首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extreme climate of the northern Great Plains of North America requires cropping systems to possess a resilient soil resource in order to be sustainable. This paper summarizes the interactive effects of tillage, crop sequence, and cropping intensity on soil quality indicators for two long-term cropping system experiments in the northern Great Plains. The experiments, located in central North Dakota, were established in 1984 and 1993 on a Wilton silt loam (FAO: Calcic Siltic Chernozem; USDA1: fine-silty, mixed, superactive frigid Pachic Haplustoll). Soil physical, chemical, and biological properties considered as indicators of soil quality were evaluated in spring 2001 in both experiments at depths of 0–7.5, 7.5–15, and 15–30 cm. Management effects on soil properties were largely limited to the surface 7.5 cm in both experiments. For the experiment established in 1984, differences in soil condition between a continuous crop, no-till system and a crop–fallow, conventional tillage system were substantial. Within the surface 7.5 cm, the continuous crop, no-till system possessed significantly more soil organic C (by 7.28 Mg ha−1), particulate organic matter C (POM-C) (by 4.98 Mg ha−1), potentially mineralizable N (PMN) (by 32.4 kg ha−1), and microbial biomass C (by 586 kg ha−1), as well as greater aggregate stability (by 33.4%) and faster infiltration rates (by 55.6 cm h−1) relative to the crop–fallow, conventional tillage system. Thus, soil from the continuous crop, no-till system was improved with respect to its ability to provide a source for plant nutrients, withstand erosion, and facilitate water transfer. Soil properties were affected less by management practices in the experiment established in 1993, although organic matter related properties tended to be greater under continuous cropping or minimum tillage than crop sequences with fallow or no-till. In particular, PMN and microbial biomass C were greatest in continuous spring wheat (with residue removed) (22.5 kg ha−1 for PMN; 792 kg ha−1 for microbial biomass C) as compared with sequences with fallow (SW–S–F and SW–F) (Average=15.9 kg ha−1 for PMN; 577 kg ha−1 for microbial biomass C). Results from both experiments confirm that farmers in the northern Great Plains of North America can improve soil quality and agricultural sustainability by adopting production systems that employ intensive cropping practices with reduced tillage management.  相似文献   

2.
The objective of this study was to investigate the effect of tillage and cropping system on near-saturated hydraulic conductivity, residue cover and surface roughness to improve soil management for moisture conservation under semiarid Mediterranean conditions. Three tillage systems were compared (subsoil tillage, minimum tillage and no-tillage) under three field situations (continuous crop, fallow and crop after fallow) on two soils (Fluventic Xerochrept and Lithic Xeric Torriorthent). Soil under no-tillage had lower hydraulic conductivity (5.0 cm day−1) than under subsoil tillage (15.5 cm day−1) or minimum tillage (14.3 cm day−1) during 1 of 2 years in continuous crop due to a reduction of soil porosity. Residue cover at sowing was greater under no-tillage (60%) than under subsoil or minimum tillage (<10%) in continuous crop. Under fallow, residue cover was low (10%) at sowing of the following crop for all tillage systems in both soils. Surface roughness increased with tillage, with a high value of 16% and decreasing following rainfall. Under no-tillage, surface roughness was relatively low (3–4%). Greater surface residue cover under no-tillage helped conserve water, despite indications of lower hydraulic conductivity. To overcome the condition of low infiltration and high evaporation when no-till fallow is expected in a cropping sequence, either greater residue production should be planed prior to fallow (e.g. no residue harvest) or surface tillage may be needed during fallow.  相似文献   

