首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the last decade a new pattern of Hg pollution has been discerned, mostly in Scandinavia and North America. Fish from low productive lakes, even in remote areas, have been found to have a high Hg content. This pollution problem cannot be connected to single Hg discharges but is due to more widespread air pollution and long-range transport of pollutants. A large number of waters are affected and the problem is of a regional character. The national limits for Hg in fish are exceeded in a large number of lakes. In Sweden alone, it has been estimated that the total number of lakes exceeding the blacklisting limit of 1 mg Hg kg-1 in 1-kg pike is about 10 000. The content of Hg in fish has markedly increased in a large part of Sweden, exceeding the estimate background level by about a factor of 2 to 6. Only in the northernmost part of the country is the content in fish close to natural values. There is, however, a large variation of Hg content in fish within the same region, which is basically due to natural conditions such as the geological and hydrological properties of the drainage area. Higher concentrations in fish are mostly found in smaller lakes and in waters with a higher content of humic matter. Since only a small percentage of the total flow of Hg through a lake basin is transferred into the biological system, the bioavailability and the accumulation pattern of Hg in the food web is of importance for the Hg concentrations in top predators like pike. Especially, the transfer of Hg to low trophic levels seems to be a very important factor in determining the concentration in the food web. The fluxes of biomass through the fish community appear to be dominated by fluxes in the pelagic food web. The Hg in the lake water is therefore probably more important as a secondary source of Hg in pike than is the sediment via the benthic food chain. Different remedy actions to reduce Hg in fish have been tested. Improvements have been obtained by measures designed to reduce the transport of Hg to the lakes from the catchment area, eg. wetland liming and drainage area liming, to reduce the Hg flow via the pelagic nutrient chains, eg. intensive fishing, and to reduce the biologically available proportion of the total lake dose of Hg, eg. lake liming with different types of lime and additions of selenium. The length of time necessary before the remedy gives result is a central question, due to the long half-time of Hg in pike. In general it has been possible to reduce the Hg content in perch by 20 to 30% two years after treatments like lake liming, wetland liming, drainage area liming and intensive fishing. Selenium treatment is also effective, but before this method can be recommended, dosing problems and questions concerning the effects of selenium on other species must be evaluated. Regardless how essential these kind of remedial measures may be in a short-term perspective, the only satisfactory long-term alternative is to minimize the Hg contamination in air, soil and water. Internationally, the major sources of Hg emissions to the atmosphere are chlor-alkali factories, waste incineration plants, coal and peat combustion units and metal smelter industries. In the combustion processes without flue gas cleaning systems, probably about 20 to 60% of the Hg is emitted in divalent forms. In Sweden, large amounts of Hg were emitted to the atmosphere during the 50s and 60s, mainly from chlor-alkali plants and from metal production. In those years, the discharges from point sources were about 20 to 30 t yr 1. Since the end of the 60s, the emission of Hg has been reduced dramatically due to better emission control legislation, improved technology, and reduction of polluting industrial production. At present, the annual emissions of Hg to air are about 3.5 t from point sources in Sweden. In air, more than 95% of Hg is present as the elemental Hg form, HgO0. The remaining non-elemental (oxidized) form is partly associated to particles with a high wash-out ratio, and therefore more easily deposited to soils and surface waters by precipitation. The total Hg concentration in air is normally in the range 1 to 4 ng m-3. In oceanic regions in the southern hemisphere, the concentration is generally about 1 ng m?3, while the corresponding figure for the northern hemisphere is about 2 ng m-3. In remote continental regions, the concentrations are mainly about 2 to 4 ng m?3. In precipitation, Hg concentrations are generally found in the range 1 to 100 ng L?1. In the Nordic countries, yearly mean values in rural areas are about 20 to 40 ng L?1 in the southern and central parts, and about 10 ng L?1 in the northern part. Accordingly, wet deposition is about 20 (10 to 35) g km?2 yr?1 in southern Scandinavia and 5 (2 to 7) in the northern part. Calculations of Hg deposition based on forest moss mapping techniques give similar values. The general pattern of atmospheric deposition of Hg with decreasing values from the southwest part of the country towards the north, strongly suggests that the deposition over Sweden is dominated by sources in other European countries. This conclusion is supported by analyses of air parcel back trajectories and findings of significant covariations between Hg and other long range transported pollutants in the precipitation. Apart from the long range transport of anthropogenic Hg, the deposition over Sweden may also be affected by an oxidation of elemental Hg in the atmosphere. Atmospheric Hg deposited on podzolic soils, the most common type of forest soil in Sweden, is effectively bound in the humus-rich upper parts of the forest soil. In the Tiveden area in southern Sweden, about 75 to 80% of the yearly deposition is retained in the humus layer, chemically bound to S or Se atoms in the humic structure. The amount of Hg found in the B horizon of the soils is probably only slightly influenced by anthropogenic emissions. In the deeper layers of the soil, hardly any accumulation of Hg takes place. The dominating horizontal flow in the soils takes place in the uppermost soil layers (0 to 20 cm) during periods of high precipitation and high groun water level in the soils. The yearly transport of Hg within the soils has been calculated to be about 5 to 6 g km?2. The specific transport of total Hg from the soil system to running waters and lakes in Sweden is about 1 to 6 g km?2 yr1. The transport of Hg is closely related to the transport of humic matter in the water. The main factors influencing the Hg content and the transport of Hg in run-off waters from soils are therefore the Hg content in soils, the transport of humic matter from the soils and the humus content of the water. Other factors, for example acidification of soils and waters, are of secondary importance. Large peatlands and major lake basins in the catchment area reduce the out-transport of Hg from such areas. About 25 to 75% of the total load of Hg of lakes in southern and central Sweden originates from run-off from the catchment area. In lakes where the total load is high, the transport from run-off is the dominating pathway. The total Hg concentrations in soil solution are usually in the range 1 to 50, in ground water 0.5 to 15 and in run-off and lake water 2 to 12 ng L?1, respectively. The variation is largely due to differences in the humus content of the waters. In deep ground water with a low content of humic substances, the Hg concentration is usually below 1 ng L?1. The present amount and concentrations of Hg in the mor layer of forest soils are affected by the total anthropogenic emissions of Hg to the atmosphere, mainly during this century. Especially in the southern part of Sweden and in the central part along the Bothnian coast, the concentrations in the mor layer are markedly high. In southern areas the anthropogenic part of the total Hg content is about 70 to 90%. Here, the increased content in these soils is mainly caused by long-range transport and emissions from other European countries, while high level areas in the central parts are markedly affected by local historical emissions, mainly from the chlor-alkali industry. When comparing the input/output fluxes to watersheds it is evident that the present atmospheric deposition is much higher than the output via run-off waters, on average about 3 to 10 times higher, with the highest ration in the southern parts of Sweden. Obviously, Hg is accumulating in forest soils in Sweden at the present atmospheric deposition rate and, accordingly, the concentrations in forest soils are still increasing despite the fact that the emissions of Hg have drastically been reduced in Sweden during the last decades. The increased content of Hg in forest soils may have an effect on the organisms and the biological processes in the soils. Hg is by far the most toxic metal to microorganisms. In some regions in Sweden, the content of Hg in soils is already today at a level that has been proposed as a critical concentration. To obtain a general decrease in the Hg content in fish and in forest soils, the atmospheric deposition of Hg has to be reduced. The critical atmospheric load of Hg can be defined as the load where the input to the forest soils is less than the output and, consequently, where the Hg content in the top soil layers and the transport of Hg to the surface waters start to decrease. A reduction by about 80% of the present atmospheric wet deposition has to be obtained to reach the critical load for Scandinavia.  相似文献   

