首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Maize (Zea mays L.) is an important source of carbohydrates and protein in the diet in sub-Saharan Africa. The objectives of this study were to (i) estimate general (GCA) and specific combining abilities (SCA) of 13 new quality protein maize (QPM) lines in a diallel under stress and non-stress conditions, (ii) compare observed and predicted performance of QPM hybrids, (iii) characterize genetic diversity among the 13 QPM lines using single nucleotide polymorphism (SNP) markers and assess the relationship between genetic distance and hybrid performance, and (iv) assess diversity and population structure in 116 new QPM inbred lines as compared to eight older tropical QPM lines and 15 non-QPM lines. The GCA and SCA effects were significant for most traits under optimal conditions, indicating that both additive and non-additive genetic effects were important for inheritance of the traits. Additive genetic effects appeared to govern inheritance of most traits under optimal conditions and across environments. Non-additive genetic effects were more important for inheritance of grain yield but additive effects controlled most agronomic traits under drought stress conditions. Inbred lines CKL08056, CKL07292, and CKL07001 had desirable GCA effects for grain yield across drought stress and non-stress conditions. Prediction efficiency for grain yield was highest under optimal conditions. The classification of 139 inbred lines with 95 SNPs generated six clusters, four of which contained 10 or fewer lines, and 16 lines of mixed co-ancestry. There was good agreement between Neighbor Joining dendrogram and Structure classification. The QPM lines used in the diallel were nearly uniformly spread throughout the dendrogram. There was no relationship between genetic distance and grain yield in either the optimal or stressed environments in this study. The genetic diversity in mid-altitude maize germplasm is ample, and the addition of the QPM germplasm did not increase it measurably.  相似文献   

2.
The evolution of species is complex and subtle which always associates with the genetic variation and environment adaption during active/passive spread or migration. In crops, this process is usually driven and influenced by human activities such as domestication, cultivation and immigration. One method to discover this process is to analyze the genetic diversity of those crops in different regions. This research first assessed the similarity and differentiation between genetic diversity of genotype and phenotype in 768 world-wild cowpea germplasm which were collected by USDA and US breeding programs. Totally 1048 genotyping by sequencing (GBS) derived single nucleotide polymorphisms (SNPs) and 17 agronomic traits were used to analyze the genetic diversity, distance, cluster and phylogeny. The group differentiation was analyzed based on both the genotype distances from 1048 SNP markers and the phenotypic (Mahalanobis) distance D2 from 11 traits. A consistent result of diversity in genotype (polymorphism information content, PIC) and phenotype (Shannon and Simpson index) indicated that the East Africa and South Asia sub-continents were the original and secondary regions of cowpea domestication. Both dendrograms built by genetic distance present relationship among different regions, and the Mantel coefficient showed medium correlation level (r = 0.58) between genotype and phenotype. The information of both genotypic and phenotypic differentiations may help us to understand evolution and migration of cowpea more comprehensively and also will inform breeders how to use cowpea germplasm in breeding programs.  相似文献   

3.
To fully exploit the diversity in African rice germplasm and to broaden the gene pool reliable information on the population genetic diversity and phenotypic characteristics is a prerequisite. In this paper, the population structure and genetic diversity of 42 cultivated African rice (Oryza spp.) accessions originating from West Africa (Benin, Mali and Nigeria, Liberia etc.) were investigated using 20 simple sequence repeats (SSR) and 77 amplified fragment length polymorphisms (AFLP). Additionally, field trials were set up to gain insight into phenotypic characteristics that differentiate the genetic populations among rice accessions. The analysis revealed considerably high polymorphisms for SSR markers (PIC mean?=?0.78) in the germplasm studied. A significant association was found between AFLP markers and geographic origin of rice accessions (R?=?0.72). Germplasm structure showed that Oryza sativa accessions were not totally isolated from Oryza glaberrima accessions. The results allowed identification of five O. glaberrima accessions which grouped together with O. sativa accessions, sharing common alleles of 18 loci out of the 20 SSR markers analyzed. Population structure analysis revealed existence of a gene flow between O. sativa and O. glaberrima rice accessions which can be used to combine several interesting traits in breeding programs. Further studies are needed to clarify the contributions of this gene flow to valuable traits such as abiotic and biotic stresses including disease resistance.  相似文献   