3.
Abstract

In the West Central Great Plains of the United States, no‐till management has allowed for increased cropping intensity under dryland conditions. This, in turn, has affected the carbon (C) and nitrogen (N) mineralization dynamics of these systems. In this region, moisture stress increases from north to south due to an increase in evapotranspiration (ET), resulting in a climatic gradient that affects cropping system management. The objectives of this study were to determine the interaction of cropping system intensification and climatic gradient (ET) on C and N mineralization and to determine if the presence or absence of crop residue on the soil surface affects C and net N mineralization. Two cropping systems, winter wheat‐fallow (WF) (Triticum aestivium L.) and winter wheat‐corn (sorghum)‐millet‐fallow (WCMF) [Zea mays (L.), Sorghum bicolor (L.) Moench, Panicum milaceum (L.)] were studied at three locations across this aforementioned ET gradient. The treatments had been in place for 8 yrs prior to sampling in the study. These results showed that the more intense cropping system (WCMF) had a higher laboratory C mineralization rate at two of the three locations, which the study concluded resulted from larger residue biomass additions and larger quantities of surface residue and soil residue at these locations (Soil residue is defined as recognizable crop residue in the soil that is retained on a 0.6 mm screen). However, no differences in N mineralization occurred. This is most likely due to more N immobilization under WCMF as compared to WF. Presence or absence of crop residue on the surface of undisturbed soil cores during incubation affected potential C and net N mineralization more than either cropping system or location. Soil cores with the surface residue intact mineralized as much as 270% more C than the same soils where the surface crop residue had been removed. In laboratory studies evaluating the relative differences in cropping systems effects on C and N mineralization, the retention of crop residue on the soil surface may more accurately access the cropping system effects.  相似文献   

4.
Interrill soil erosion as affected by tillage and residue cover   总被引:3,自引:0,他引:3  
No-till cropping systems are effective in reducing soil erosion. The objective of this study was to determine whether high infiltration rates and low runoff and soil loss under long-term, no-till conditions in loessial regions of the Midwest US result from both the well-structured, porous condition of the soil and the protective cover of crop residue or primarily from residue cover. Soil loss, runoff, and infiltration were measured using a rainfall simulator on interrill erosion plots with and without residue cover on a conventional and two no-till systems in central Illinois. For both conventional till and no-till conditions, removing surface residue significantly decreased infiltration rates and increased soil loss. Tilling the no-till surface while maintaining an equal surface cover as with the no-till system slightly increased interrill erosion. Removing residue on a no-till system, however, increased soil loss significantly. A no-till soil condition without adequate residue cover will seal, crust, and erode with extremely high soil losses following surface drying.  相似文献   

5.
Improved nitrogen use efficiency would be beneficial to agroecosystem sustainability in the northern Great Plains of the USA. The most common rotation in the northern Great Plains is fallow–spring wheat. Tillage during fallow periods controls weeds, which otherwise would use substantial amounts of water and available nitrogen, decreasing the efficiency of fallow. Chemical fallow and zero tillage systems improve soil water conservation, and may improve nitrogen availability to subsequent crops. We conducted a field trial from 1998 through 2003 comparing nitrogen uptake and nitrogen use efficiency of crops in nine rotations under two tillage systems, conventional and no-till. All rotations included spring wheat, two rotations included field pea, while lentil, chickpea, yellow mustard, sunflower, and safflower were present in single rotations with wheat. Growing season precipitation was below average in 3 of 4 years, resulting in substantial drought stress to crops not following fallow. In general, rotation had a greater influence on spring wheat nitrogen accumulation and use efficiency than did tillage system. Spring wheat following fallow had substantially higher N accumulation in seed and biomass, N harvest index, and superior nitrogen use efficiency than wheat following pea, lentil, chickpea, yellow mustard, or wheat. Preplant nitrate-N varied widely among years and rotations, but overall, conventional tillage resulted in 9 kg ha−1 more nitrate-N (0–60 cm) for spring wheat than did zero tillage. However, zero tillage spring wheat averaged 11 kg ha−1 more N in biomass than wheat in conventional tillage. Nitrogen accumulation in pea seed, 45 kg ha−1, was superior to that of all alternate crops and spring wheat, 17 and 23 kg ha−1, respectively. Chickpea, lentil, yellow mustard, safflower, and sunflower did not perform well and were not adapted to this region during periods of below average precipitation. During periods of drought, field pea and wheat following fallow had greater nitrogen use efficiency than recropped wheat or other pulse and oilseed crops.  相似文献   

6.
The grain and sugarcane industries are the dominant cropping enterprises in Australia. Both are facing similar problems in maintaining productivity and profitability, although the management practices employed to achieve these objectives in the two industries differ markedly. The farming systems of both industries have evolved in recent years as our understanding of the physical and chemical benefits of practices like residue retention, reduced tillage and controlled traffic have improved. However the impact of such practices is often evaluated in terms of cost savings, operational efficiencies and efficient capture and use of water.