2.
贵州万山汞矿区某农田土壤重金属污染特征及来源解析   总被引:12,自引:0,他引:12  
研究采集万山汞矿区典型农田土壤样品,分析测试其Hg、As、Cd、Cr、Pb、Cu、Zn、Ni含量,利用综合污染指数法、地累积指数法和潜在生态危害指数法评估农田土壤的污染状况及生态风险,结合相关分析和主成分分析解析农田土壤中重金属的来源。结果表明,该农田土壤Hg、As、Cd、Cr、Pb、Cu、Zn、Ni的平均含量分别为4.29、117.6、0.43、59.06、48.99、43.77、29.13、18.80 mg kg~(-1)。土壤重金属综合污染指数为7.16,表明该农田土壤重金属重度污染,其中100%的位点Hg、As重度污染,66.7%的位点Pb轻度污染,25%的位点Cd轻度污染。土壤重金属的综合潜在生态危害指数为469.0,生态风险强,Hg对综合潜在生态危害指数的贡献率为78.30%,是该农田土壤生态风险的主要来源。该农田中重金属的来源包括:交通运输源、矿业污染源、农业污染源和自然活动源,主要污染物Hg来源于矿业活动,As来源于交通运输和矿业活动,Cd来源于农业活动,Pb来源于交通运输。  相似文献   

