首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of feeding, fish size (body weight from 18.5 to 56.5 g) and water temperature (20 and 23 °C) on oxygen consumption (OC, mg O2 kg–1 h–1) and ammonia excretion (AE, mg TAN kg–1 h–1) was studied in Eurasian perch held in recirculation systems. OC for both fed and feed-deprived (3 days) fish was higher at 23 °C (278.5 and 150.1 mg O2 kg–1 h–1) than at 20 °C (249.3 and 135.0 mg O2 kg–1 h–1; P < 0.01). AEs for both fed and feed-deprived fish were also significantly higher at 23 °C than at 20 °C (P < 0.001). Water temperature and fish size had a significant impact on the oxygen:feed ratio (OFR, kg O2 kg–1 feed fed day–1) and ammonia:feed ratio (AFR, kg TAN kg–1 feed fed day–1; P < 0.001). Their average values at temperatures of 20 and 23 °C were 0.17 and 0.19 kg O2 kg–1 feed fed day–1 and 0.009 and 0.011 kg TAN kg–1 feed fed day–1, respectively.  相似文献   

2.
Thisstudy investigated the effects of shelter surface area (SSA) on the feeding,growth and survival of the donkey-ear abalone, Haliotisasinina reared in mesh cages (0.38×0.38×0.28m) suspended in flow-through tanks (water volume = 6m3). Cages had sections of polyvinylchloride (PVC) thatprovided shelters with surface area of 0.22 m2, 0.44m2 and 0.66 m2.Hatchery-produced abalone with initial shell length of 32 ± 1mm and wet weight of 7.5 g were stocked at 50individuals cage–1 that corresponded to stocking densities ofca. 227, 113 and 75 abalone m–2 of SSA. The ratios of sheltersurface area to cage volume (SSA:CV) were 5.5, 11 and 16.5. Abalones wereprovided an excess red seaweed Gracilariopsis bailinae(= Gracilaria heteroclada) at weekly intervals overa 270-day culture period. Feeding rates (18–20% of wet weight), foodconversion ratio (26–27) and percent survival (88–92%) did notdiffer significantly among treatments (p > 0.05). Body size at harvest rangedfrom 56 to 59 mm SL and 52 to 57 g wet body weightwith significant differences between abalone reared at SSA 0.22m2 and 0.66 m2 (p < 0.05).Abalone reared in cages with 0.66 m2 SSA grewsignificantly faster at average daily growth rates of 132 m and188 mg day–1. Stocking densities of 75–113m–2 SSA in mesh cages suspended in flow-throughtanks resulted in better growth of abalone fed red seaweed.  相似文献   

3.
This research was conducted to investigate the effect of stocking density on the growth performance and yield of Oreochromis niloticus in cage culture in Lake Kuriftu. The treatments had stocking densities of 50 (50F), 100 (100F), 150 (150F), and 200 (200F) fish per m?3. All treatments were in duplicate. Juveniles with an average weight of 45. 76±0.25 g were stocked in the treatments. The fish were fed a composite mixture of mill sweeping, cotton seed, and Bora food complex at 2% of their body weight twice per day using feeding trays for 150 days in powdered form. The growth performance of O. niloticus was density dependent. The final mean weight of O. niloticus ranged 147.76±0.28–219.71±1.42 g and the mean daily weight gain was 0.69±0.01–1.15±0.02 g day?1. Fish held in cages with lower density were heavier than the ones held at higher densities, and showed higher weight gain and daily weight gain. The most effective stocking density, in terms of growth parameters, was 50 fish m?3. The gross yield (4.5–20.55 kg cage?1) showed a significant difference with increasing stocking density (P<0.05). Moreover, the apparent food conversion ratio (2.48–7.22) was significantly affected by stocking density (P<0.05). However, survival rate was not affected by stocking density (P>0.05). It can be concluded that the most effective stocking densities were at 50 fish m?3 cage for larger size fish demand in a short period and 200 fish m?3 for higher gross production with supplementary feed.  相似文献   