Soil health has not always been an important consideration in system change in either industry, with the exception that crop rotation has always been recognised as important in minimising the impact of soil-borne pathogens. Rotations have been a key feature of grain cropping systems and short duration legume fallows are becoming more prevalent in the sugar industry after more than 25 years of monocultures. However, intensification of cropping in recent years has meant that the pasture leys that were once a dominant component of the grain rotation systems are increasingly being supplanted by short duration cropping breaks with grain legume or other non-cereal crops.

Soil organic C has generally been recognised as an important component of soil fertility, but more for the role it plays in soil physical and chemical fertility. Links between organic matter status and soil biological health, and particularly to farming system viability and sustainability, have proven difficult to quantify. This has been partly due to a lack of tools or criteria for monitoring relevant soil properties and also to our limited understanding of the interactions between soil health and other system components. However recent studies are suggesting that the amount and quality of organic matter returned as roots and residues, and the placement of that residue relative to areas of future crop root activity, may be significant factors in the sustainable farming systems of the future.

This paper identifies key issues associated with current and developing farming systems in the grain and sugar industries in Australia, and assesses the impact of management practices employed in those systems on soil health. It also identifies some key challenges facing soil biologists and farming systems researchers who are trying to achieve improvements in soil health and sustainability.  相似文献   


7.
There is an increasing interest in assessing the effects of tillage systems and residue management on biochemical processes, especially enzyme activities, of soils. This study was carried out to investigate the effects of three tillage systems (no-till, chisel plow and moldboard plow) and four residue placements (bare, normal, mulch and double mulch) on the activity of N-acetyl-β-glucosaminidase (NAGase, EC 3.2.1.30) involved in C and N cycling in soils. The activity values were significantly affected by tillage and residue management practices, being greatest in soils with no-till/double mulch and least with no-till/bare and moldboard/normal. Also, they were the highest under no-till/ double mulch-treated soils. Linear regression analyses showed that the activity of NAGase was significantly correlated with organic C in the surface soils (r=0.89***) and with organic C content at different depths (r=0.97***). The NAGase activity values were significantly correlated with the arylamidase activity values of the soils (r=0.63**), suggesting that tillage and residue management practices have similar impacts on the activities of these enzymes. The activity of this enzyme decreased markedly with increasing depth of the surface soil (0-15 cm) of the no-till/ double mulch-treated plots.  相似文献   

8.
Abstract

This study was conducted on a sloping field at the Japan International Research Center for Agricultural Sciences, Okinawa Subtropical Station, Ishigaki Island, Okinawa Prefecture, Japan, to evaluate the effects of zero tillage farming combined with mucuna fallow as a cover crop on soil erosion and water dynamics. Two fallow systems (natural and mucuna) in combination with two soil tillage treatments (zero tillage and conventional tillage) were imposed on three sloping fields (2.0°, 3.5° and 5.0°). A sorghum crop (Sorghum bicolor (L) moench) was planted after the soil tillage treatment. Soil loss for zero tillage farming combined with mucuna fallow was equivalent to only 3% of that for the conventional tillage farming with natural fallow. Runoff water was also reduced by between 74% and 77% when compared with the conventional tillage system with natural fallow. These results indicate that zero tillage with mucuna fallow is a very effective measure for the control of soil erosion and water runoff. Moreover, this farming system improved water infiltration during both the fallow and the sorghum cropping periods. For the zero tillage plot, water loss as deep percolation increased 1.6-fold compared with that for the conventional farming under heavy rainfall conditions. It is expected that under less rainfall areas or seasons, the effects of zero tillage farming combined with the mucuna cover crop may be more pronounced on water runoff control and, therefore, may greatly improve soil water conditions.  相似文献   