3.
长期污灌农田土壤重金属污染及潜在环境风险评价   总被引:1,自引:0,他引:1  
以西安市某典型污灌区农田土壤为研究对象,分析长期污水灌溉对表层土壤重金属含量及富集状况的影响,采用内梅罗指数法和Hakanson潜在生态危害指数法对其污染现状及潜在环境风险进行评价。结果表明:长期污灌已导致农田土壤Cd、Cr、Cu、Hg、Ni、Pb和Zn7种重金属相对自然背景有不同程度累积,其富集比例依次为100%、82.69%、100%、100%、80.77%、98.08%和100%,仅有土壤As平均含量低于其背景水平;以国家土壤环境质量标准二级限量值作为污染评价阈值,其中Cd和Hg污染表现突出,按其污染指数平均值排序为Cd〉Hg〉Ni〉Cu〉Zn〉As〉Cr〉Pb;土壤重金属综合潜在环境风险为"强"等级,Hg、Cd的环境影响占据主导;随污灌年限增长,离灌渠越近,农田土壤重金属的污染水平和环境风险越高。鉴于该区土壤重金属已呈现较强生态危害性,应及时采取必要防治措施,调整土地利用结构,确保农田环境及农产品安全生产。  相似文献   

4.
水田重金属污染对粮食生产和人体健康造成严重危害,喀斯特矿区周边土壤受到地质和工矿活动的双重污染,而备受关注.为探讨贵阳市开阳县喀斯特矿区水田土壤重金属污染来源,应用绝对主成分得分-多元线性回归(Absolute Principal Component Score-Multiple Linear Regression,A...  相似文献   

5.
三峡库区消落区表层土壤重金属污染评价及源解析   总被引:10,自引:0,他引:10  
三峡库区是我国重要的水源地, 研究库区水陆交错带消落区内土壤重金属污染程度并解析其来源,对水库的水环境和土壤环境具有重要意义。本研究采用地质累积指数, 对三峡库区消落区175 m 水位蓄水前12 个采样区表层68 个土样的土壤重金属Cu、Pb、Zn、Cd、Hg、As 和Cr 污染进行评价, 结果表明: 整个研究区不受Cr 污染, 研究区70%以上面积不受Pb、Cu 和Zn 污染; 研究区As 污染最严重, 其次为Cd 和Hg。利用因子分析法对这7 种重金属来源进行解析的结果表明, 库区消落区土壤重金属源可分为2 大类别:“自然因子”类别元素(Cr、Pb、Cu 和Zn)和“工业污染因子”类别元素(Hg、As 和Cd)。消落区表层土壤重金属污染评价及源解析可为消落区生态环境的综合治理提供参考。  相似文献   

6.
广东红壤微量元素含量及分布特征   总被引:6,自引:0,他引:6  
2004年对广东部分红壤9种微量元素含量调查结果表明,9种微量元素平均含量为B 41.38 mg kg-1,Mo21.71 mg kg-1,Cu 77.37 mg kg-1,Pb 33.94 mg kg-1,Zn 265.52 mg kg-1,As 19.018 mg kg-1,Hg 0.056 mg kg-1,Cr 248.95mg kg-1,Cd 0.324 mg kg-1。同族微量元素相比,原子量小的元素的含量大于原子量大的元素的含量。母岩、成土风化作用影响这些微量元素在土壤中的含量。  相似文献   

7.
典型城市城郊土壤重金属含量对比研究   总被引:4,自引:0,他引:4  
选取成都经济区内成都、德阳、蒲江彭山3类典型城市作为研究对象,对其城郊土壤中Cd,Hg,As,Zn,Cr,Cu,Pb 7种重金属元素含量作了对比研究.与国家土壤二级质量标准比较,成都、德阳、彭山蒲江Cd含量均超标,超标率分别为11.67%,70.67%,39.00%,彭山蒲江Cr含量超标,超标率为20.25%,其它元素含量均未超标.比较3类不同城市城郊土壤重金属含量.成都城郊Hg,As,Zn,Pb含量最高,Cd,Cr含量相对最低;德阳Cd,Cu最高;蒲江和彭山Cr相对最高,Hg,As,Zn,Cu,Pb含量则相对最低.与国内其他城市比较,成都、德阳城郊土壤Hg含量,彭山蒲江、德阳Cr含量在全国处于较高水平;成都的As,Cd含量,德阳的Cd,Zn含量,蒲江彭山的Hg,As,Zn,Pb含量处于全国较低水平.  相似文献   