4.
ABSTRACT

Fish cage culture is an intensive, continuous-flow fish farming system, allowing intensive exploitation of water bodies with relatively low capital investment. This study aimed to determine the production function of Nile tilapia, Oreochromis niloticus, in cages; the profit-maximizing biomass at 300–400 and 500–600 fish per m3 for cages of different volumes; and the influence of water body conditions in fish performance. Feed intake, survival rate, and water temperature were monitored daily; dissolved oxygen, pH, and transparency of water were monitored each 15 days. Caged tilapia were fed daily on commercial, floating pellets (32% crude protein) at 0900, 1300, and 1700, and feeding rate was adjusted based on weight gain and survival rate. Data were analyzed statistically by ANOVA (P = 0.05) and regression analysis; the Mitscherlich function was chosen to represent the production function. Carrying capacity of both stocking densities reached 200 kg/m3 and no differences were found (P > 0.05) regarding accumulated biomass and individual average weight over time. The larger stocking density yielded larger accumulated biomass and had better feeding efficiency and no differences between individual average weights of fish at both densities were observed (P > 0.05). Profit-maximizing biomass at 500–600 fish/m3 was 145 kg/m3 and at 300–400 fish/m3 was 121 kg/m3. Cage farming of Nile tilapia at 500–600 fish/m3, individual average weight 283 g, presented many advantages: optimization of space and production time, better feed efficiency, higher fish production per unit volume of cages, and increased profitability.  相似文献   

5.
Effects of daily feeding frequency, water temperature, and stocking density on the growth of tiger puffer, Takifugu rubripes, fry were examined to develop effective techniques to produce tiger puffer in a closed recirculation system. Fish of 4, 14, and 180 g in initial body weight were fed commercial pellet diets once to five times a day to apparent satiation each by hand for 8 or 12 wk at 20 C. Daily feeding frequency did not affect the growth of 14‐ and 180‐g‐size fish. However, the daily feed consumption and weight gain of the 4‐g‐size fish fed three and five times daily were significantly higher than those of fish fed once daily (P < 0.05). Fish of 4 and 50 g in initial body weight were reared with the pellet diet at 15–30 C for 8 wk. The weight gain of fish increased with increasing water temperature up to 25 C and decreased drastically at 30 C for both sizes. Similar trends were observed for feed efficiency, although 4‐g fish had highest efficiency at 20 C. Effects of stocking density on growth were examined with fish of 8, 13, and 100 g in initial body weight. Fish were reared with the pellet diet for 8 or 16 wk at 20 C. Fish were placed in floating net cages in the culture tank, and the stocking density was determined based on the total weight of fish and volume of the net cage. Fish of 8 g in body weight grew up to 35–36 g during the 8‐wk rearing period independent of the stocking density of 8, 15, and 31 kg/m3 at the end of rearing. Final biomass per cage reached 32, 60, and 115 kg/m3 for 13‐g‐size fish, and 10, 18, and 35 kg/m3 for 100‐g‐size fish, and the growth of the fish tended to decrease with increasing stocking density for both sizes.  相似文献   

6.
The experimental rearing of T. nilotica in 1-m3 cages floating in Lake Kossou, Ivory Coast, was performed between March 1974 and April 1975. The fish were fed water-stable pellets (24.7% protein), the daily ration generally varying between 6 and 3.4% of the ichthyomass present. Fingerlings (9–55 g each) were stocked at densities of 200–400 fish/m3. They reached commercial size (more than 200 g) within 4–6 months, depending on the biomass present in the cage (stocking density and average individual weight of fish), as well as on limological conditions. The average annual mortality was 5.9%. Annual production varied from 36 to 64 kg/m3. The feed conversion rate averaged 2.8. A reduction of the daily ration for fish larger than 40 g reduced this value.Fingerlings should average at least 20–30 g in weight at initial stocking of the cage. Two crops a year can then be easily realized. If only male fish are reared, three harvests per year appear to be possible, increasing the annual cage production of fish close to 200 kg/m3 with proper management.The possible development of T. nilotica cage culture is actually hampered due to the lack of adequate fish feed available commercially, and to the lack of sufficient quantities of calibrated fingerlings throughout the year.  相似文献   