9.
There is increased awareness of the environmental impacts of soil carbon (C) and nitrogen (N) losses through wind erosion, especially in areas heavily affected by dust storm erosion. This paper reviews the recent literature concerning dust storm-related soil erosion and its impact on soil C and N losses in northern China. The purpose of our study is to provide an overview of the area of erosion-affected soils and to estimate the magnitude of soil C and N losses from farmland affected by dust storm erosion.According to the second national soil erosion remote-sensing survey in 2000, the area affected by wind erosion was 1.91 million km2, accounting for 20% of the total land area in China. This area is expanding quickly as the incidence of heavy dust storms has greatly increased over the last five decades, mainly as a result of the intensification of soil cultivation. The economic and ecological damage caused by wind erosion is considerable. Heavily affected areas show a loss of nutrients and organic carbon in soils and the heavily degraded soils are much less productive. Compared with the non-degraded soil, the C and N contents in degraded soils have declined by 66% and 73%, respectively. The estimated annual losses per cm toplayer of soil C and N by dust storm erosion in northern China range from 53 to 1044 kg ha− 1 and 5 to 90 kg ha− 1, respectively. Field studies suggest that soil losses by wind erosion can be reduced by up to 79% when farmers shift from conventional soil tillage methods to no-till. Thus shifting to no-till or reduced tillage systems is an effective practice for protecting soil and soil nutrients. Our study indicates that soil conservation measures along with improved soil fertility management measures should be promoted in dry-land farming areas of northern China. As erosion is a major mechanism of nutrient withdrawal in these areas, we plead for the development of accurate methods for its assessment and for the incorporation of erosion, as a nutrient output term, in nutrient budget studies.  相似文献   

10.
In response to the dust bowls of the mid-thirties in the USA, soil and water conservation programmes involving reduced tillage were promoted to control land degradation, particularly soil erosion. The farming and land management practices that were considered to adequately address soil and water conservation objectives were based on no-till seeding and maintenance of soil mulch cover. This collection of practices led to what became known as conservation tillage, although no-till systems by definition avoid soil disturbance by no-till direct seeding, and maintain an organic mulch cover on the soil surface.This article is an overview of achievements in soil and water conservation on agricultural lands through the experience derived from the adoption and spread of Conservation Agriculture (CA) world-wide. CA is an agro-ecological approach to sustainable production intensification. It involves the application of three inter-linked principles that underpin agricultural production systems based on locally formulated practices: (i) permanent no or minimum mechanical soil disturbance, which in practice entails direct seeding through mulch into no-till soils; (ii) maintenance of soil cover with crop residues and green manure crops, particularly legumes; and (iii) diversified cropping system involving annuals and perennial in rotations, sequences and associations.In 2011, CA had spread over 125 million hectares (9% of the global cropped land) across all continents and most agro-ecologies, including small and large farms. In addition, there is a significant area of CA orchards in the Mediterranean countries. CA is now considered to be a practical agro-ecological approach to achieving sustainable agriculture intensification. It offers environmental, economic and social advantages that are not fully possible with tillage-based production systems, as well as improved productivity and resilience, and improved ecosystem services while minimizing the excessive use of agrochemicals, energy and heavy machinery. While there are challenges to the adoption of CA, there is also increasing interest from producers, the civil society, donors and private sector institutions to further promote and service the uptake and spread of CA globally.  相似文献   

11.
The effects of several dominant tillage and rotation systems on soil organic C content of different particle-size fractions were studied in Chernozemic soils from southwestern and east-central Saskatchewan, Canada. In an Orthic Brown Chernozem in southwestern Saskatchewan, 7 years of no-till cereal–fallow, imposed on a long-term tillage fallow–wheat rotation soil, resulted in 0.1 Mg C ha−1 more organic C mass in the sand + organic matter (OM) fraction of the 0- to 5-cm layer, whereas organic C associated with coarse silt (CS), fine silt (FS), coarse clay, and fine clay of 0- to 5- and 5- to 10-cm layers was less than that of the comparable tilled cereal–fallow system. Conversion of tilled fallow–wheat rotation soil to continuous cropping had a slight effect, whereas the organic C mass in all the size fractions was significantly increased in both 0- to 5- and 5- to 10-cm layers after alfalfa was introduced on tilled fallow–wheat as perennial forage for 10 years. In an Orthic Black Chernozem in east-central Saskatchewan that was cultivated and tilled using a cereal–fallow rotation for 62 years, organic C mass decreased in sand + OM, CS, and FS of 0- to 10-cm depth. Conversion of the tilled cereal–fallow cropland soil back to seeded grassland resulted in significantly more soil organic C in sand + OM fraction after 12 years of grass seed-down. The sand + OM fraction appears to be the size fraction pool initially most sensitive to adoption of management practices that are liable to sequester carbon in the soil.  相似文献   

