首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single oral dosage of furaltadone and nitrofurazone (14.0 mg/kg) to 5 preruminant calves (in a cross-over trial) revealed mean maximum plasma concentration of 2.5 and 3.5 microgram/ml, respectively, at approximately 3 h after administration. The final elimination half-lives of furaltadone and nitrofurazone were 2.5 and 5 h, respectively. Urinary recovery of these two nitrofurans in 3 calves revealed approximately 2% of the orally administered dose. The renal clearance of the unbound drugs did not differ (for both drugs approximately 0.42 ml/min/kg); furaltadone clearance was strongly related to urine flow.  相似文献   

2.
Summary

The pharmacokinetics of oxytetracycline (OTC) in three weaned piglets was studied following three routes of administration: intravenously, orally as drench, both at a dose of 20 mg/kg, and orally as medicated (400 ppm OTC) pelleted feed administered during 3 consecutive days. Analysis of the intravenous data according to the three compartment pharmacokinetic model revealed that OTC was well distributed in the body (Vie 1.621/kg), had an overall body clearance of 0.25 litre/kg/h, and the elimination half‐lives were in the range between 11.6 and 17.2 hrs.

The mean OTC binding to plasma proteins was 75.5 ± 4%. Following the drench route of administration the maximum plasma OTC concentration was achieved between 1 and 5 h post application and ranged between 1.18 and 1.41 μg/ml. The mean maximum plasma OTC concentration during medicated feed administration was 0.20 ± 0.06 μg/ml, which was achieved approximately 30 hours after the onset of the administration. A steady state OTC plasma level (approximately 0.2 μg/ml) was maintained till the end of the trial. Within 48 hours after cessation of medicated feed administration the plasma OTC levels were beneath 0.06 μg/ml. The mean OTC bioavailabilities of the oral routes were low: after the drench route of administration 9.0 ± 0.67%, and after medicated pelleted feed administration 3.69 ± 0.8%.

The mean OTC renal clearances of each piglet ranged between 10.1 and 13.9 ml/min/kg (based on free OTC plasma fractions). The renal OTC clearance values were urine flow dependent in all piglets and significantly correlated with the renal creatinine clearance (P< 0.005), being 3–5 times higher than the latter. It is concluded that in piglets OTC is excreted mainly by glomerular filtration and partly by tubular secretion. The potential clinical efficacy of 400 ppm OTC as medicated feed with respect to treatment, e.g. atrophic rhinitis, is discussed.  相似文献   

3.
Summary

The pharmacokinetics of ciprofloxacin, a quinoline derivative with marked bactericidal activity against gram‐negative bacteria, was studied in calves and pigs following intravenous and oral administration.

Ciprofloxacin was rapidly and well distributed in the body, exhibited a short elimination half‐life of 2.5 h in both species, and was rapidly absorbed after oral administration (Tmax:2 to 3 h). The oral bioavailability in calves to was 53 ± 14% and for 1 pig 37.3%.

The renal clearance of the unbound ciprofloxacin for both species was of the same order, indicated a predominantly tubular secretion pattern, and accounted for about 46% of the total drug elimination. No complete drug mass balance could be demonstrated. Small amounts of two metabolites were detected in the urine of calves, but not in pig urine.  相似文献   

4.
Summary

Plasma ampicillin concentrations were determined in an eight‐ways crossover trial involving six ruminant calves, which were treated intravenously (i.v.) with sodium ampicillin at 15.5 mg/kg and intramuscularly (i.m.) with five different ampicillin trihydrate or ampicillin anhydrate formulations at 7.7 mg/kg. The mean plasma concentration‐time curve (Cp)after intravenous ampicillin sodium administration was described biexponentially, as: Cp = 38.8 e ‐0.0268t + 0.45 e ‐0.0058t.