8.
工业区周边农田重金属污染评价及来源分析   总被引:4,自引:0,他引:4  
以新疆北疆某工业区周边农田土壤为研究对象,采集0~20 cm土壤样品254个,测定了Cr、Ni、Cu、Zn、As、Hg、Pb、Cd共8种重金属含量。运用相关性分析和主成分分析探讨工业区周边农田土壤重金属的来源,运用GS+进行数据拟合,选取最佳模型,再进行克里格插值分析重金属的空间分布格局。结果表明,Cr、Ni、Cu、Zn、As、Hg、Pb和Cd的含量分别为45.00、28.53、55.66、73.57、13.39、2.17、15.38和0.50 mg kg~(-1)。测量的金属除Cr之外均超过土壤的背景值,只有Hg处于中度污染,其余元素都处于非污染,而研究区综合潜在生态风险程度为严重型。重金属空间分布表明,Ni、Zn、As、Hg和Pb在东部和南部含量较高。来源分析表明,Hg来源受研究区内工业活动的影响;Cr、Ni、Zn和Cd主要来自于化肥、农药和地膜等农业活动和土壤母质的共同作用;As、Hg和Pb主要来源是受研究区内工业活动的影响。  相似文献   

9.
太原市污灌区土壤重金属污染现状评价   总被引:1,自引:0,他引:1  
对太原市污灌区土壤重金属分布特征进行了分析评价,结果表明重金属Pb、Zn、Cu、Ni、Mn、Cr、As、Hg、Cd含量均值均未超过土壤环境质量标准(GB15618—1995),但其平均值均显著高于太原市土壤背景值。各重金属间的相关分析表明,Pb、Zn、Cu、Ni、Mn、Cr、As、Cd之间呈极显著相关,说明这8种元素污染源可能相同。Hg是本区表层土壤重金属污染的主要因子,重金属元素的污染程度依次为Hg〉Cd〉Pb〉As〉Cu〉Zn〉Cr〉Mn〉Ni。土壤重金属单项污染指数均值均大于1,综合污染指数为2.81,总体上,污染水平为中度及其以上。各种重金属单因子污染指数和综合指数在研究区有相似的空间分布格局,总体分布趋势为东南部小店地区和中南部晋源区相对较高,南部清徐县相对较小;通过因子分析并结合污灌区污染源调查,表明Hg除受污水灌溉的影响外,燃煤释放的Hg可能是重要来源之一,Cd、Zn、Pb和Cu可能来自污水灌溉和大气沉降,以污水灌溉的贡献为主,Ni、Mn、As、Cr来自污水灌溉。Hg、Cd是太原市污灌区土壤中需要优先控制的重金属。  相似文献   

10.
A multiple chemical tracer approach was used in an effort to account for the atmospheric Hg deposition measured throughout Florida as part of the Florida Atmospheric Mercury (FAMS) Study. Samples of bulk deposition and wet-only deposition were analyzed for a suite of major ions and trace elements in addition to Hg. Significant correlations were found between three groups of elements: Al, Mn, and Fe; Ni, Cu, Zn, and Cd; and As, V, and Pb. However, Hg did not correlate strongly with any of the other chemical tracers. Annual bulk deposition fluxes are attributed to sea-salt aerosols (Na, Cl), the delivery of Saharan dust (Al and Fe), the supply of anthropogenic pollutant aerosols (V, Ni, Cu, Zn, As, Cd, Pb), acidic aerosols (nitrate and nss-sulfate), and an unidentified source for Hg.  相似文献   

