首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We recently showed that two immunochromatography point-of-care FIV antibody test kits (Witness FeLV/FIV and Anigen Rapid FIV/FeLV) were able to correctly assign FIV infection status, irrespective of FIV vaccination history, using whole blood as the diagnostic specimen. A third FIV antibody test kit, SNAP FIV/FeLV Combo (an enzyme-linked immunosorbent assay [ELISA]), was unable to differentiate antibodies produced in response to FIV vaccination from those incited by FIV infection. The aim of this study was to determine if saliva is a suitable diagnostic specimen using the same well characterized feline cohort. FIV infection status of these cats had been determined previously using a combination of serology, polymerase chain reaction (PCR) testing and virus isolation. This final assignment was then compared to results obtained using saliva as the diagnostic specimen utilizing the same three point-of-care FIV antibody test kits and commercially available PCR assay (FIV RealPCR). In a population of cats where one third (117/356; 33%) were FIV-vaccinated, both immunochromatography test kits accurately diagnosed FIV infection using saliva via a centrifugation method, irrespective of FIV vaccination history. For FIV diagnosis using saliva, the specificity of Anigen Rapid FIV/FeLV and Witness FeLV/FIV was 100%, while the sensitivity of these kits was 96% and 92% respectively. SNAP FIV/FeLV Combo had a specificity of 98% and sensitivity of 44%, while FIV RealPCR testing had a specificity of 100% and sensitivity of 72% using saliva. A revised direct method of saliva testing was trialed on a subset of FIV-infected cats (n = 14), resulting in 14, 7 and 0 FIV positive results using Anigen Rapid FIV/FeLV, Witness FeLV/FIV and SNAP FIV/FeLV Combo, respectively. These results demonstrate that saliva can be used to diagnose FIV infection, irrespective of FIV vaccination history, using either a centrifugation method (Anigen Rapid FIV/FeLV and Witness FeLV/FIV) or a direct method (Anigen Rapid FIV/FeLV). Collection of a saliva specimen therefore provides an acceptable alternative to venipuncture (i) in fractious cats where saliva may be easier to obtain than whole blood, (ii) in settings when a veterinarian or trained technician is unavailable to collect blood and (iii) in shelters where FIV testing is undertaken prior to adoption but additional blood testing is not required.  相似文献   

2.
Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are retroviruses causing significant morbidity and mortality in cats. The aim of this study was to describe the epidemiological, clinical and clinicopathologic aspects of FeLV and FIV infections in different populations of cats in Greece, including client-owned cats, stray cats and cats who live in catteries.A total of 435 cats were prospectively enrolled. Serological detection of FeLV antigen and FIV antibody was performed using a commercial in-house ELISA test kit.The results showed that 17 (3.9 %) and 40 (9.2 %) of the 435 cats were positive for FeLV antigen and FIV antibody, respectively, whereas 5 (1.1 %) had concurrent infection with FeLV and FIV. Factors that were associated with FeLV antigenemia, based on multivariate analysis, included vomiting, rhinitis, infection with FIV, neutropenia, decreased blood urea nitrogen and increased serum cholesterol and triglyceride concentrations. Factors associated with FIV seropositivity included male gender, older age, outdoor access, weight loss, fever, gingivostomatitis, skin lesions and/or pruritus and hyperglobulinemia.Various clinical signs and laboratory abnormalities were found to be significantly associated with retroviral infections, suggesting that current guidelines to test all sick cats should be followed, taking into particular consideration the high-risk groups of cats found in this study.  相似文献   

3.
The sensitivity and specificity of 4 commercial FeLV ELISA kits, using blood, were compared with results of virus isolation from blood and immunofluorescent antibody (IFA) testing on blood. Significant differences were not found among the 4 ELISA kits. Marked decrease in sensitivity of the ELISA kits was detected when virus isolation was used as the standard of positivity rather than the IFA test. Virus isolation was a more sensitive indicator of early infection, with marked discrepancy among results obtained by virus isolation, ELISA, and the IFA test. Results became progressively more concordant as infection became fully established. Cats FeLV-positive by virus isolation alone were more likely to eliminate viremia. All cats FeLV-positive by IFA testing remained persistently viremic. Virus isolation, ELISA, and IFA testing appear to differ in their prognostic value. The use of blood rather than serum for the ELISA resulted in several discordant results. Six cats were FeLV-positive by ELISA when blood was tested but were FeLV-negative when serum was tested. Positive ELISA results were obtained for 4 of these cats when serum was tested, using extended incubation to increase sensitivity. It is possible that blood may actually be more sensitive than serum for use of the ELISA method.  相似文献   