Intramuscular injection, into the lateral neck, of Ampikel‐20® and Polyflex® resulted in 100 per cent bioavailabilities within 12 h post injection (p.i.), but the biological half‐lives (t½>) were different, being 2.1 and 3.8 h, respectively. Ampikel‐20® produced the hïghest peak plasma drug concentrations (mean C max:4.8 μg ampicillin/ml). After intramuscular injection of Penbritin® the mean bioavailability for the first 12 h p.i. was 63 per cent, the mean t½>, was 5.9 h, and the mean Cmax was 1.8 μg/ml. Treatment with Albipen® and Duphacillin® resulted in low plasma ampicillin levels, which were maintained for 3 to 6 days p.i., limited bioavailability during the first 12 h p.i., and a mean t½> of 22.2 and 11.9 h, respectively. Plasma concentrations of ampicillin from four hours onwards after i.m. and s.c. administration of Ampikel‐20® at a dose level of 15.5 mg/ kg were similar.

The duration of potentially therapeutic plasma ampicillin concentrations after administration of each formulation is presented. Pre‐slaughter withdrawal times for diseased calves are suggested for the different formulations studied.  相似文献   

5.
Summary

The oral absorption and bioavailability of flumequine was studied in 1‐, 5‐ and 18‐week‐old calves following intravenous and oral administration of different formulations of flumequine (Flumix®, Flumix C® and pure flumequine). Increasing age had a negative influence on the Cmax after the administration of Flumix®, based on a larger VD in the older calves. The Cmax decreased from 5.02 ± 1.46 μg/ml in the first week to 3.28 ± 0.42 μg/ml in the 18th week. Adding colistin sulfate to the flumequine formulation and administring pure flumequine mixed with milk replacer had a negative effect on the Cmax of flumequine after oral administration of 5 and 10 mg/kg body weight. The bioavailability of the orally administered flumequine formulations was 100% in all cases except after the administration of Flumix C®, for which it was 75.9 ± 18.2%. The urinary recovery of flumequine after intravenous injection of a 10% solution varied from 35.2 ± 2.3% for Group B. to 41.2 ± 6.3% for Group C.

The dosage of 5 mg/kg body weight Flumix® twice daily in 1‐week‐old veal calves is sufficient to reach therapeutic plasma concentrations, based on a MIC value of 0.8 μg/ml of the target bacteria.

In older calves it is advisable to increase the dosage 7.5 or 10 mg/kg body weight every 12 hours. In combination with colistin sulfate it is also advisable to increase the dosage slightly because of the negative effect of the colistin sulfate on the Cmax of flumequine.  相似文献   

6.
The aim of this study was to determine the pharmacokinetics/pharmacodynamics of enrofloxacin (ENR) and danofloxacin (DNX) following intravenous (IV) and intramuscular (IM) administrations in premature calves. The study was performed on twenty‐four calves that were determined to be premature by anamnesis and general clinical examination. Premature calves were randomly divided into four groups (six premature calves/group) according to a parallel pharmacokinetic (PK) design as follows: ENR‐IV (10 mg/kg, IV), ENR‐IM (10 mg/kg, IM), DNX‐IV (8 mg/kg, IV), and DNX‐IM (8 mg/kg, IM). Plasma samples were collected for the determination of tested drugs by high‐pressure liquid chromatography with UV detector and analyzed by noncompartmental methods. Mean PK parameters of ENR and DNX following IV administration were as follows: elimination half‐life (t1/2λz) 11.16 and 17.47 hr, area under the plasma concentration–time curve (AUC0‐48) 139.75 and 38.90 hr*µg/ml, and volume of distribution at steady‐state 1.06 and 4.45 L/kg, respectively. Total body clearance of ENR and DNX was 0.07 and 0.18 L hr?1 kg?1, respectively. The PK parameters of ENR and DNX following IM injection were t1/2λz 21.10 and 28.41 hr, AUC0‐48 164.34 and 48.32 hr*µg/ml, respectively. The bioavailability (F) of ENR and DNX was determined to be 118% and 124%, respectively. The mean AUC0‐48CPR/AUC0‐48ENR ratio was 0.20 and 0.16 after IV and IM administration, respectively, in premature calves. The results showed that ENR (10 mg/kg) and DNX (8 mg/kg) following IV and IM administration produced sufficient plasma concentration for AUC0‐24/minimum inhibitory concentration (MIC) and maximum concentration (Cmax)/MIC ratios for susceptible bacteria, with the MIC90 of 0.5 and 0.03 μg/ml, respectively. These findings may be helpful in planning the dosage regimen for ENR and DNX, but there is a need for further study in naturally infected premature calves.  相似文献   