11.
Long-term integrated catchment monitoring within the Swedish Environmental Monitoring Programme (PMK) aims primarely at the fate and effects of pollutants in mature ecosystems, mainly protected boreal forests. The measurements that were conducted since the early eighties, with some variation, included deposition, throughfall, litterfall and the chemistry of soil water, groundwater and runoff water.Together with, or perhaps partly due to acidification, accumulation and transport of heavy metals are a serious threat to the ecosystem and in the end to the health of human beings. This paper discuss the behaviour of Hg, Pb, Cd, Zn and Cu based on the experiece gained from the studies in the small catchment areas. The importance of present deposition, soil storage and biogeochemical condition for metal mobility to the transport of metals is discussed The storages of Hg and Pb have been built up during a long time span and are very large in comparison with the flux. The present atmospheric deposition have probably little impact on the flux, which rather is governed by the biogeochemical conditions. There is still a small accumulation of Cd, but its great mobility under acidic conditions makes input and output almost in balance. A reduction in deposition will probably have an immediate effect on flux, which also is the case for Zn. Cu generally accumulates in soil. The mobility and hence the flux are certainly regulated by the biogeochemical conditions, but more detailed studies are required to reveal the general mecanisms for Cu transport within the catchment.  相似文献   

12.
黄骅市土壤重金属空间变异特征及污染评价   总被引:3,自引:0,他引:3  
为研究工业和经济高速发展对环渤海滨海生态脆弱区土壤质量的影响,以黄骅市为研究区,利用地统计学方法对黄骅市表层土壤中的Pb,Hg,Cd,Cr,As,Cu,Zn,Ni共8种重金属空间分布特点和污染状况进行了分析。结果表明:(1)Pb,Cd,Cu元素样点平均含量超过河北省土壤背景值,其他元素含量平均值均未超过,所有元素含量平均值都在国家土壤质量二级标准的范围内。(2)根据变异函数拟合发现,Pb,Hg,Cd,Cr,As,Cu共6种元素拟合于指数模型,Zn,Ni两种元素拟合于球状模型;Pb,Cd,Zn基底效应值为25%~75%,空间自相关程度一般,其空间分布格局受到一定外界干扰。其他元素基底效应值均在25%以下,空间自相关性比较强,空间分布格局受外部影响相对较小。(3)根据克里格内插预测发现,Pb,Cd,Cu整体含量高,区域离散分布;Cr,Zn,Ni整体含量低,连续集中分布;As元素成岛状分布,分布集中于几个区域;Hg成散点状分布于黄骅全县。(4)通过计算内梅罗污染指数可知,黄骅市土壤内梅罗污染指数大部分处于1.0~2.0,属于轻度污染状态;吕桥镇中部和齐家务乡西部污染指数最高,属于污染最严重的地区。工业生产和地质环境是影响土壤重金属元素空间分布的主要原因。  相似文献   

13.
选择江苏南部冶炼厂周边污染的水稻田,采集耕层0~15cm的土壤,分析土壤中重金属Cd、Pb、Hg、As、Zn、Cu的污染程度及其空间变异特征。结果表明,土壤Cd、Pb、Cu、Zn、Hg的全量随着距污染源距离的增加而减少,呈现由东北向西南扩散的趋势,As则是由西北向东南扩散。6种重金属中Cd、Hg的污染范围相对较大,Zn的污染范围最小。DTPA浸提的6种重金属有效态含量都是距污染源距离越远而越少。采用内梅罗综合污染指数法对土壤中的重金属进行风险评价,土壤重金属的综合污染指数为39.27,污染程度已超过5级,为重度污染,其中Cd、Hg污染最为严重,含量范围分别为3.98~44.58mg·kg-1、0.36~2.01mg·kg-1,As为中度污染,Pb、Cu、Zn则为轻度污染,说明研究区域农产品安全生产存在很大的风险。  相似文献   

14.
Comparison between total- and aqua regia extractable contents of elements in natural soils and sediments Total- and aqua regia extractable contents of 19 elements from 28 soil samples with widely varying composition of the ISE ring analytical program (INTERNATIONAL SOIL-ANALYTICAL EXCHANGE) of the year 1995 to 1997 have been taken to find out the comparability between the two fractions. The relations between the two fractions and pH, organic matter and clay content were considered by means of single and multiple regressions. The correlations between the total and aqua regia extractable contents of As, Ca, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, P, Pb and Zn are very close, whereas Al, Ba, K, Na and Sr are not or only weakly correlating. The multiple regressions show that the content of some aqua regia extractable elements and the proportion (in %) of the total contents is correlated with pH, organic matter and/or content of clay. In the same way the proportion of aqua regia extractable elements is closely related (except Fe and Hg) to the soil pH. Hereby the proportion of the aqua regia extractable content increases with increasing pH in the range 3,5—7,7. The determined equations are tested for As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn by using the values of certified reference material. The estimated aqua regia extractable contents are being compared with values of reference material. The average proportion of the calculated to the measured aqua regia contents of an element in percent are 99 for Zn, 98 for Co, Cu and Mn, 94 for Cd, 90 for Ni, 88 for Cr, 105 for Hg, 113 for As and 114 for Pb.  相似文献   