12.
The year to year carry-over effects of biomass additions under different plant populations on runoff and erosion are unclear. The objective of this study was to quantify the impact of different plant populations on residue cover to elucidate the effects of residue cover on runoff and erosion. The residue management system involved shredding of corn (maize) biomass after harvest, incorporating the residue in the spring, and leaving the land fallow until it was no-till planted the following spring. Runoff and soil losses were measured on 18 runoff plots with plots arranged in two areas with each having three randomized treatments (0%, 50%, and 100% plant population) with three replications. The two areas were managed as a fallow/no-till corn rotation in two cycles of alternating years. Surface residue cover was highly dynamic with significant changes between cycles and seasons in response to the management practices. The annual soil losses were reduced by 47% and 54% for the 50% and 100% plant populations, respectively compared to the control. However, the annual soil loss even for the 100% plant population was still nearly seven times the tolerable soil loss limit of 7 ton ha−1. The normal erosion protection afforded by no-till practices was lost by the incorporation of residue the previous year.  相似文献   

13.
Soil erosion is a major threat to global economic and environmental sustainability. This study evaluated long-term effects of conservation tillage with poultry litter application on soil erosion estimates in cotton (Gossypium hirsutum L.) plots using RUSLE 2.0 computer model. Treatments consisting of no-till, mulch-till, and conventional tillage systems, winter rye (Secale cereale L.) cover cropping and poultry litter, and ammonium nitrate sources of nitrogen were established at the Alabama Agricultural Experiment Station, Belle Mina, AL (34°41′N, 86°52′W), beginning fall 1996. Soil erosion estimates in cotton plots under conventional tillage system with winter rye cover cropping declined by 36% from 8.0 Mg ha−1 year−1 in 1997 to 5.1 Mg ha−1 year−1 in 2004. This result was largely attributed to cumulative effect of surface residue cover which increased by 17%, from 20% in 1997 to 37% in 2004. In conventional tillage without winter rye cover cropping, soil erosion estimates were 11.0 Mg ha−1 year−1 in 1997 and increased to 12.0 Mg ha−1 year−1 in 2004. In no-till system, soil erosion estimates generally remained stable over the study period, averaging 0.5 and 1.3 Mg ha−1 year−1with and without winter rye cover cropping, respectively. This study shows that cover cropping is critical to reduce soil erosion and to increase the sustainability of cotton production in the southeast U.S. Application of N in the form of ammonium nitrate or poultry litter significantly increased cotton canopy cover and surface root biomass, which are desirable attributes for soil erosion reduction in cotton plots.  相似文献   

14.
The impact of tillage systems on soil CO2 emission is a complex issue as different soil types are managed in various ways, from no-till to intensive land preparation. In southern Brazil, the adoption of a new management option has arisen most recently, with no-tillage as well as no burning of crops residues left on soil surface after harvesting, especially in sugar cane areas. Although such practice has helped to restore soil carbon, the tillage impact on soil carbon loss in such areas has not been widely investigated. This study evaluated the effect of moldboard plowing followed by offset disk harrow and chisel plowing on clay oxisol CO2 emission in a sugar cane field treated with no-tillage and high crop residues input in the last 6 years. Emissions after tillage were compared to undisturbed soil CO2 emissions during a 4-week period by using an LI-6400 system coupled to a portable soil chamber. Conventional tillage caused the highest emission during almost the whole period studied, except for the efflux immediately following tillage, when the reduced plot produced the highest peak. The lowest emissions were recorded 7 days after tillage, at the end of a dry period, when soil moisture reached its lowest rate. A linear regression between soil CO2 effluxes and soil moisture in the no-till and conventional plots corroborate the fact that moisture, and not soil temperature, was a controlling factor. Total soil CO2 loss was huge and indicates that the adoption of reduced tillage would considerably decrease soil carbon dioxide emission in our region, particularly during the summer season and when growers leave large amounts of crop residues on the soil surface. Although it is known that crop residues are important for restoring soil carbon, our result indicates that an amount equivalent to approximately 30% of annual crop carbon residues could be transferred to the atmosphere, in a period of 4 weeks only, when conventional tillage is applied on no-tilled soils.  相似文献   