7.
Summary

An intravenous low dosage of sulphanilamide (SAA) (14.0 mg/kg) to 6 pre‐ruminant calves revealed a biphasic SAA plasma disposition with a mean elimination half‐life of 4.1 h. The main metabolite in plasma was N4‐acetylsulphanilamide (N4), which 4 hours after injection exceeded the parent SAA plasma concentration. Urinary recovery of SAA was 10 to 16% of the dose; of N4, it was at least 69%. Traces of the N1‐acetyl (N1) metabolite and the doubly acetylated derivative (N1N4) were present in urine. The renal clearances of the N1 and N4 metabolites showed a tubular secretion pattern, which was at least 2 to 6 times higher than that of SAA.

A single high oral SAA dose of 200 mg/kg to 3 dairy cows resulted in extensive metabolism of SAA into N4 N1, and N1N4 metabolites; their mean maximum plasma concentrations were 64, 48, 0.72 and 24 μg/ml, respectively. The mean disposition half‐life of SAA in plasma and milk was 10 h. In milk the metabolite concentrations exceeded those in plasma; the N4 and N1N4 metabolite concentrations in milk exceeded that of SAA. The mean maximum concentrations of SAA, N4, N1, and N1N4 in milk were 52, 89, 2.3, and 98 pg/ml. respectively. For SAA and its metabolites, the binding to plasma and milk proteins was determined. No glucuronide or sulphate conjugates of SAA and its acetyl metabolites could be found in plasma, milk, or urine.

Based on the sensitivity of the bioassay (0.2 μg SAA/ml), a withholding time of 5 days was suggested for milk following single oral SAA dosage of 200 mg/kg.  相似文献   

8.
The distribution half-life, elimination half-life, apparent volume of distribution and total body clearance of carbenicillin in healthy buffalo calves following a single intravenous administration (50 mg/kg) were 0.057±0.005 h, 1.688±0.11 h, 0.185±0.021 L kg-1 and 75.97±6.519 ml kg-1 h-1 respectively. A satisfactory dosage regimen for carbenicillin in buffalo calves was calculated to be 56 mg/kg followed by 52 mg/kg body weight repeated at 6 h intervals.  相似文献   

9.
Summary

Chyme concentrations and total recoveries of furazolidone (5 mg/kg bodyweight) were determined by a HPLC‐method, after oral administration of two different furazolidone formulations to piglets (n = 6) and pre‐ruminant calves (n = 8), provided with an ileal re‐entrant canula. Additional blood samples were taken from the calves to measure the time dependent plasma levels of furazolidone.

In the case of the normal crystalline preparation, the results indicate an almost complete absorption of the drug from the upper parts of the digestive tract. In both species, 96–99% of the dose had been absorbed by the time it reached the end of the ileum.

The mean ileal recovery of the newly developed furazolidone formulation in calves and piglets was 14% and 38%, respectively. In calves the observed maximum plasma concentrations of furazolidone after oral application of the sustained release formulation were 14 times lower than with the normal crystalline preparation.  相似文献   

10.
The disposition kinetics of levofloxacin was investigated in six male crossbred calves following single intravenous administration, at a dose of 4 mg/kg body weight, into the jugular vein subsequent to a single intramuscular injection of paracetamol (50 mg/kg). At 1 min after the injection of levofloxacin, the concentration of levofloxacin in plasma was 17.2 ± 0.36 µg/ml, which rapidly declined to 6.39 ± 0.16 µg/ml at 10 min. The drug level above the MIC90 in plasma, was detected for up to 10 h. Levofloxacin was rapidly distributed from blood to the tissue compartment as evidenced by the high values of the distribution coefficient, α (17.3 ± 1.65 /h) and the ratio of K12/K21 (1.83 ± 0.12). The values of AUC and Vdarea were 12.7 ± 0.12 µg.h/ml and 0.63 ± 0.01 l/kg. The high ratio of the AUC/MIC (126.9 ± 1.18) obtained in this study indicated the excellent antibacterial activity of levofloxacin in calves. The elimination half-life, MRT and total body clearance were 1.38 ± 0.01 h, 1.88 ± 0.01 h and 0.32 ± 0.003 l/kg/h, respectively. Based on the pharmacokinetic parameters, an appropriate intravenous dosage regimen for levofloxacin would be 5 mg/kg repeated at 24 h intervals when prescribed with paracetamol in calves.  相似文献   

11.
Abstract

AIM: To determine the pharmacokinetics and bioavailability of florfenicol in the plasma of healthy Japanese quail (Coturnix japonica).