4.
四川地方玉米种质的SSR聚类分析   总被引:39,自引:0,他引:39  
利用SSR分子标记方法研究28个玉米自交系的遗传变异。分析四川地方玉米种质的遗传基础,并进行SSR聚类分析,探讨四川地方玉米种质与国内主要杂种优势群的关系。结果表明:大部分四川地方玉米种质均可被划分到常见的几大杂种优势群中去,少数地方玉米自交系可形成单独的类群,四川地方玉米种质具有广泛的遗传基础;SSRs能较真  相似文献   

5.
Drought and low soil fertility are considered the most important abiotic stresses limiting maize production in sub-Saharan Africa. Knowledge of the combining ability and diversity of inbred lines with tolerance to the two stresses and for those used as testers would be beneficial in setting breeding strategies for stress and nonstress environments. We used 15 tropical maize inbred lines to (i) evaluate the combining ability for grain yield (GY), (ii) assess the genetic diversity of this set of inbred lines using RFLP, SSR, and AFLP markers, (iii) estimate heterosis and assess the relationship between F1 hybrid performance, genetic diversity and heterosis, and (iv) assess genotype × environment interaction of inbred lines and their hybrids. The F1 diallel hybrids and parental inbreds were evaluated under drought stress, low N stress, and well-watered conditions at six locations in three countries. General combining ability (GCA) effects were highly significant (P < 0.01) for GY across stresses and well-watered environments. Inbred lines CML258, CML339, CML341, and CML343 had the best GCA effects for GY across environments. Additive genetic effects were more important for GY under drought stress and well-watered conditions but not under low N stress, suggesting different gene action in control of GY. Clustering based on genetic distance (GD) calculated using combined marker data grouped lines according to pedigree. Positive correlation was found between midparent heterosis (MPH) and specific combining ability (SCA), GD and GY. Hybrid breeding program targeting stress environments would benefit from the accumulation of favorable alleles for drought tolerance in both parental lines.  相似文献   

6.
Cowpea, Vigna unguiculata (L.), is an important grain legume grown in the tropics where it constitutes a valuable source of protein in the diets of millions of people. Some abiotic and biotic stresses adversely affect its productivity. A review of the genetics, genomics and breeding of cowpea is presented in this article. Cowpea breeding programmes have studied intensively qualitative and quantitative genetics of the crop to better enhance its improvement. A number of initiatives including Tropical Legumes projects have contributed to the development of cowpea genomic resources. Recent progress in the development of consensus genetic map containing 37,372 SNPs mapped to 3,280 bins will strengthen cowpea trait discovery pipeline. Several informative markers associated with quantitative trait loci (QTL) related to desirable attributes of cowpea were generated. Cowpea genetic improvement activities aim at the development of drought tolerant, phosphorus use efficient, bacterial blight and virus resistant lines through exploiting available genetic resources as well as deployment of modern breeding tools that will enhance genetic gain when grown by sub‐Saharan Africa farmers.  相似文献   

7.
Garlic (Allium sativum L.), an asexually propagated crop, is an important vegetable and medicinal plant. China is the biggest garlic producer in the world; however, the genetic background of garlic from China is not well understood. In this study, population structure and clustering analysis of garlic germplasm was performed using amplified fragment length polymorphism (AFLP), simple sequence repeat (SSR) and insertion–deletion (InDel) markers. Among 212 accessions of garlic, genetic diversity analysis identified 546 alleles amplified by AFLP, SSR and InDel primers, and 492 of these were polymorphic. All accessions were divided into five groups by structure analysis and neighbor‐joining clustering. Most traits, including allicin content, were only slightly affected by population structure, which indicated that this germplasm can be used as populations for association mapping. The results provide a molecular basis for understanding the genetic diversity of the garlic germplasm preserved in China.  相似文献   