7.
This study evaluated the growth (first phase) and feeding responses (second phase) of juvenile mutton snapper fed four isonitrogenous and isoenergetic diets with increasing levels of soy protein concentrate (SPC) in substitution to fish meal (FM). The FM was replaced by SPC at 0% (basal diet, SPC000), 33% (SPC130), 57% (SPC214) and 77% (SPC300). After 95 days of rearing, fish fed SPC300 attained a significantly lower body weight (54.9 ± 13.2 g) compared with those fed diets SPC000, SPC130 and SPC214 (76.5 ± 14.0 g, 73.9 ± 13.8 g and 70.5 ± 14.0 g respectively). Fish yield increased significantly from 891 ± 36 g m?3 for fish fed SPC300 to an average of 1099 ± 111 g m?3 for other diets. A maximum fish body weight gain of 0.60 ± 0.05 g day?1 and a maximum specific growth rate of 1.47 ± 0.07% day?1 were achieved for SPC000. Behavioural assays conducted during 10 days revealed the loss in fish growth with diets containing higher levels of SPC was due to a decline in feed intake. Low feed intake driven by a poor feed palatability appeared to have been a major obstacle against higher inputs of SPC in diets for mutton snapper.  相似文献   

8.
Slow growth and losses to bird predation and infectious diseases in winter can compromise the profitability of silver perch farming. To evaluate over‐wintering silver perch (Bidyanus bidyanus) in a recirculating aquaculture system (RAS), fingerlings (38 g) were stocked in either cages in a pond at ambient temperatures (10–21 °C) or tanks in the RAS at elevated temperatures (19–25 °C) and cultured for 125 days. Mean survival (96%), final weight (146 g), specific growth rate (1.07% day?1) and production rate (28.1 kg m?3) of fish in the RAS were significantly higher than for fish over‐wintered in cages (77%, 73 g, 0.53% day?1, 11.1 kg m?3). Fish from both treatments were then reared in cages for a further 129 days. Final mean weight of fish originally over‐wintered in the RAS was 426 g, while fish over‐wintered in cages were only 273 g. To determine optimal stocking densities, fingerlings (11.8 g) were stocked at 500, 1000 or 1500 fish m?3 in tanks in the RAS and cultured for 124 days. Survival was not affected, but growth was significantly slower and feed conversion ratio higher at 1500 fish m?3 compared with 500 or 1000 fish m?3. Results demonstrate that over‐wintering silver perch in an RAS can produce large fingerlings for grow‐out in early spring. This strategy could eliminate bird predation, reduce losses to diseases and shorten the overall culture period.  相似文献   

9.
Abstract

Rainbow trout, Oncorhynchus mykiss, were raised in culture cages (1 m3) to determine the effect of stocking density on growth, survival, and percentage of market-size fish. Large fingerling rainbow trout (20-25 cm, 232 g average weight) were stocked into six cages located in a 0.4-ha pond. Two stocking densities (100 or 200 fish/cage) were used, and fish were grown for 140 days (2000-April 2001). Average total harvest weight (35.0 kg) in the low-density cages was approximately one-half the average total harvest weight (61.2 kg) in the high-density cages. Average weight gain (11.7 kg to 15.1 kg) and feed conversion (1.2 to 1.5) were also smaller for the low-density cages. Average survival was 96.7% for the low-density cages and 94.2% for the high-density cages, with the percentage of market-size fish (< 29 cm) averaging 50.3% and 52.0%, respectively. Production costs for the actual experiment and the revenues from fish sold at the end of the study were collected. An enterprise budget based on the experimental results for the two densities was developed to determine if a culture operation of this size would produce a net return. Production costs and revenues from the experiment resulted in a large negative return (-$3,124) and high breakeven price ($13.53/kg).  相似文献   