METHODS: Sixty-five quail were given an I/V and I/M dose of florfenicol at 30 mg/kg bodyweight (BW). A two-period sequential design was used, with a wash-out period of 2 weeks between the different routes of administration. Concentrations of florfenicol in plasma were determined using high-performance liquid chromatography (HPLC).

RESULTS: A naíve pooled data analysis approach for the plasma concentration-time profile of florfenicol was found to fit a non-compartmental open model. After I/V administration, the mean residence time (MRT), mean volume of distribution at steady state (Vss), and total body clearance of florfenicol were 12.0 (SD 0.37) h, 8.7 (SD 0.22) L/kg, and 1.3 (SD 0.08) L/h/kg, respectively. After I/M injection, the MRT, mean absorption time (MAT), and bioavailability were 12.3 (SD 0.37) h, 0.2 (SD 0.02) h, and 79.1 (SD 1.79)%, respectively.

CONCLUSIONS: The time for the concentration of florfenicol to fall below the probable effective concentration of 1 µg/ml of approximately 10 h is sufficient for the minimum inhibitory concentration needed for many bacterial isolates. Further pharm acodynamic studies in quail are needed to evaluate a suitable dosage regimen.  相似文献   

12.
Eleven buffalo calves (Bubalus bubalis) of 1-1 1/2 years of age and weighing between 64 and 174 kg were given chloramphenicol at the dose rates of 10 and 20 mg/kg body weight. Pharmacokinetic parameters were determined from the plasma levels. The median elimination half-life was estimated to be 2.95 h and the median volumes of distribution were 1.1667 litres/kg with the 10 mg/kg dose and 0.9699 litres/kg with the 20 mg/kg dose. The median metabolic clearance rates were 288.30 and 234.13 ml/h/kg, respectively. From the average plasma concentrations obtained with the 20 mg/kg i.v. dose, it was considered necessary to repeat the drug by the i.m. route with the same dose (four calves) which resulted in prolonging the therapeutic concentration (> 5 μg/ml) until 18 h. At therapeutic concentrations, about 60% of the drug was bound to plasma proteins. Using the overall elimination rate constant (0.2354 h-1) and the apparent specific volume of distribution (0.97 litres/kg), different dosage regimens were calculated so as to obtain plasma concentrations (Cp min) of 2, 5 and 10 μg/ml.  相似文献   

13.
This study describes the pharmacokinetics of intravenously administered (i.v.) fentanyl citrate, and its primary metabolite norfentanyl in Holstein calves. Eight calves (58.6 ± 2.2 kg), aged 3–4 weeks, were administered fentanyl citrate at a single dose of 5.0 μg/kg i.v. Blood samples were collected from 0 to 24 hr. Plasma (nor)fentanyl concentrations were determined using liquid chromatography with mass spectrometry and a lower limit of quantification (LLOQ ) of 0.03 ng/ml. To explore the effect of analytical performance on fentanyl parameter estimation, the noncompartmental pharmacokinetic analysis was then repeated with a hypothetical LLOQ value of 0.05 ng/ml. Terminal elimination half‐life was estimated at 12.7 and 3.6 hr for fentanyl and norfentanyl, respectively. For fentanyl, systemic clearance was estimated at 2.0 L hr?1 kg?1, volume of distribution at steady‐state was 24.8 L/kg and extraction ratio was 0.42. At a hypothetical LLOQ of 0.05 ng/ml fentanyl half‐life, volume of distribution at steady‐state and clearance were, respectively, of 3.0 hr, 8.8 L/kg and 3.4 L kg?1 hr?1. Fentanyl citrate administered i.v. at 5.0 μg/kg can reach levels associated with analgesia in other species. Pharmacokinetic parameters should be interpreted with respect to LLOQ , as lower limits can influence estimated parameters, such as elimination half‐life or systemic clearance and have significant impact on dosage regimen selection in clinical practice.  相似文献   

14.
The clearance of 3H-labelled Pseudomonas endotoxin from the blood was studied in a nontolerant and in an endotoxin tolerant state. Calves were rendered tolerant to the toxic effects of the endotoxin by four daily intravenous injections of endotoxin at the dose rate of 5 µg/kg body weight.