4.
Studies of the immunodetection of various microorganisms by various assay systems indicated that the most specific and sensitive assays are immunofluorescence, radioimmunoassay, and immunoblot analysis (western blot), followed by sensitive but less specific ELISA and agglutination assays and, finally, by even less sensitive but very specific virus isolation and double immunodiffusion techniques. The first test for the clinical detection of FeLV infection in pet cats was the immunofluorescent antibody (IFA) test, which was introduced in 1972. The FeLV test is used for detection for FeLV infection and not as a test for leukemia or any other feline disease. The IFA test was compared with an immunodiffusion (ID) test and with tissue culture isolation (TCI) of the virus in 26 cats to establish a standard for FeLV tests. Excellent correlation was observed between the IFA and the ID tests (100%).  相似文献   

5.
Two hundred and seventy-seven sick pet cats living in Italy were tested for antibodies to feline immunodeficiency virus (FIV) and for feline leukemia virus (FeLV) antigen. Overall, 24% of the cats resulted positive for anti-FIV antibody and 18% for FeLV antigen. FIV was isolated from the peripheral mononuclear blood cells of ten out of 15 seropositive cats examined and from one out of eight saliva samples. No FIV isolations were obtained from six serum samples cultured. Feline syncytium forming virus (FeSFV) could be isolated from blood and/or saliva in ten out of 11 FIV seropositive cats examined, in six out of nine FeLV antigen positive cats, in two cats found positive for both infection markers, and in three out of 11 cats negative for both markers. Thus, the probability of isolating FeSFV was enhanced by infection with other exogenous retroviruses.  相似文献   

6.
A total of 878 samples from the New York State Diagnostic Laboratory (NYSDL), dating from January 1984 to May 1987, were examined to detect antibodies to feline immunodeficiency virus (FIV). We used 2 screening methods; an indirect immunofluorescence assay (IFA) and an enzyme-linked immunosorbent assay (ELISA). Of these, 211 samples were from cats that tested negative for feline leukemia virus (FeLV) and exhibited disease signs consistent with immunodeficiency disease; 19 (9.0%) serum samples were determined to be positive. An additional 508 samples were from cats that tested FeLV-negative and were asymptomatic; 6 (1.2%) sera were determined to be positive. The final 159 samples were from FeLV-positive cats and included symptomatic and asymptomatic animals; this population of cats produced 6 (3.8%) positives. Additionally, 521 samples from the Cornell Feline Health Center (CFHC) serum bank, dating back to 1966, were tested to determine the earliest sample in which FIV antibodies could be detected. Five (2.7%) 1971 and 3 (3.3%) 1969 CFHC samples tested positive. The IFA for FIV antibody proved to be a sensitive (97.4%) and specific (100%) test. The ELISA also had high sensitivity (100%) and specificity (99.6%); however, the IFA proved to be more specific than the ELISA when assaying FeLV-positive cats.  相似文献   

7.
Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) are retroviruses found within domestic and wild cat populations. These viruses cause severe illnesses that eventually lead to death. Housing cats communally for long periods of time makes shelters at high risk for virus transmission among cats. We tested 548 cats from 5 different sites across the island of Newfoundland for FIV and FeLV. The overall seroprevalence was 2.2% and 6.2% for FIV and FeLV, respectively. Two sites had significantly higher seroprevalence of FeLV infection than the other 3 sites. Analysis of sequences from the FeLV env gene (envelope gene) from 6 positive cats showed that 4 fell within the FeLV subtype-A, while 2 sequences were most closely related to FeLV subtype-B and endogenous feline leukemia virus (en FeLV). Varying seroprevalence and the variation in sequences at different sites demonstrate that some shelters are at greater risk of FeLV infections and recombination can occur at sites of high seroprevalence.  相似文献   

8.
Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are common and important infectious disease agents of cats in Canada. Seroprevalence data for FeLV and FIV in various populations of Canadian cats are reviewed and recommendations for testing and management of infections by these viruses in cats in Canada are presented. Retrovirus testing in Canada is infrequent in comparison with the United States, and efforts should be focused on reducing physical and other barriers to testing, and on education of veterinarians, veterinary team members, and cat owners regarding the importance of testing. New test methodologies for FeLV and FIV are emerging, and should be independently evaluated in order to provide practitioners with information on test reliability. Finally, more information is needed on FIV subtypes in Canada to improve diagnostics and vaccines, and to provide information on disease outcomes.  相似文献   