10.
Growout production of the camouflage grouper, Epinephelus polyphekadion (Bleeker), in a 10-m3-capacity fibreglass tank culture system was evaluated, using hatchery-produced fingerlings (56-59 g initial weight) at stocking densities of five, 15 and 45 fish m?3. During the first 9 months of a 12-month growout period, the fish were fed twice a day with a moist pellet feed containing 40.9% protein. From month 10 onwards until harvest, the fish were fed moist pellets in the morning and trash fish in the evening at a 1:1 ratio. The final weight of fish at harvest was up to 900 g, with mean weights of 544.6 ± 170.72 g at five fish m?3, 540.2 ± 150.82 g at 15 fish m-?3 and 513.3 ± 134.52 g at 45 fish m?3. The results showed no significant differences (P > 0.05) in growth rate and fish size between the different stocking densities tested. The average daily growth rate ranged from 0.62 to 3.38 g fish?1 day?1, with mean weights of 1.49 ± 0.74 g fish?1 day?1 at five fish m?3 through 0.53 to 2.38 g fish?1 day?1, 1.32 ± 0.57 g fish?1 day?1 at 15 fish m?3 to 0.48-3.32 g fish?1 day?1 and 1.31 g fish?1 day?1 at 45 fish m?3 stocking density. Although up to 100% survival was observed at the lowest stocking density, the survival rate significantly decreased (P < 0.05) with increasing stocking density. The food conversion ratio (FCR) significantly decreased (P <0.05) with increasing stocking densities, showing efficient feed utilization with increasing stocking densities of E. polyphekadion. The FCR averaged 2.1 at a stocking density of 45 fish m?3. The yield in terms of kg fish produced m?3 of water used in the culture system significantly increased (P < 0.001) from five to 45 fish m?3. The yield averaged 17.3 ±0.53 kg m?3 at a stocking density of 45 fish m?3. The present results show that the present tank culture system could sustain more biomass in terms of increasing fish stocking densities. The growth performance of E. polyphekadion observed during this investigation has been reviewed with other grouper species.  相似文献   

11.
The effects of pond fertilization and feeding rate on growth, economic returns and water quality were investigated to develop a low‐cost cage‐cum‐pond integrated system for production of Oreochromis niloticus (L.). Hand‐sexed male fingerlings averaging 19±0.39 and 32±0.69 g were stocked in cages and open ponds at 150 fish cage?1 and 2 fish m?2 respectively. Fish were cultured for 114 days in five triplicate treatments. Cages were installed into ponds and caged fish were fed a 24% protein diet at 3% (T1) and 6% (T2) body weight day?1 (BWD) without pond fertilization, and 6% BWD with pond fertilization (T3). The open water in the fourth treatment (T4) was not stocked but contained caged fish, which were fed 6% BWD for the first 57 days followed by 3% BWD for the remaining period. Ponds in the control (T5) had no cages and were neither fertilized nor open‐pond fish fed. Feeding rate and pond fertilization significantly (P<0.05) affected fish growth, profitability and water quality among treatments. Fish growth, feed utilization, fish yield, water quality and profits were significantly (P<0.05) better in T3 than the other treatments. It was concluded that fish production and economic returns were optimized at 6% BWD in fertilized ponds.  相似文献   

12.
Salmon production cages at sites with a pronounced thermal stratification give individual fish an opportunity to choose their thermal environment. The behavioural responses of individual salmon to such stratification, however, are poorly documented. Information about spatial distributions and temperature experience of individual Atlantic salmon (initial weight 1.5 kg) was gathered over a period of 4 months (mid-August to early-December) using data storage tags. Fish were stocked at normal or high densities in triplicate 2000 m3 production cages at 5.6–14.5 (ND) or 15.7–32.1 (HD) kg m− 3, and valid data were collected for 12 ND and 11 HD salmon. There were large inter- and intra-individual variations in swimming depth, with indications that the salmon performed behavioural thermoregulation in an attempt to maintain body temperature within the range of 8–20 °C. Stocking density influenced the average swimming depth and body temperature, indicating competition for preferred thermal space in periods of unfavourably high temperature (towards 20 °C) in large parts of the cage volume. Analysis of temporal behavioural patterns demonstrated a higher variability during day than night and that 60 to 70% of the individuals displayed cyclic diel patterns in either swimming depth or body temperature in at least one out of three sub-periods. The results are discussed in relation to bio-energetic and thermal stress theory and possible consequences for growth variation in salmon cages. Generally, this study suggests that individual swimming depth and body temperature is in part a response to available temperature interacting with stocking density and time of day, while some individual variation cannot be ascribed to the measured variables.  相似文献   