15.
Nitrogen (N) is the nutrient most limiting crop production in all areas of the world and is generally applied to soil in the largest quantity. A review of the research on N fertilization management for no-till cereal production in the Canadian Great Plains, on mainly Chernozem and Gray soils, was done to illustrate the management practices which can be used to optimize the N use efficiency so as to minimize the N loss from root zone and environmental damage. Applied N is subject to loss by volatilization, immobilization, denitrification and leaching in soil and its efficiency of use by plants is governed by soil and climatic factors, fertilizer material, and soil, crop and fertilizer management practices. Overall efficiency of applied N has been <70%. Reducing tillage intensity modifies both the demand of crops for N due to changes in yield potential, and the supply of N due to changes in N cycling and losses. Consequently, it may be necessary to compensate for this by adjusting the fertilizer rate. Fertilizer use efficiency may also change with changes in tillage management, microclimate, microbial activity and distribution of fertilizer relative to crop residue. Placing the fertilizer in a band reduces contact with soil microorganisms, reducing immobilization of both ammonium (NH4) and nitrate (NO3). Banding also slows the conversion of urea to NH3 and NH4 to NO3, which can reduce losses by denitrification and leaching. The use of the urease inhibitor n-(n-butyl) thiophosphoric triamide (NBPT) shows promise in improving the efficiency of surface-applied urea-containing fertilizers in no-till systems and reducing seedling damage from seed-placed fertilizers. Ultimately, any N fertilization package has advantages and disadvantages. In selecting the optimum fertilizer management system for a farming operation, the balance between rate of application, cost and availability of equipment, soil disturbance, seedbed quality, moisture conservation, time and labor constraints and fertilizer use efficiency must be considered. The “best” management system is not fixed, but depends on the major limiting factors on each individual farm.  相似文献   

16.
Water scarcity threatens global food security and agricultural systems are challenged to achieve high yields while optimizing water usage. Water deficit can be accentuated by soil physical degradation, which also triggers water losses through runoff and consequently soil erosion. Although soil health in cropping systems within the Brazilian Cerrado biome have been surveyed throughout the years, information about soil erosion impacts and its mitigation are still not well understood; especially concerning the role of cropping system diversification and its effects on crop yield. Thus, the aim of this study was to assess whether ecological intensification of cropping systems –inclusion of a consorted perennial grass and crop rotation– could promote soil coverage and consequently decrease water erosion and soil, water, and nutrient losses. This work studied the effects of crop rotation and consorted Brachiaria, along with different levels of investment in fertilization on soil physical quality and on soil, water, and nutrient losses, and crop yields. Results proved that soybean monoculture (SS) is a system of low sustainability even under no-till in the Brazilian Cerrado conditions. It exhibited high susceptibility to soil, water, and nutrient losses, causing low crop yields. Our results showed that water losses in SS cropping system were approximately 10% of the total annual rainfall, and total K losses would require an additional 35% of K application. Conversely, ecological intensification of cropping systems resulted in enhanced soil environmental and agronomic functions, increased grain yield, and promoted soil and water conservation: high soil cover rate, and low soil, water and nutrient losses. Ecological intensification proved to be an adequate practice to boost crop resilience to water deficit in the Brazilian Cerrado.  相似文献   

17.
Soil properties and surface characteristics affecting wind erosion can be manipulated through tillage and crop residue management. Little information exists, however, that describes the impact of long term tillage and residue management on soil properties in the subarctic region of the United States. This study examines the impact of 20 years of tillage and residue management on a broad range of physical properties that govern wind erosion processes on a silt loam in interior Alaska. A strip plot experimental design was established in 1983 and included intensive tillage (autumn and spring disk), spring disk, autumn chisel plow, and no tillage with straw either retained on or removed from the soil surface. Soil and residue properties measured after sowing barley (Hordeum vulgare L.) in May 2004 included penetration resistance, soil water content, shear stress, bulk density, random roughness, aggregate size distribution, and residue cover and biomass. No tillage was characterized by larger aggregates, greater soil strength (penetration resistance and shear stress), wetter soil, and greater residue cover compared to all other tillage treatments. Despite crop failures the previous 2 years, crop residue management influenced residue biomass and cover, but not soil properties. Autumn chisel and spring disk appeared to be viable minimum tillage options to intensive tillage in controlling erosion. Autumn chisel and spring disk promoted greater roughness, aggregation, and residue cover as compared with intensive tillage. Although no tillage appeared to be the most effective management strategy for mitigating wind erosion, no tillage was not a sustainable practice due to lack of weed control. No tillage also resulted in the formation of an organic layer on the soil surface over the past 20 years, which has important ramifications for long term crop production in the subarctic where the mean annual temperature is <0 °C.  相似文献   