15.
探明特色农产品产地土壤重金属污染特征及其污染来源可促进特色农作物产业的健康有序发展,对于助力乡村振兴和发展乡村特色产业具有重要意义。该研究以苦水玫瑰产地土壤为研究对象,应用内梅罗综合污染指数法、污染负荷指数法和改进物元可拓模型来量化土壤重金属As、Cd、Cr、Cu、Hg、Ni、Pb和Zn的污染水平并进行对比分析,还利用正定因子矩阵模型(positive matrix factorization, PMF)进行土壤重金属溯源解析。结果表明:1)研究区土壤除Hg和Cr的均值低于兰州市和甘肃省土壤背景值之外,其余As、Cd、Cu、Ni、Pb和Zn的均值都高于二者的背景值,但所有元素的测定值均低于《土壤环境质量农用地土壤污染风险管控标准(试行)(GB 15 618-2018)》(pH值大于7.5)的筛选值。2)内梅罗综合污染指数和污染负荷指数分别处于0.71~2.02和0.64~1.48之间,均值为1.41和1.17,土壤总体上为轻度污染。改进物元可拓模型评价结果显示研究区土壤总体上处于尚清洁状态,与内梅罗综合污染指数与污染负荷指数评价结果基本一致,但改进物元可拓模型的评价结果更具有实际指导意...  相似文献   

16.
金乡县大蒜产区土壤重金属特征及潜在生态风险评价   总被引:1,自引:1,他引:0  
应用地积累指数、潜在生态风险指数、健康风险指数法和因子分析法对金乡县典型大蒜产区土壤重金属(As、Cd、Cr、Cu、Hg、Ni、Pb和Zn)特征、污染源头及其潜在生态风险进行了评价分析。结果表明:该县大蒜产区土壤重金属As、Cd、Cr、Cu、Hg、Ni、Pb和Zn的平均含量分别为16.27、0.18、63.05、32.79、0.15、32.05、20.71和80.47 mg kg?1,未超过《食用农产品产地环境质量评价标准》(HJ 332—2006)规定的上限值,即多数点位土壤重金属含量处于清洁水平。土壤重金属潜在生态风险低,且没有显著的人体健康风险。土壤中的Cd、Cr、Cu、Pb和Zn可能主要来自施肥、施药和灌溉等农业生产活动,As和Hg可能来自当地煤炭生产等工业活动产生的大气沉降。总体而言,从重金属含量角度评价,该地区土壤质量处于清洁水平,建议今后继续加强大蒜产地投入品的监管和当地煤炭生产及相关工业活动的脱尘处理,以保障大蒜产区土壤具有绿色可持续的生产能力。  相似文献   

17.
为了探讨在重金属胁迫下,不同用量(0,1%,2%,4%)生物炭对土壤pH、有机碳、全氮、全磷以及重金属形态的影响,以铜矿区排土场污染土壤为研究对象,开展室内盆钵试验。结果表明:与对照K相比,在不同剂量生物炭处理下,土壤pH、有机碳、全N和全P增幅分别为3.5%~23.0%,5.6%~13.2%,2.9%~6.8%和3.4%~9.5%,酸溶态Cd, Pb, Cu和Zn含量降幅分别为65.5%~71.2%,49.9%~71.5%,34.6%~50.6%和45.3%~52.1%,可还原态Cd, Pb, Cu和Zn含量降幅分别为71.5%~74.3%,44.4%~63.6%,38.5%~57.8%和29.1~39.1%,可氧化态Cd含量降幅为15.6%~36.9%,可氧化态Pb, Cu和Zn含量增幅分别为16.9%~20.5%、3.9%~26.0%和18.8%~55.9%,残渣态Cd, Pb, Cu和Zn含量增幅分别为42.4%~44.2%,11.0%~23.5%,15.0%~37.9%和20.0%~41.9%。添加生物炭可以提高土壤pH,增加土壤有机碳和全氮含量,对土壤全磷含量也略有增加,但...  相似文献   