13.
An experiment was conducted to compare growth and timing to metamorphosis of bullfrog Rana catesbeiana (Shaw) tadpoles feeding on phytoplankton and on supplementary feed. Three interconnected, round, 4 m diameter concrete tanks were used in the experiment. Tanks 1 and 2 were stocked with juvenile tilapia, Oreochromis niloticus (L.) to stimulate phytoplankton through faecal fertilization. A third tank remained without fish. Stage 25-Gosner bullfrog tadpoles were placed in 0.042 m3 cages at 1 I?1. Experimental treatments consisted of: (1) tadpoles feeding solely on phytoplankton (P); (2) P + 13% body weight day?1 (bw day1) supplementary feeding (SF); (3) P + 9.75% bw day?1 SF; (4) P + 6.5% bw day?1 SF; (5) P + 3.25% bw day?1 SF; and (6) tadpoles feeding solely on supplementary feed at 13% bw day?1. Final weight was lowest in those organisms feeding exclusively on supplementary feed, followed by those feeding on phytoplankton. Treatments 2 and 3 showed the highest weight (3.65 and 3.64 g, respectively). After 70 days, 50% of the tadpoles in treatment 4 (6.5% bw day?1) reached metamorphic climax, followed by treatment 5 (33%). Only 8% of tadpoles feeding exclusively on live food reached metamorphosis. It is concluded that in the presence of abundant phytoplankton, it is possible to reduce up to 50% of the standard supplementary feeding rate and still have normal growth and metamorphosis. Tilapia represents a good alternative for biofertilization.  相似文献   

14.
This study evaluated the effect of the density at harvest on the performance and profitability of hatchery‐reared spotted rose snapper cultured in cages. The fish were stocked at harvest densities of 15, 20, and 22 kg/m3 in cages of 222 and 286 m3. More than 39,000 snapper fingerlings with an initial weight of 14 g were stocked. The fish were fed an extruded diet and cultured over a 360 d period. The thermal growth coefficient ranged from 0.04 to 0.05 and survival was 95% for all treatments, with the highest final weight (436.8 g) observed for fish reared at a density of 20 kg/m3. The allometric value b indicated that hatchery‐raised, cage‐cultured snapper were heavier than their wild counterparts. The major costs were feed (ranging from 44.7–45.9%), labor (22.4–32.6%), and seed costs (20.2–26.1%). The total production cost ranged from US$ 6.5 to US$ 7.5/kg. The baseline scenario was not economically feasible. However, a 10% increase in the sales price resulted in increases in the internal rate of return (183%) and net present value (US$ 97,628.9). These results suggest that L. guttatus has the potential for commercial production in cages.  相似文献   

15.
A supplementary feed containing 30% coffee pulp was evaluated for use in the culture of Tilapia aurea in El Salvador, Central America. A comparison of the coffee pulp feed with a feed containing all of the same ingredients except coffee pulp was made with T. aurea raised in 1.0-m3 cages suspended in a fertilized earthen pond. Survival was high in all treatments and there was no significant difference in average weight gain between groups of fish receiving the two experimental feeds. Production trials were conducted in 100-m2 fish pens and in 0.05-ha earthen ponds. Pen-raised fish receiving coffee pulp feed grew faster throughout the experiment, and total production was approximately twice that in control treatments. Highest production in pens was 1.25 kg/m2 per year. Results of production pond trials using T. aurea at 9 000/ha and stocked with the piscivorous Cichlasoma managuense yielded an estimated 3 392 kg/ha per year in fed treatments and 2 049 kg/ha per year in controls. Low feed conversion (1.92) and low feed cost resulted in an increase in net annual earnings of $251.00/ha.  相似文献   