9.
Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are among the most common infectious diseases of cats. Although vaccines are available for both viruses, identification and segregation of infected cats form the cornerstone for preventing new infections. Guidelines in this report have been developed for diagnosis, prevention, treatment, and management of FeLV and FIV infections. All cats should be tested for FeLV and FIV infections at appropriate intervals based on individual risk assessments. This includes testing at the time of acquisition, following exposure to an infected cat or a cat of unknown infection status, prior to vaccination against FeLV or FIV, prior to entering group housing, and when cats become sick. No test is 100% accurate at all times under all conditions; results should be interpreted along with the patient's health and risk factors. Retroviral tests can diagnose only infection, not clinical disease, and cats infected with FeLV or FIV may live for many years. A decision for euthanasia should never be based solely on whether or not the cat is infected. Vaccination against FeLV is highly recommended in kittens. In adult cats, antiretroviral vaccines are considered non-core and should be administered only if a risk assessment indicates they are appropriate. Few large controlled studies have been performed using antiviral or immunomodulating drugs for the treatment of naturally infected cats. More research is needed to identify best practices to improve long-term outcomes following retroviral infections in cats.  相似文献   

10.
Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are retroviruses with a global impact on the health of domestic cats. The two viruses differ in their potential to cause disease. FIV can cause an acquired immunodeficiency syndrome that increases the risk of developing opportunistic infections, neurological diseases, and tumors. In most naturally infected cats, however, FIV itself does not cause severe clinical signs, and FIV-infected cats may live many years without any health problems. FeLV is more pathogenic, and was long considered to be responsible for more clinical syndromes than any other agent in cats. FeLV can cause tumors (mainly lymphoma), bone marrow suppression syndromes (mainly anemia) and lead to secondary infectious diseases caused by suppressive effects of the virus on bone marrow and the immune system. Today, FeLV is less important as a deadly infectious agent as in the last 20 years prevalence has been decreasing in most countries.  相似文献   

11.
Many new diagnostic in-house tests for identification of feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) infection have been licensed for use in veterinary practice, and the question of the relative merits of these kits has prompted comparative studies. This study was designed to define the strengths and weaknesses of seven FIV and eight FeLV tests that are commercially available. In this study, 536 serum samples from randomly selected cats were tested. Those samples reacting FIV-positive in at least one of the tests were confirmed by Western blot, and those reacting FeLV-positive were confirmed by virus isolation. In addition, a random selection of samples testing negative in all test systems was re-tested by Western blot (100 samples) and by virus isolation (81 samples). Specificity, sensitivity, positive and negative predictive values of each test and the quality of the results were compared.  相似文献   

12.
Feline sera were submitted to the Cornell Feline Health Center (n = 497) or to the New York State Diagnostic Laboratory (n = 1,565) for feline immunodeficiency virus (FIV) testing. Some sera (n = 166) were submitted for confirmation of previous FIV-positive results; 151 of these sera had been tested at the referring veterinary practice or laboratory, using an in-house ELISA. Excluding the samples submitted for confirmation, a total of 173 samples (9.1%) were FIV-positive; 11.6% of the clinically ill or high-risk cats and 0.49% of the healthy, low risk cats were positive for FIV antibody. A commercially available ELISA for detection of antibody to FIV was evaluated in relation to the immunofluorescent antibody (IFA) test and the immunoblot assay. The ELISA was interpreted according to the manufacturer's instructions, with the ratio of sample optical density to positive control optical density (S/P) determining a positive or negative result. The ELISA results based on the S/P interpretation were compared with a kinetics-based (KELA) interpretation of the ELISA. The KELA values were reported as positive, negative, or equivocal. Using the immunoblot as the standard, ELISA (S/P interpretation) had sensitivity of 0.93 and specificity of 0.98, whereas the IFA test had sensitivity of 0.95 and specificity of 0.98. However, the sensitivity and specificity of the ELISA (S/P interpretation) were markedly reduced for sample results falling in the KELA equivocal range, indicating that equivocal results were valid interpretations for some sera. A high number (22.5%) of the samples submitted for confirmation of a positive result from use of the in-house ELISA were determined to be negative for FIV antibody.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Objective To determine prevalences of feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) infections in ‘healthy’ cats that, through acute misadventure or other circumstance, were presented to veterinary practitioners. Prevalences of FeLV and FIV in this population were compared to those in a population of predominantly sick cats. Design and procedures Serum specimens were obtained over a 2-year period from 200 cats oldeer than 1 year of age presented to veterinary clinics for routine procedures, including cat fight injuries or abscesses, vehicular trauma, neutering, dental scaling, vaccination, grooming or boarding. An additional 894 sera were obtained over approximately the same period from specimens submitted by veterinarians to a private clinical pathology laboratory, mainly from sick cats suspected of having immune dysfunction, but including some sera from healthy cats being screened prior to FeLV vaccination. FIV antibody and FeLV antigen were detected in samples using commercial enzyme immunoassays. Results Amongst 200 ‘healthy’ cats, the prevalence of FeLV infection was 0 to 2%, and the prevalence of FIV was 6.5 to 7.5%, depending on the stringency of the criteria used to define positivity. FIV infection was significantly more prevalent in cats which resided in an inner city environment (P = 0.013). Of the 894 serum specimens submitted to the laboratory by practitioners, 11/761 (1.4%) were FeLV positive, while 148/711 (20.8%) were FIV positive. The prevalence of FIV was significantly higher in these predominantly ‘sick’ cats than in cats seen for routine veterinary procedures (P < 0.00001), while there was no difference in the prevalence of FeLV (P = 0.75) Conclusions The prevalence of FeLV and FIV in healthy cats may have been substantially overestimated in some previous Australian surveys. FeLV infection would appear to be a rare cause of disease in Australian cats. The higher prevalence of FIV positivity in sick as opposed to healthy cats infers that FIV infection contributes to the development of disease.  相似文献   