Clearance of 3H-endotoxin from the blood of nontolerant calves occurred more slowly than did clearance of 51Cr-endotoxin and was not significantly (P<0.05) affected by the development of tolerance. The lungs and liver were the major organs involved in the clearance of 3H-endotoxin from the blood of calves. Leukocytes and erythrocytes, but not platelets, were shown to participate in endotoxin clearance in calves. 3H2O, the control substance used in calves, was not concentrated within any particular organ but rapidly equilibrated with total body water and was slowly excreted.

  相似文献   

15.
The aim of this study was to evaluate the pharmacokinetics and bioavailability of cefquinome (CFQ) and ceftriaxone (CTX) following intravenous (IV) and intramuscular (IM) administrations in premature calves. Using a parallel design, 24 premature calves were randomly divided into the two antibiotic groups. Each of the six animals in the first group received CFQ (2 mg/kg) through IV or IM administration. The second group received CTX (20 mg/kg) via the same administration route. Plasma concentrations of the drugs were analyzed by high‐performance liquid chromatography and noncompartmental methods. Mean pharmacokinetic parameters of CFQ and CTX following IV administration were as follows: elimination half‐life (t1/2λz) 1.85 and 3.31 hr, area under the plasma concentration–time curve (AUC0–∞) 15.74 and 174 hr * μg/ml, volume of distribution at steady‐state 0.37 and 0.45 L/kg, and total body clearance 0.13 and 0.12 L hr?1 kg?1, respectively. Mean pharmacokinetic parameters of CFQ and CTX after IM injection were as follows: peak concentration 4.56 and 25.04 μg/ml, time to reach peak concentration 1 and 1.5 hr, t1/2λz 4.74 and 3.62 hr, and AUC0–∞ 22.75 and 147 hr * μg/ml, respectively. The bioavailability of CFQ and CTX after IM injection was 141% and 79%, respectively. IM administration of CFQ (2 mg/kg) and CTX (20 mg/kg) can be recommended at 12‐hr interval for treating infections caused by susceptible bacteria, with minimum inhibitory concentration values of ≤0.5 and ≤4 μg/ml, respectively, in premature calves. However, further research is indicated to assess the pharmacokinetic parameters following multiple doses of the drug in premature calves.  相似文献   

16.
Summary

Intramuscular administration of an amoxycillin trihydrate‐15% formulation to three groups of animals revealed in preruminant calves (age 3–4 weeks) significant higher plasma peak drug concentrations and shorter biological half‐lives than in 5‐month‐old ruminant calves and dairy cows. Differences in pharmacokinetics were related to age‐difference in drug absorption capability at the injection site regarding the formulation.  相似文献   

17.
Summary

The intravenous and oral pharmacokinetics of an amoxicillin and clavulanic acid combination (20 mg/kg of sodium amoxicillin and 5 mg/kg of potassium clavulanate) were studied in six goats. After intravenous administration the pharmacokinetics of both drugs could be described by an open two‐compartment model. Amoxicillin had a greater distribution volume (0.19 ± 0.01 l/kg) than clavulanic acid (0.15 ± 0.01 l/kg), whereas the distribution and elimination constants were higher for the latter, which was eliminated more quickly than amoxicillin. After oral administration of both drugs their pharmacokinetic behaviour was best described by an open one‐compartment model with first‐order absorption. Elimination half‐lives were twice as long after oral (2.15 ± 0.20 h and 1.94 ± 0.16 h for amoxicillin and clavulanic acid respectively) than after intravenous administration (1.20 ± 0.16 h and 0.86 ± 0.09, respectively). An apparent ‘flip‐flop’ situation was evident in this study. Bioavailability was 27% for amoxicillin and 50% for clavulanic acid.  相似文献   