8.
我国主要玉米自交系开花期耐旱性差异及改良   总被引:26,自引:0,他引:26  
通过对37份我国主要玉米自交系两年的开花期耐旱性鉴定, 筛选出耐旱系12份(K22、 SH15、 X178、 P138、中自01、中自451、金黄96B、齐319、旱23、东91、临京11、 CA156). 在干旱胁迫下, 果穗吐丝延迟, 雌雄开花间隔增大, 结穗率下降, 籽粒产量严重降低; 雌雄开花间隔天数和结穗率与籽粒产量均呈极显著相关, 是可供耐旱性选择  相似文献   

9.
Cowpea (Vigna unguiculata (L.) Walp) is a legume of economic importance world-wide, especially in Western Africa, where it is an important part of the population’s diet. The rapidly increasing population growth in Africa requires substantial increase in cowpea production, which can be achieved by expanding land areas for agricultural purposes. In addition, prevalence of soil acidity in Africa constrains such an alternative since phosphorus availability, a key element for plant growth and development, is limited, thus resulting in poor cowpea production. The objectives of this study were to conduct an association analysis for adaptation to low phosphorus conditions and rock phosphate response in cowpea, and to identify SNP markers associated with these two traits. A total of 357 cowpea accessions, collected worldwide, was evaluated for phosphorus stress and response to addition of rock phosphate. Association analysis was conducted using 1018 SNPs obtained using genotyping-by-sequencing (GBS). TASSEL 5 and R were used for association mapping studies based on six different models. The results indicated that: (1) substantial variability in adaptation to low phosphorus conditions and rock phosphate response exists in the USDA cowpea accession panel; (2) ten SNP markers, C35006753_110, C35028233_482, C35072764_1384, C35084634_455, Scaffold21750_4938, Scaffold26894_5408, Scaffold41885_14420, Scaffold45170_4650, Scaffold50732_679; and Scaffold88448_741 were found to be associated with tolerance to low phosphorus conditions in cowpea, and (3) eight SNP markers, C35028233_482, C35058535_121, Scaffold26894_5408, Scaffold45170_4650, Scaffold51609_507, Scaffold53730_7339, Scaffold74389_5733, and Scaffold87916_4921 were highly associated with rock phosphate response. These SNP markers can be used in a marker-assisted breeding (MAS) program to improve cowpea tolerance to phosphorus stress.  相似文献   

10.
Cowpea [Vigna unguiculata (L.) Walp.] is an important legume crop, widely grown in Africa, South America, South Asia, Southeast Asia, and the southern United States. Cowpea is consumed as both fresh vegetable and dry grain, and as an animal feed and fodder, and it is a major dietary protein source that complements cereal-based diet. Cowpea mosaic virus (CPMV) causes a severe yield loss of cowpea in many areas worldwide notably in the Africa. Utilization of host genetic resistance is the most effective control method for the viral disease. The objective of this research is to conduct genome-wide association analysis and identify single nucleotide polymorphism (SNP) markers associated with CPMV resistance in cowpea. Three hundred and thirty-three cowpea germplasm accessions, originally collected from 39 different countries and 1033 SNPs identified from genotyping by sequencing approach were used in this study. Single marker regression, general linear model, and mixed linear model in Tassel 5 were used for association analysis of CPMV resistance. Six SNP markers (C35069548_1883, scaffold65342_6794, scaffold66293_6549, scaffold95805_2175, C35081948_540, and scaffold17319_4417) were strongly associated with the CPMV resistance, of which the first three were associated for immune and the remaining three were associated with hypersensitive response. SNP markers identified in this research will be a potential tool to use in cowpea molecular breeding to develop CPMV resistant cultivars through marker-assisted selection.  相似文献   