14.
Tumor necrosis factor alpha (TNF alpha) levels were determined by enzyme-linked immunosorbent assay (ELISA) and by cell culture bioassay in supernatants of lipopolysaccharide-stimulated feline monocyte cultures and in cat serum samples. There was a good correlation between the results obtained by the two methods. From the fact that TNF alpha was neutralized quantitatively by antibodies to human TNF alpha in feline monocyte supernatants and in feline sera, it was concluded that feline TNF alpha immunologically cross-reacts with human TNF alpha and that the human TNF alpha ELISA can be used to quantitate feline TNF alpha. During the first 6 months after experimental feline immunodeficiency virus (FIV) infection no differences in serum TNF alpha values were observed between infected and non-infected cats. TNF alpha levels increased significantly after primary vaccination with a feline leukemia virus (FeLV) vaccine in FIV infected cats over those in the non-infected controls. During secondary immune response TNF alpha levels rose transiently for a period of a few days in both the FIV positive and the FIV negative cats. After FeLV challenge, TNF alpha levels increased in all animals challenged with virulent FeLV for a period of 3 weeks. This period corresponded to the time necessary to develop persistent FeLV viremia in the control cats. It was concluded from these experiments that in the asymptomatic phase of FIV infection no increased levels of TNF alpha are present, similar to the situation in asymptomatic HIV infected humans. Activation of monocytes/macrophages in FIV infected cats by stimuli such as vaccination or FeLV challenge readily leads to increased levels of TNF alpha.  相似文献   

15.
Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are common and important infectious diseases of cats in Canada. Prevalence data are necessary to define prophylactic, management, and therapeutic measures for stray, feral and owned cats. Recently, comprehensive data on the seroprevalence of retrovirus infections of cats in Canada have become available and are reviewed. Further investigation into geographic variations in retrovirus seroprevalence within Canada is warranted, and may provide information to improve recommendations for testing and prevention. As well, more information is needed on FIV subtypes in Canada to improve diagnostics and vaccines, as well as to provide information on disease outcomes.  相似文献   

16.
Immunodetection tests for feline retroviruses are powerful tools used in modern veterinary practice. Veterinarians must fully understand the characteristics--strengths and weaknesses--of the FeLV tests so that the information gained from them can be used properly. Any FeLV ELISA or immunofluorescent antibody (IFA) test is a method for detection of FeLV infection (the virus) and is not a diagnostic test for leukemia or other feline disease. From previous studies, it was determined that the most accurate test for detection of persistent FeLV infection is the IFA test, which detects FeLV antigens in cytoplasm of leukocytes in the blood of infected cats. In the study reported here, 1,142,600 FeLV IFA tests were performed between June 1972 and December 1990. During this period 19.8% of the IFA test results were positive and 78% were negative. Evaluation was not possible for the remaining 2.2% of the tests because of lack of enough leukocytes in the smears to evaluate, or nonspecific staining reactions. In 1979, 7 years after introduction of the IFA test, in-hospital FeLV ELISA were introduced, which enabled veterinarians to test for FeLV in their hospitals. Ever since that time, continual discrepancies have been reported between results of FeLV ELISA and IFA tests, particularly between positive ELISA results and their IFA test confirmation. A 10-year comparison was made between practitioner-performed in-hospital FeLV ELISA (n = 20, 240 tests) results and FeLV IFA test performed by a commercial laboratory. All samples tested by ELISA were submitted (for confirmation of results) by veterinarians from the United States, Canada, Europe, Japan, and Australia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Enzyme-linked immunosorbent assays have been widely used for diagnosis of FeLV and feline immunodeficiency virus (FIV) infections. Various ELISA kits for FeLV are available from several manufacturers. Although these tests are configured in a variety of formats, they are all direct antigen-detection systems for the viral core protein p27. On the other hand, ELISA for FIV exposure detects specific feline antibody to FIV. Basic immunoassay principles and the application of ELISA technology used in FeLV and FIV ELISA kits are described.  相似文献   