16.
Labeo rohita (139.92 ± 0.76 mm/24.33 ± 0.45 g) was reared for 92 days in floating square cages (10 m2 area, 1.5 m height) in a pond (2 ha) at six stocking densities (5, 7.5, 10, 15, 20 and 25 fish m?2) each with 3 replicates. Fish were fed daily once in the morning with rice polish and groundnut oil cake (1:1) in dough form at 3 % of the total body weight. Survival ranged from 96 to 100 % in different stocking densities. Final average body weight, average body weight gain, mean daily body weight gain and SGR decreased (P < 0.05) with increasing stocking density. Conversely, final biomass, biomass gain and FCR increased (P < 0.05) with increasing stocking density. The highest growth rate of fish could be achieved up to 60 days at 5 fish m?2 and 92 days at other densities. The reduced growth rate at 10–25 fish m?2 for 60 days of culture indicated that stress is related to size and density of the fish, suggesting that utmost care is required to reduce the stress at high densities. Maximum production and profit was observed at the highest stocking density. Non-lethal levels of water and soil qualities at different sites (cage premises, and 20 and 200 m away from cage area) suggested that cage aquaculture could be done safely covering 0.9 % of pond area. Production of advanced fingerlings in cages was found a viable alternative to their culture in pond.  相似文献   

17.
Abstract.— The aquaculture performance of mutton snapper Lutjanus analis raised in floating net cages was assessed by measuring their growth, survival, and feed conversion rates during a growout trial conducted in a 3.2‐ha saltwater lake in the Florida Keys, Florida, USA. Approximately 10,500 hatchery‐reared finger‐lings were stocked in two circular, high‐density polyethylene (HDPE) net cages of 7‐m diameter × 7‐m deep (300 m2) and 10‐m diameter × 7‐m deep (600 m3) dimensions. Cages were stocked at 25 fish/m3 (3.2 kg/m3) and 5 fish/m3 (0.72 kg/m3), respectively. Fish grew from a mean of 16.5 g to 302.8 g (25.6 cm TL) in 246 days in the former cage and from a mean of 42.3 g to 245.6 g (23.8 cm TL) in 178 d in the latter cage. Growth rates in weight were best expressed by the following exponential equations: cage 1 (high stocking density): W = 20.716 e0.0112x (r2= 0.83); cage 2 (low stocking density): W = 38.848 e0.0118x (r2= 0.81). Length‐weight data indicate that hatcheryraised, cage‐cultured mutton snapper are heavier per unit length than their wild counterparts. There was no significant difference (P < 0.05) between the slopes of the two lines, indicating that fish in the two cages grew at the same rate. The length‐weight relationships for mutton snapper stocked in cages 1 and 2 are expressed, respectively, by the equations W = 0.000009 L 3.11 (r2= 0.99) and W = 0.000005 L 3.22 (r2= 0.97). Overall feed conversion rate for both cages combined was 1.4. Approximately 10% of the fish sampled exhibited some degree of deformity, particularly scoliosis. Overall survival rate was 70%. Results suggest that L. analis has potential for aquaculture development in net cage systems.  相似文献   