11.
Cowpea (Vigna unguiculata L. Walp) is a legume consumed for its high protein content. It provides nutrient-dense food opportunities for human consumption. Iron deficiency chlorosis (IDC) manifests as yellowing of the leaves and reduced plant growth, resulting in reduced yield potential. Use of IDC tolerant cowpea cultivars is an efficient method to address this problem. The objectives of this study were to conduct a population structure analysis, to carry out an association mapping study, and to identify SNP markers associated with IDC tolerance in cowpea. A total of 353 cowpea accessions were evaluated for tolerance/susceptibly to low soluble iron conditions on higher pH soils. A total of 1006 SNP markers postulated from genotyping-by-sequencing were used after filtering for population structure and association analysis studies. Results revealed that: (1) a substantial variability in degree of tolerance to low soluble iron conditions was found among the cowpea accessions; (2) delta K peak was identified at K equal to 2, indicating two subpopulations within the cowpea accessions tested for adaptation to IDC, a second delta peak corresponding to K equal to 3 was also found; and (3) nine SNP markers, C35081162_3130, Scaffold16136_2033, Scaffold1764_4741, Scaffold18262_4480, Scaffold30165_15499, Scaffold47194_5530, Scaffold73235_6677, Scaffold77932_9959, and Scaffold86559_7193, were significantly associated with IDC tolerance in cowpea. These results can be used as tools to select cowpea genotypes tolerant to IDC under low soluble iron conditions.  相似文献   

12.
遴选黄麻核心种质可为黄麻种质创新及新品种选育奠定基础。本研究以300份黄麻种质资源为基础,基于SSR分子标记和农艺性状考察,结合地理来源构建核心种质。结果表明,11个农艺性状变异系数变幅在13.06%~84.87%,表现出丰富的遗传多样性。按农艺性状聚类分析可划分为8个类群,按分子标记聚类可划分为10个类群。结合2个聚类分析、地理位置并按比例取样,建立一个由108份品种(系)组成的预选核心种质。采用44对SSR引物对其进行遗传差异分析,在遗传相似系数为0.65时,可把108份品种(系)分成圆果种和长果种两大类。根据遗传差异分析,剔除遗传相似系数大于或等于0.85的遗传冗余,获得84份品种(系)的核心种质,其中圆果种60份和长果种24份。比较84份核心种质与300份种质的农艺性状变异系数及Shannon-Wiener指数发现,两者之间相差不大,表明遴选的84份核心种质可以最大限度代表300份黄麻种质资源的遗传多样性加以利用和保存。  相似文献   

13.
Spinach (Spinacia oleracea L.) is an important leafy vegetable crop grown worldwide. Leaf traits, surface texture (smooth, savoy or semi‐savoy), petiole colour (different shades of green vs. purple) and edge shape (serrate vs. entire), are important commercial traits of spinach. Association mapping for the three traits was conducted on 323 USDA spinach germplasm accessions, originally collected from 33 countries and representing the entire USDA spinach germplasm collection. The majority of accessions were from Europe (36.3%), Asia (25.3%) and North America (15.8%). The majority of the spinach accessions (82.0%) were smooth (unwrinkled types), whereas the savoy and semi‐savoy types (wrinkled types) accounted for 18.0%. The collection contained 74.9% green petiole types, while the purple petioles consisted of 25.1%. The collection consisted of 27.2% serrated leaf types and 72.8% entire leaf edge types. Genotyping‐by‐sequencing (GBS) was used for single nucleotide polymorphism (SNP) discovery, and SNPs were used as genotypic data to conduct genetic diversity and association mapping of the three leaf traits. Five genetic subpopulations and principal components (PCs) were postulated by structure 2 and JMP Genomics 7 for this association panel. Five, seven and 14 SNPs were identified to be associated with surface texture, edge shape and petiole colour, respectively. This study provides us an approach to identify SNP markers through association analysis in spinach and thus leads to select these three leaf traits through marker‐assisted selection in spinach breeding programme.  相似文献   