18.
On the Canadian prairies there has been a steady increase in no-till seeding coupled with more frequent cropping, facilitated by the greater use of snow management to increase stored soil water. Although no-till seeding can gradually improve soil conservation and soil quality, it may also increase the incidence of grassy weed infestations and thus cause more frequent use of costly herbicides, such as glyphosate. Our objective was to determine if no-till producers experiencing grassy weed problems could introduce pre-seeding tillage for a few years to more economically control perennial weeds, without adversely affecting grain yield and quality, and soil quality. An experiment in which spring wheat (Triticum aestivum L.) was grown for 9 years with no-tillage management on an Orthic Brown Chernozem (Typic Haplobroll) with treatments involving snow management and N rate, placement and timing, was converted to a study of pre-seeding shallow (5–7.5 cm) tillage with a cultivator, versus no-tillage, by replacing the N timing treatment in the tenth year. The experiment was then continued for three more years, during which we assessed the effect of tillage on weed populations, grain yield and N content, and on soil quality. Soil quality was also assessed following one more year during which the entire study site was summerfallowed and subjected to four tillage operations. Weed populations generally were not affected by tillage or snow management treatments, but differed among N rate and placement treatments, though not in a way that could be easily interpreted. Tillage had no effect on yield or grain N content. It increased the erodible fraction of soil (dry sieving), but did not affect wet aggregate stability. Neither microbial biomass C, nor C and N mineralization were affected by the change in tillage method. We conclude that the judicious use of shallow pre-seeding tillage in an otherwise no-till cropping system can be tolerated to manage persistent grassy weed problems without deleteriously influencing soil quality, grain yield or protein.  相似文献   

19.
The recent adoption of conservation farming systems in the semi-arid Canadian prairies opens up the possibility of replacing the traditional fallow period with non-cereal crops (oilseeds, legumes). However, information on changes to soil water regimes by inclusion of these crops, especially in combination with zero tillage, is sparse. A study was initiated in 1984 on a sandy clay loam soil at Lethbridge, Alberta, to investigate the performance of winter wheat (Triticum aestivum L.) under conventional, minimum and zero tillage in monoculture and in 2-year rotations with fallow, canola (Brassica campestris L.) or lentils (Lens culinaris Medic.)/flax (Linum usitatissimum L.). Conventional tillage in the Lethbridge region is shallow cultivation (10 cm) with a wide-blade (sweep) cultivator. Continuous cropping greatly depleted soil water reserves, resulting in some crop failures. Averaged over 10 years, available water for establishment of winter wheat in fall was least after canola (45 mm), followed by continuous winter wheat (59 mm), lentils/flax (74 mm) and fallow (137 mm). In this semi-arid region, the effect of rotation on soil water was much greater than that of tillage. Zero tillage had relatively little impact on available water to 1.5 m depth. However, once the experiment had been established for 6–7 years, available water in the 0–15 cm depth under winter wheat in spring was greatest under zero tillage. Precipitation storage efficiency during the fallow year was generally unaffected by tillage system.  相似文献   

20.
Developments in conservation tillage in rainfed regions of North China   总被引:11,自引:1,他引:11  
Dryland regions in northern China account for over 50% of the nation's total area, where farming development is constrained by adverse weather, topography and water resource conditions, low fertility soils, and poor soil management. Conservation tillage research and application in dryland regions of northern China has been developed since the 1970s. Demonstration and extension of conservation tillage practices is actively stimulated by the Chinese government since 2002, following the recognition of the increased rate of degradation of the environment due to erosion and water shortage in North China. This paper reviews the research conducted on conservation tillage in dryland regions of northern China, and discusses the problems faced with the introduction and application of conservation tillage practices.Most of the studies reported have shown positive results of soil and water conservation tillage practices. These practices generally involve a reduction in the number and intensity of operations compared to conventional tillage, with direct sowing or no-till as the strongest reduction. Crop yields and water use efficiency have increased (with up to 35%) following the implementation of reduced tillage practices. Under no-till, crop yields are equivalent to or higher than those from conventional tillage methods, especially in dry years. However, during wet years yields tend to be lower (10–15%) with no-till. Other benefits are an increased fallow water storage and reductions in water losses by evaporation. In order to fully exploit the advantages of conservation tillage, systems have to be adapted to regional characteristics. Farmers’ adoption of conservation tillage is still limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号