18.
Juvenile Cherax destructor (commonly called theyabby) were cultured in earthen-based ponds and tanks for 70–105d, and were fed pellets and/or a forage crop of the perennialwhiteclover, Trifolium repens. Three supplementary feedingstrategies were evaluated. Yabby growth on pellets consistently exceeded (by67–159%) that obtained on clover. Base-line yields for extensiveproduction systems are around 400 kg ha–1. Thesupplementary addition of T. repens produced yields of 635kg ha–1 (in ponds) to 1086 kgha–1 (in tanks). The sequential addition of cut-cloverto tanks stimulated growth to levels approaching those achieved on pellets.Yabbies stocked into ponds at 17 m–2 and fed 33%protein pellets for 100 d, resulted in a yield of 1117 kgha–1.Pellet inputs at a rate of 129–249 g m–2(dry matter) and 38–83 g m–2 (protein) over70–100 d resulted in acceptable growth and feed utilisationindices. Clover inputs of 534–682 g m–2 (asdry matter) or 84–177 g m–2 (as protein)produced reasonable growth rates but poor feed utilisation indices. Aconsiderable quantity of the dry matter and protein content of clover waseitherinefficiently utilised or directed into other production pathways. In tanks,clover inputs from 113–296 g m–2 (drymatter) and 24–54 g m–2 (protein) weresufficient to maintain high growth rates for 4 weeks, while in ponds, inputs of21 g m–2 (dry matter) and 4.3 gm–2 (protein) were sufficient for 3 weeks. During theearly weeks of production no growth advantage was gained by providing pelletstoanimals cultured in forage-based systems. Forage depletion occurred after3–4 weeks and was probably a major growth limiting factor.  相似文献   

19.
To calculate the potential for cage aquaculture to create economic opportunities for small-scale investors on the Volta Lake, Ghana, a local NGO with technical support from the Government of Ghana ran two trials (one of four and one of six units) of small-scale cage aquaculture in the town of Dzemeni. Cages were built locally from available materials at a cost of approximately US$1000 per 48 m3 cage. An indigenous line of Nile tilapia, Oreochromis niloticus, was stocked either as mixed sex (first trial) or all-males (second trial) at an average rate of 103 fish/m3 and grown on locally available pelleted feeds for approximately six months. Total costs averaged US$2038 per six-month production cycle. Gross yield ranged from 232 to 1176 kg/cage, averaging 460 kg/cage (9.6 kg/m3). Final average weight of mixed sex populations (253.05 ± 47.43g) was significantly less than of all-males (376.7 ± 72.30g). Likewise, percentage of fish over 300 g at harvest was significantly lower in mixed-sex (38.3%) compared to all-male (75.7%) populations. Mortality resulting primarily from poor handling during transport and stocking averaged 70% and was a major determinate of production and profitability. To break even, harvested biomass of fish needed to exceed 15 kg/m3. At 25 kg/m3, small-scale cage aquaculture generated a net income of US$717 per cage per six months (ROI = 30.2%) on revenues of US$3,500. Water quality in the area surrounding the cages was not negatively affected by aquaculture at the scale tested (5 tons of feed per six months).  相似文献   

20.
A field study was carried out to assess the use of the bottom‐feeding grey mullet (Mugil cephalus) within benthic enclosures as a means to reduce the benthic impacts of a net cage fish farm in the Gulf of Aqaba, Red Sea. Five experimental 1‐m3 net‐cage enclosures were stocked with 12 grey mullets each (fish weights 50, 70 or 144 g). The enclosures had no bottom and the mullets had access to the enclosed organically enriched sediments and to particulate matter (PM) falling from the overlying cages. Sediment traps were used to quantify and qualify the PM falling from the fish farm to the sea floor. Simultaneously, a feeding trial was performed with mullets (50 and 70 g) in experimental tanks. In order to estimate the potential growth rate and to quantify energy and protein requirements, the fish were fed a formulated diet with known composition. After approximately 70 days at sea, mullets in the enclosures had used up all the available food in the sediment and gained up to 0.78 g day?1 fish?1. Applying the values for energy and protein requirements for maintenance and growth derived from the experimental trial, estimates indicated that the grey mullets effectively removed 4.2 g organic carbon, 0.70 g nitrogen and 7.5 mg phosphorus kg?1 mullet m?2 day?1 from the organically enriched sediment. Thus deployment of grey mullets may be an efficient means to improve the quality of sediments below intensive net‐cage fish farms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号