14.
To evaluate genetic diversity in relation to rust and anthracnose disease response, ninety-six accessions were randomly selected from the core collection database of the Germplasm Research Information Network (GRIN) and characterized by a set of 40 SSR markers. The mean value of polymorphism information content (PIC) was 0.8228. Two dendrograms were generated from the molecular genetic data and field morphological data, respectively. The genetic dendrogram demonstrates that the accessions can be classified into three main clades and nine subgroups. The branched subgroups correlated very well with the locations where the accessions were collected. Geographical origin of accessions had significant influences on genetic similarity of sorghum germplasm. Out of 96 accessions, only eight accessions were highly resistant to both rust and anthracnose. All the accessions from South Africa and Mali were highly resistant to anthracnose. The information from genetic classification would be useful for choosing parents to make crosses in sorghum breeding programs and classifying sorghum accessions in germplasm management.  相似文献   

15.
为了筛选出优异的扁蓿豆育种新材料,本研究采用AFLP和SSR分子标记技术对来自于中国7个省市自治区的15份扁蓿豆种质资源进行遗传多样性的比较分析,结果表明:18对SSR引物扩增出109个多态位点,8个AFLP引物组合扩增出640条带,其中472条多态带.AFLP标记的平均Nei′s遗传多样性指数、Shannon多样性指数和遗传分化系数均高于SSR标记.15份扁蓿豆种质的遗传距离和遗传相似系数与地理类群很接近.AFLP和SSR数据的聚类分析显示:15份扁蓿豆种质分为4大类,但是聚类结果与地理类群不完全相符,主成分结果与聚类结果相似,Mantel 检测表明:AFLP和SSR数据有较高的显著相关性,AFLP和SSR标记能够有效地对扁蓿豆进行遗传多样性分析,其结果为扁蓿豆育种和资源保护具有指导意义.  相似文献   

16.
利用SSR标记分析橡胶草种质资源的遗传多样性   总被引:2,自引:1,他引:1  
为了解橡胶草种质的遗传背景和遗传多样性,为今后橡胶草育种提供理论依据。利用23对SSR引物对96份橡胶草材料进行遗传多样性分析。结果显示,23对SSR引物通过扩增得到71个等位变异,等位变异范围2-6个,平均等位基因数为3.09个。通过聚类分析,俄罗斯材料和美国材料与新疆7个居群材料被分为2大类群,类群I包含所有俄罗斯和美国材料以及5份新疆野生材料,类群II包含其余新疆7个居群的材料;俄罗斯和美国材料同属于亚群A,平均遗传相似度为0.88,说明它们存在紧密的亲缘关系;新疆7个居群的材料被分为5个亚群,显示丰富的遗传多样性,而且相互之间存在复杂的遗传关系。本研究结果证明了SSR标记能够有效地用于橡胶草的遗传多样性研究,为以后的橡胶草种质收集和遗传育种提供重要依据。  相似文献   

17.

为从分子水平上揭示豇豆种质资源间的亲缘关系,为其种质资源搜集、鉴定、利用和遗传改良提供一定的理论基础,利用SRAP和SSR分子标记对41份来自中国和马来西亚的豇豆种质资源进行遗传多样性研究。从65对SRAP引物和10对SSR引物中分别筛选获得稳定清晰且多态性强的31对SRAP引物和5对SSR引物,对41份栽培豇豆资源的DNA进行SRAP-PCR和SSR-PCR扩增。2种PCR扩增共获230条扩增条带,其中SRAP检测到196条扩增条带,平均每对引物扩增等位基因数为6.3条,多态性片段为161条,多态性比例为82.14%;SSR检测到34条带,平均每对引物扩增等位基因数6.8条,多肽性片段为25条,多态性比例为73.53%,表明本研究搜集的豇豆种质间的遗传多样性比较丰富。基于SRAP和SSR标记的结果,利用UPGMA构建了41份豇豆资源的聚类树状图,其遗传相似系数为0.1667~0.9516,大多在0.674以上。结果表明,SRAP和SSR分子标记能有效地将41份豇豆资源分开,且部分种质间的遗传距离较远,这为豇豆资源的开发利用及新品种的选育提供科学依据。