18.
During one year, samples from eight drainage lakes, seven run-off stations and three deposition sites from various geographical areas in Sweden were collected and analyzed for methyl Hg (MeHg) and total Hg (Hg-tot). The MeHg concentrations ranged from 0.04 to 0.64 ng L?1, 0.04 to 0.8 ng L?1, and <0.05 to 0.6 ng L?1 in run-off, lake water and rain water, respectively. The corresponding Hg-tot concentrations were found in the range 2 to 12 ng L?1, 1.35 to 15 ng L?1, and 7 to 90 ng L?1, respectively. A Hg-tot level of about 60 ng Hg L?1 was found in throughfall water. The MeHg and Hg-tot concentrations are positively correlated in both run-off and lake water, but not in rain and throughfall water. A strong positive correlation between the MeHg, as well as the Hg-tot concentration, and the water color is observed in both run-off and lake waters, which suggests that the transport of MeHg and other Hg fractions from soil via run-off water to the lake is closely related to the transport of organic substances; and is a consequence of the biogeochemical processes and the water flow pathway. The ratio between the mean values of MeHg and Hg-tot seems to be an important parameter, with an indicated negative coupling to the mean value of pH for run-off water, but a strong positive correlation to Hg-content in fish, the ratio between the area of the catchment and the lake, as well as to the retention time of lake.  相似文献   

19.
松嫩平原产油区农田土壤重金属含量及污染风险评价   总被引:1,自引:0,他引:1  
  目的  为探明松嫩平原石油开采及石化工业活动区周边农田土壤重金属污染分布及风险状况。  方法  在大庆市让胡路区选择代表性农田采集96份土壤样品,测定重金属(Cd、Hg、Ni、Pb、Cu、Zn、Cr、As)含量;在利用地统计学克里金插值法分析重金属含量空间分布特征的基础上,采用地积累指数法和潜在生态危害指数法对该地区农田土壤重金属污染状况及其生态风险进行评价。  结果  该区土壤中Cd和Ni的含量分别为土壤背景值的1.39倍和1.27倍。在对各样点Pb、Zn、Cu和Cr 4种元素含量分析中,均出现不同程度的高于土壤背景值的样点。重金属Cd的地积累指数平均值为0.11,达到轻度~中度污染水平。研究区土壤重金属潜在生态危害风险指数(RI)平均值为84.84,从大到小为Cd > Hg > Ni > As > Pb > Cu > Zn > Cr,其中Cd的RI值最大为190.23,达到中等生态危害范围。研究区农田土壤重金属含量在空间分布上表现为:Cd、Zn和Pb含量高值区出现在中部地区,其它重金属元素含量高值区分布比较零散。  结论  研究区域内,8种重金属含量的平均值均低于风险筛选值,Cd和Ni两种重金属平均含量超出了背景值,从地积累指数来看,Cd污染等级为1级,其它7种元素均处于无污染水平。从潜在生态风险分析可知,该区域污染程度属于轻度生态危害范围。  相似文献   

20.
福建沿海农田土壤重金属污染与潜在生态风险研究   总被引:10,自引:1,他引:9  
分析了取自福建沿海农田185件表层土壤样品的重金属含量与分布特征,采用连续提出的方法研究重金属元素的赋存状态。结果表明福建沿海稻田土壤中的Hg、Cd、As、Cr、Ni、Cu、Zn和Pb的平均含量分别为0.41mgkg-1、0.20mgkg-1、6.62mgkg-1、35.65mgkg-1、12.7mgkg-1、128.39mgkg-1、109.65mgkg-1和63.56mgkg-1。相对于区域土壤背景值与国家土壤环境质量标准,污染较突出的元素是Hg和Cd。有46%样品中的Hg含量高于土壤质量的Ⅱ标准值,有13%的样品的Cd高于土壤质量的Ⅱ标准值。Hg高含量的样品主要分布福州、漳州等城镇等附近,同时它在土壤中主要以有机结合态的形式存在,土壤中Hg含量的升高可能主要来自于后期污染的叠加。Cd高含量的样品的分布则较分散,并不都集中在工业活动区,同时它在土壤中是以残渣态和铁锰氧化物态的形式存在,说明其高含量可能更多是受到成土母质的地球化学背景影响。农田土壤中的Hg和Cd具有较高的生态风险。该区主要是栽种水稻,而水稻对Cd具有强吸收的特性,土壤酸化还会促进Cd的吸收。本区土壤呈酸性,所以Cd污染可能导致大米的食品安全应引起足够重视。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号