  
对15株浙江产杉木株内不同高度和圆周不同方位上木材的抗弯强度、抗弯弹性模量、顺纹抗压强度和木材密度的差异,木材密度的径向变异模式和木材力学性质与木材密度的相关关系进行了测定和分析。主要结果是:抗弯强度和抗弯弹性模量在株内不同高度上差异特别显著;顺纹抗压强度和木材密度未表现出显著差异;在圆周不同方位上,三项力学性质和木材密度均为南北向高于东西向,差异不显著;木材密度径向变异模式在不同高度和不同方位上均为接近水平有一定波动的直线;三项力学性质与木材密度的相关关系在不同高度和不同方位上均特别显著,但不同力学性质与木材密度的相关系数有明显差异,不同高度上和圆周不同方位上,亦有差异。  相似文献   

13.
长白落叶松纸浆材优良家系多性状联合选择研究   总被引:2,自引:1,他引:2       下载免费PDF全文
采用胸径木芯与伐倒木取样方法,对24年生长白落叶松优树子代测定林14个处理的生长性状、木芯材质性状、解析木材质性状及其制浆造纸特性进行了研究,结果表明:生长性状、木芯基本密度、木芯管胞性状均存在丰富的变异;家系间生长性状差异极显著;木芯基本密度、木芯管胞性状差异显著,家系遗传力在0.56 0.80之间;解析木基本密度、早材微纤丝角、管胞长度、早材壁腔比、木质素、阿拉伯糖含量、抗张强度、撕裂度等差异极显著,家系遗传力在0.64 0.86之间;晚材率、管胞长宽比、综纤维素含量等差异显著,家系遗传力在0.51 0.61,家系水平的材性改良潜力较大。生长性状与木芯管胞长度呈极显著正相关,与木芯基本密度、管胞长宽比相关不显著;木芯基本密度、管胞长度、管胞宽度以及管胞长宽比与解析木相应性状呈极显著正相关关系,且回归模型较为理想,可以利用胸径木芯各性状值预测其单株值,间接选择和评价纸浆材优良家系。通过生长性状、木芯基本密度和木芯管胞长宽比综合分析选出166、169为优良家系,根据解析木生长、材质以及纸张物理性状选出的优良家系与其结果一致。优良家系材积、木芯基本密度和木芯管胞长宽比的遗传增益(超过对照)分别为48.34%(38.80%)、14.01%(3.63%)和19.89%(6.42%)。  相似文献   

14.
ABSTRACT

The main goal of this study was to investigate the visual characteristics, recovery rate, and flexural properties of sawn boards from a fibre-managed plantation Eucalyptus globulus resource as a potential raw material for structural building applications. The impacts of the visual characteristics, strength-reducing features, and variation in basic density and moisture content on the bending modulus of elasticity (MOE) and modulus of rupture (MOR) of the boards were investigated. The reliabilities of different non-destructive methods in predicting MOE and MOR of the boards were evaluated, including log acoustic wave velocity measurement and numerical modellings. The MOE and MOR of the boards were significantly affected by the slope of grain, percentage of clear wood, and total number of knots in the loading zone of the boards. The normal variation in basic density significantly influenced the MOE of the boards while its effect on the MOR was insignificant. The numerical models developed using the artificial neural network (ANN) showed better accuracies in predicting the MOE and MOR of the boards than traditional multi-regression modelling and log acoustic wave velocity measurement. The ANN models developed in this study showed more than 78.5% and 79.9% success in predicting the adjusted MOE and MOR of the boards, respectively.  相似文献   

15.
The effects of different thinning and pruning methods on the bending strength and dynamic modulus of elasticity (DMOE) of young Taiwania (Taiwania cryptomerioides Hay) were investigated. The average DMOE, modulus of elasticity (MOE), and modulus of rupture (MOR) in the thinning treatments showed the following trend: no thinning > medium thinning > heavy thinning. This indicates that thinning reduces average bending properties. The average DMOE, MOE, and MOR in the pruning treatments showed the following trend: medium pruning > no pruning > heavy pruning. According to this tendency, better average qualities of lumber and specimens were from wood subjected to no-thinning and medium-pruning treatments according to an ultrasonic wave technique and static bending tests. However, most results showed no statistically significant differences among thinning, pruning, and thinning and pruning treatments. The average values of DMOE, MOE, and MOR of visually graded construction-grade lumber were significantly greater than those of below-grade lumber. Moreover, there were very significant positive relationships between density, ultrasonic velocity, DMOE, MOE, and MOR, although the determination coefficients were small.  相似文献   

16.
The initial introduction of Pinus elliottii (PEE) to China occurred in the 1930s, and the planting of this conifer species has now attained close to 3 million ha in the subtropical zone of southern China. A large-scale genetic improvement program for PEE was implemented in southern China to produce fast-growing trees with high wood quality to address the severe shortage of timber production over the last two decades. In this paper, selection for stem volume, basic wood density (DEN) and modulus of elasticity (MOE) was based on the Smith–Hazel index, and a total of approximately 2 000 individual trees from 158 PEE open-pollinated families were selected at 22 years of age. The DEN and MOE for each tree were determined by non-destructive evaluation techniques using the Pilodyn and Hitman Director ST300® acoustic velocity device. The heritabilities and genetic and phenotypic correlations for the traits that were measured were estimated using the residual maximum likelihood approach in the flexible mixed modelling program ASReml-R. The results showed that the heritability estimates for the wood properties were between 0.292 and 0.309, and the heritabilities of the growth traits ranged from 0.129 to 0.216. The genetic correlation between the DENP and acoustic velocity (V?) with MOEP was 0.45 and 0.95, respectively. An indirect selection based on V was observed to be highly effective for determination of MOE. It indicated that V can be integrated into tree improvement programs as a useful index of MOE by ranking candidate families or individuals within the selection population. The genetic correlations between the growth traits and wood properties were not significant. By contrast, the phenotypic correlations between them were significantly positive, but the correlation coefficients were very low. The appropriate selection index (I4), which placed 10 times as much weight on DEN and MOE as the equal emphsis method, was determined as the appropriate selection index.  相似文献   