18.
The aim of this study was to determine the prevalence and risk factors for Mycoplasma haemofelis (Mhf) and 'Candidatus Mycoplasma haemominutum' (Mhm) infections in domestic cats tested for feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) with a commercial enzyme-linked immunosorbent assay (ELISA) kit. Based on serological testing, cats were grouped as i) FIV-positive (n=25); ii) FeLV-positive (n=39); iii) FIV/FeLV-positive (n=8); and iv) FIV/FeLV-negative (n=77). Complete blood counts were followed by DNA extraction, species-specific polymerase chain reaction (16S rRNA gene) for Mhf and Mhm and Southern blotting for all animals. Mhf DNA was found in 4.0, 2.6, 12.5 and 7.8% of the cats from groups i, ii, iii and iv, respectively, while 32, 5.1, 50 and 5.2% of these animals had an Mhm infection. Cats with FIV (OR=4.25, P=0.009) and both FIV and FeLV (OR=7.56, P=0.014) were at greater risk of being hemoplasma infected than retroviral-negative cats, mainly due to Mhm infection (OR=8.59, P=0.001 and OR=18.25, P=0.001, respectively). Among pure-breed cats, FIV-positive status was associated with hemoplasma infection (OR 45.0, P=0.001).  相似文献   

19.
BACKGROUND: Serodiagnosis of feline immunodeficiency virus (FIV) is complicated by the use of a formalin-inactivated whole-virus FIV vaccine. Cats respond to immunization with antibodies indistinguishable from those produced during natural infection by currently available diagnostic tests, which are unable to distinguish cats that are vaccinated against FIV, infected with FIV, or both. HYPOTHESIS: An enzyme-linked immunosorbent assay (ELISA) detecting antibodies against formalin-treated FIV whole virus and untreated transmembrane peptide will distinguish uninfected from infected cats, regardless of vaccination status. ANIMALS: Blood samples were evaluated from uninfected unvaccinated cats (n = 73 samples), uninfected FIV-vaccinated cats (n = 89), and FIV-infected cats (n = 102, including 3 from cats that were also vaccinated). METHODS: The true status of each sample was determined by virus isolation. Plasma samples were tested for FIV antibodies by a commercial FIV diagnostic assay and an experimental discriminant ELISA. RESULTS: All samples from uninfected cats were correctly identified by the discriminant ELISA (specificity 100%). Of the samples collected from FIV-infected cats, 99 were correctly identified as FIV-infected (sensitivity 97.1%). CONCLUSIONS AND CLINICAL IMPORTANCE: With the exception of viral isolation, the discriminant ELISA is the most reliable assay for diagnosis of FIV. A practical strategy for the diagnosis of FIV infection would be to use existing commercial FIV antibody assays as screening tests. Negative results with commercial assays are highly reliable predictors for lack of infection. Positive results can be confirmed with the discriminant ELISA. If the discriminant ELISA is negative, the cat is probably vaccinated against FIV but not infected. Positive results are likely to represent infection.  相似文献   

20.
A representative sample of the pet cat population of the United Kingdom was surveyed. Blood samples from 1204 sick and 1007 healthy cats of known breed, age and sex were tested for antibodies to feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV). The prevalence of FIV was 19 per cent in sick cats and 6 per cent in healthy cats, and the prevalence of FeLV was 18 per cent in sick cats and 5 per cent in healthy cats; both infections were more common in domestic cats than in pedigree cats. Feline immunodeficiency virus was more prevalent in older cats but FeLV was more prevalent in younger cats. There was no difference between the prevalence of FeLV in male and female cats but male cats were more likely to be infected with FIV than female cats. No interaction was demonstrated between FIV and FeLV infections. Of the cats which were in contact with FIV in households with more than one cat, 21 per cent had seroconverted. The prevalence of FeLV viraemia in cats in contact with FeLV was 14 per cent. The clinical signs associated with FIV were pyrexia, gingivitis/stomatitis and respiratory signs, and with FeLV, pyrexia and anaemia. It was concluded that both viruses were significant causes of disease, and that the cats most likely to be infected with FIV were older, free-roaming male cats and for FeLV, younger, free-roaming cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号