18.
Summary

The plasma disposition of ciprofloxacin was studied in carp, African catfish and trout after intravenous (IV) and intramuscular (IM) administration at a dose rate of 15 mg/ kg. Pharmacokinetic analysis of IV data showed that ciprofloxacin was well distributed (distribution volume V area): 3.08 ‐ 5.59 litre/kg) and exhibited a similar elimination half‐life of about 14 h in these 3 fish species. After IM administration to carp and trout a rapid absorption was noticed; the maximum ciprofloxacin plasma concentrations (mean: 3.49 and 2.37 pg/ml, respectively), were achieved within I h after injection. At the dose level applied, ciprofloxacin has potential therapeutic value for 2–5 days especially against gram‐negative bacterial fish pathogens.  相似文献   

19.
The pharmacokinetics and urinary excretion following single intramuscular administration of levofloxacin at a dose of 4 mg/kg was investigated in seven male cross bred calves. Appreciable plasma concentration of levofloxacin (0.38 ± 0.06 µg/ml) was detected at 1 min after injection and the peak plasma level of 3.07 ± 0.08 µg/ml was observed at 1 h. The drug level above MIC90 in plasma was detected up to 12 h after administration. Rapid absorption of the drug was also evident by the high value of the absorption rate constant (2.14 ± 0.24 /h). The overall systemic bioavailability of levofloxacin, after intramuscular administration, was 56.6 ± 12.4%. The high value of AUC (7.66 ± 0.72 mg . h/ml) reflected the vast area of body covered by drug concentration. Extensive distribution of the drug into various body fluids and tissues was noted by the high value of Vdarea (1.02 ± 0.05 l/kg). The high ratio of AUC/MIC (76.6 ± 7.25) obtained in this study indicated excellent clinical and bacteriological efficacy of levofloxacin in calves. The elimination half-life and MRT were 3.67 ± 0.4 h and 5.57 ± 0.51 h, respectively. The total body clearance (ClB) was 204.9 ± 22.6 ml/kg/h. On the basis of the pharmacokinetic parameters, a suitable intramuscular dosage regimen for levofloxacin in calves would be 1.5 mg/kg repeated at 12 h intervals.  相似文献   

20.
The pharmacokinetics of flumequine was studied in 1-, 5- and 18-week-old veal calves. A two-compartment model was used to fit the plasma concentration-time curve of flumequine after the intravenous injection of 10 mg/kg of a 10% solution. The elimination half-life (t1/2 beta) of the drug ranged from 6 to 7 h. The Vd beta and ClB of 1-week-old calves (1.07 l/kg, 1.78 ml/min/kg) were significantly lower than those of 5-week-old (1.89 l/kg, 3.23 ml/min/kg) and 18-week-old calves (1.57 l/kg, 3.10 ml/min/kg). After the oral administration of 10 mg/kg of a 2% flumequine formulation mixed with milk replacer, the Cmax was highest in 1-week-old (9.27 micrograms/ml) and lowest in 18-week-old calves (4.47 micrograms/ml). The absorption was rapid (Tmax of approximately 3 h) and complete. When flumequine itself and a formulation containing 2% flumequine and 20 X 10(6) iu of colistin sulphate were mixed with milk replacer and administered at the same dose rate, absorption was incomplete and Cmax was lower. The main urinary metabolite of flumequine was the glucuronide conjugate (approximately 40% recovery within 48 h of intravenous injection) and the second most important metabolite was 7-hydroxy-flumequine (approximately 3% recovery within 12 h of intravenous injection). Only 3.2-6.5% was excreted in the urine unchanged. After oral administration a 'first-pass' effect was observed, with a significant increase in the excretion of conjugated drug. For 1-week-old calves it is recommended that the 2% formulation should be administered at a dose rate of 8 mg/kg every 24 h or 4 mg/kg every 12 h; for calves over 6 weeks old, the dose should be increased to 15 mg/kg every 24 h or 7.5 mg/kg every 12 h. The formulation containing colistin sulphate should be administered to 1-week-old calves at a flumequine dose of 12 mg/kg every 24 h or 6 mg/kg every 12 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号