  相似文献   

18.
豇豆种质资源遗传多样性和亲缘关系的SRAP和SSR分析   总被引:2,自引:0,他引:2  
为从分子水平上揭示豇豆种质资源间的亲缘关系,为其种质资源搜集、鉴定、利用和遗传改良提供一定的理论基础,利用SRAP和SSR分子标记对41 份来自中国和马来西亚的豇豆种质资源进行遗传多样性研究。从65 对SRAP引物和10 对SSR引物中分别筛选获得稳定清晰且多态性强的31 对SRAP引物和5 对SSR引物,对41 份栽培豇豆资源的DNA进行SRAP-PCR和SSR-PCR扩增。2 种PCR扩增共获230 条扩增条带,其中SRAP检测到196 条扩增条带,平均每对引物扩增等位基因数为6.3 条,多态性 片段为161 条,多态性比例为82.14%;SSR检测到34 条带,平均每对引物扩增等位基因数6.8 条,多肽性片段为25 条,多态性比例为73.53%,表明本研究搜集的豇豆种质间的遗传多样性比较丰富。基于SRAP 和SSR 标记的结果,利用UPGMA 构建了41 份豇豆资源的聚类树状图,其遗传相似系数为0.1667~0.9516,大多在0.674 以上。结果表明,SRAP和SSR分子标记能有效地将41 份豇豆资源分开,且部分种质间的遗传距离较远,这为豇豆资源的开发利用及新品种的选育提供科学依据。  相似文献   

19.
A major emphasis in breeding for iron toxicity tolerance in rice is to identify differences that are associated with resistance and harness them for genetic improvement. In this study, thirty accessions, including IRRI gene bank accessions, two varieties from Brazil, 8 cultivars from West Africa and 10 cultivars from Uganda were analyzed for sensitivity to iron toxicity, and genetic diversity using morphological and SSR markers. Two genotypes, IR61612-313-16-2-2-1 and Suakoko 8 showed significantly high resistance with an average score of ≤ 3.5 on 1–9 scale. The SRR markers were highly informative and showed mean polymorphism information content (pic) of 0.68. The PIC values revealed that RM10793, RM3412, RM333, RM562, RM13628, RM310, RM5749, and RM154 could be the best markers for genetic diversity estimation of these rice cultivars. Diversity at the gene level showed an average of 4.61 alleles ranging from 2 to 12 per locus. Mean gene diversity (H) value for all SSR loci for the 30 genotypes evaluated was 0.69 but was decreased to 0.53 when analysis was performed on Ugandan accessions. The low genetic diversity found among the Ugandan accessions is the evidence of a narrow genetic base, and such a scenario has a potential vulnerability for resistance break down. A low correlation was detected between the observed molecular and morphological datasets. This means that a combination of morphological traits and SSR analysis would be required when assessing genetic variation under iron toxic conditions, and could be a practical strategy for breeders when planning crosses. A distinction between the resistant and susceptible accessions in both phenotyping and SSR datasets suggests the presence of unique alleles that could be harnessed for improvement of rice against iron toxicity.  相似文献   

20.
豇豆种质资源SSR标记遗传多样性分析   总被引:8,自引:0,他引:8  
徐雁鸿  关建平  宗绪晓 《作物学报》2007,33(7):1206-1209
从46对备选的豇豆SSR引物中鉴定筛选出扩增带单一、稳定清晰且多态性强的13对引物。用这13对引物,对来自中国、非洲和亚洲其他国家的共316份栽培豇豆[Vigna unguiculata (Linn) Walp.]资源的DNA进行SSR扩增,以研究其遗传多样性。结果共检测到47个等位位点,平均每对引物扩增出3.692个等位位点,有效等位基因平均2.003个;5对SSR引物VM16、VM26、VM20、VM25和VM23,对于检测豇豆遗传变异最为有效。UPGMA聚类图显示,13对SSR引物即能将其中的260份参试资源区分开,其中国内、外资源差异明显,被划为2大类群;国内资源类群又可分为与地理来源的气候生态区明显关联的2个北方组群、4个南方组群和2个混合组群,8个组群间相对独立又相互渗透;国内育种高代材料的遗传多样性狭窄。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号