17.
Genetic parameters for wood stiffness and strength properties were estimated in a 29-year-old hybrid larch stand (Larix gmelinii var. japonica × Larix kaempferi). The study included 19 full-sib larch families from Hokkaido, northern Japan. Implications of these genetic parameters in wood quality improvement are subsequently discussed. Traits included in the analyses were the dynamic modulus of elasticity of green logs (E log), the modulus of elasticity (MOE), the modulus of rupture (MOR), compression strength parallel to the grain (CS) in small clear specimens, wood density (DEN), and diameter at breast height (DBH). DEN had the lowest coefficients of variation and MOE the highest. The narrow-sense heritability estimates of E log, MOE, MOR, and CS were 0.61, 0.44, 0.60, and 0.43, respectively, and those of DEN and all mechanical properties increased from an inner to outer position within the stem. E log and DEN had high positive phenotypic (0.52–0.83) and genetic (0.70–0.92) correlations with MOE, MOR, and CS. The mechanical properties of the inner position of the stem had rather high phenotypic and genetic correlations with those of the outer position and overall mean. The predicted gains in wood stiffness (E log and MOE) were higher than those of the strength properties (MOR and CS). The predicted correlated responses in MOE, MOR, and CS when selecting for E log and DEN were 72.6%–97.8% of a gain achievable from direct selection of these traits. DBH showed an insignificant correlation with all mechanical properties, although selection of this trait had a slightly negative effect on the mechanical properties.  相似文献   

18.
Three softwoods, Sugi (Cryptomeria japonica), Korean Pine (Pinus koraiensis) and Hinoki (Chamaecyparis obtusa), were vacuum–pressure impregnated with a fire retardant chemical consisting of ammonium phosphate polymer (APP), guanyl urea phosphate (GUP), phosphonic acid and a minor amount of additives. The variation in impregnation between and within wood species was investigated. A significant relationship and similar trends were found between fire retardant chemical (FR) uptake and specific gravity (SG), as well as void volume filled (VVF) and SG. Moreover, the effects of fire retardant treatment on mechanical properties, including modulus of rupture (MOR), static modulus of elasticity (MOE) and dynamic modulus of elasticity (DMOE), were evaluated. The results indicated that the trend of impregnation and regression function varied between species and positions within the same species. However, the relationship of SG and chemical uptake and that of VVF and chemical uptake could be represented by a positive linear regression, and the trends were similar between wood species. Both of SG and VVF increased with increasing FR uptake. After fire retardant treatment, the MOR and static MOE were reduced compared with before treatment. Conversely, the DMOE increased after treatment.  相似文献   

19.
  • ? Direct assessment of modulus of elasticity (MOE) on standing trees is attractive for breeders to evaluate genotypes prior to selection: this can be done using the Rigidimeter, a bending-based measurement device.
  • ? In this study, we tested its reliability to properly rank genotypes by relating trunk MOE with MOEs estimated with a vibrating analysis system (Bing) on different types of conditioned wood specimens from the same trees (boards and standardised 2×2×30 cm-clear-wood specimens). One hundred and ten trees from different genotypes of hybrid larch (Larix × eurolepis) were tested.
  • ? Mean trunk MOE was 7 300 MPa with a similar value obtained for sawn boards. Clear-wood specimens MOE increased from pith to bark from less than 6 000 MPa to nearly 9 000 MPa. Moderate correlations (r = 0.48–0.61) were found at the individual tree level between trunk MOE and MOE of wood samples.
  • ? Single specimen MOE was shown to be strongly related to a linear combination of trunk MOE and sample position.
  • ? At the genotype mean level, trunk MOE was highly correlated with wood samples MOE (r = 0.80–0.91). Ranking of genotypes based on trunk MOE was mostly consistent with that based on standardised specimens.
  • ? It was concluded that besides other operational advantages which are discussed, the Rigidimeter is a valuable tool for breeders to routinely evaluate and rank genotypes for stiffness prior to further selection.
  •   相似文献   

    20.
    Eucalyptus camaldulensis Dehnh. is extensively planted in Thailand to produce wood chips used as raw material for pulp and paper. To promote the utilization of the wood from plantation-grown E. camaldulensis for solid lumber, stress-wave velocity of trees and dynamic Young’s modulus of logs were investigated for 4-year-old trees of eight half-sib families selected for pulpwood production on the basis of the growth characteristics in the previous tree breeding program. For the eight families, the mean stem diameter at 1.3 m above ground level and mean tree height were 7.6 cm and 11.9 m, respectively. The mean stress-wave velocity of eight families was 3.45 km/s. Dynamic Young’s modulus of logs ranged from 7.88 to 17.64 GPa, and the mean value for the eight families was 11.72 GPa. Stress-wave velocity of trees was significantly correlated with dynamic Young’s modulus of logs, suggesting that dynamic Young’s modulus of wood can be evaluated nondestructively by stress-wave velocity of trees. Significant differences in stress-wave velocity and dynamic Young’s modulus of logs were obtained among families. Thus, to promote the utilization of E. camaldulensis wood for solid lumber production, selection of trees with high Young’s modulus should be applied to trees already selected for the growth characteristics in the previous tree breeding program.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号