首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The controls on uptake and release of CO2 by tropical rainforests, and the responses to a changing climate, are major uncertainties in global climate change models. Eddy-covariance measurements potentially provide detailed data on CO2 exchange and responses to the environment in these forests, but accurate estimates of the net ecosystem exchange of CO2 (NEE) and ecosystem respiration (Reco) require careful analysis of data representativity, treatment of data gaps, and correction for systematic errors. This study uses the comprehensive data from our study site in an old-growth tropical rainforest near Santarem, Brazil, to examine the biases in NEE and Reco potentially associated with the two most important sources of systematic error in Eddy-covariance data: lost nighttime flux and missing canopy storage measurements. We present multiple estimates for the net carbon balance and Reco at our site, including the conventional “u* filter”, a detailed bottom-up budget for respiration, estimates by similarity with 222Rn, and an independent estimate of respiration by extrapolation of daytime Eddy flux data to zero light. Eddy-covariance measurements between 2002 and 2006 showed a mean net ecosystem carbon loss of 0.25 ± 0.04 μmol m−2 s−1, with a mean respiration rate of 8.60 ± 0.11 μmol m−2 s−1 at our site. We found that lost nocturnal flux can potentially introduce significant bias into these results. We develop robust approaches to correct for these biases, showing that, where appropriate, a site-specific u* threshold can be used to avoid systematic bias in estimates of carbon exchange. Because of the presence of gaps in the data and the day–night asymmetry between storage and turbulence, inclusion of canopy storage is essential to accurate assessments of NEE. We found that short-term measurements of storage may be adequate to accurately model storage for use in obtaining ecosystem carbon balance, at sites where storage is not routinely measured. The analytical framework utilized in this study can be applied to other Eddy-covariance sites to help correct and validate measurements of the carbon cycle and its components.  相似文献   

2.
Carbon dioxide, water vapour and energy fluxes were measured above and within a maritime pine forest during an atypical year with long-lasting reduced soil water availability. Energy balance closure was adequately good at both levels. As compared with what is usually observed at this site the ecosystem dissipated less energy via latent heat flux and more via sensible heat flux. The understorey canopy was responsible for a variable, significant component of the whole canopy fluxes of water vapour and carbon dioxide. The annual contribution of the understorey was 38% (154 mm) of the overall evaporation (399 mm) and 32% (89 mm) of the overall sensible heat flux (274 mm). The participation of the understorey reached 45% of the overall evaporation and 30% of the daytime overall assimilation during significant soil water deficit periods in summertime. Even during winter, understorey photosynthesis was consistent as it compensated soil and understorey respiration. The ecosystem behaved as a sink of carbon, with a negative annual carbon budget (−57 g C m−2). However, due to high soil water deficit, the annual ecosystem GPP was 40% less than usually observed at this site. This budget resulted from a sink of −131 g C m−2 for the overstorey and a source of +74 g C m−2 for the understorey. Moreover, on an annual basis the overstorey layer contributed to almost two-thirds of the ecosystem respiration. Finally, the effect of long-lasting soil water deficit on the maritime pine forest was found more important than the effect of the heat wave and drought of summer 2003.  相似文献   

3.
The integration of remotely sensed data into models of evapotranspiration (ET) facilitates the estimation of water consumption across agricultural regions. To estimate regional ET, two basic types of remote sensing approaches have been successfully applied. The first approach computes a surface energy balance using the radiometric surface temperature for estimating the sensible heat flux (H), and obtaining ET as a residual of the energy balance. This paper compares the performance of three different surface energy balance algorithms: an empirical one-source energy balance model; a one-source model calibrated using inverse modeling of ET extremes (namely ET = 0 and ET at potential) which are assumed to exist within the satellite scene; and a two-source (soil + vegetation) energy balance model. The second approach uses vegetation indices derived from canopy reflectance data to estimate basal crop coefficients that can be used to convert reference ET to actual crop ET. This approach requires local meteorological and soil data to maintain a water balance in the root zone of the crop. Output from these models was compared to sensible and latent heat fluxes measured during the soil moisture–atmosphere coupling experiment (SMACEX) conducted over rain-fed corn and soybean crops in central Iowa. The root mean square differences (RMSD) of the estimation of instantaneous latent and heat fluxes were less than 50 W m−2 for the three energy balance models. The two-source energy balance model gave the lowest RMSD (30 W m−2) and highest r2 values in comparison with measured fluxes. In addition, three schemes were applied for upscaling instantaneous flux estimates from the energy balance models (at the time of satellite overpass) to daily integrated ET, including conservation of evaporative fraction and fraction of reference ET. For all energy balance models, an adjusted evaporative fraction approach produced the lowest RMSDs in daily ET of 0.4–0.6 mm d−1. The reflectance-based crop coefficient model yielded RMSD values of 0.4 mm d−1, but tended to significantly overestimate ET from corn during a prolonged drydown period. Crop stress can be directly detected using radiometric surface temperature, but ET modeling approaches-based solely on vegetation indices will not be sensitive to stress until there is actual reduction in biomass or changes in canopy geometry.  相似文献   

4.
From 1999 to 2002, the variations in carbon flux due to management practices (shrub removal, thinning) and climate variability were observed in a young ponderosa pine forest originated from clear-cutting and plantation in 1990. These measurements were done at the Blodgett Forest Ameriflux site located in the Sierra Nevada Mountains of California. Thinning in spring 2000 decreased the leaf area index (LAI) by 34% and added 496 g C m−2 of wood and leaf debris at the soil surface. Total ecosystem respiration was not significantly affected by thinning (1261 g C m−2 in 1999 and 1273 g C m−2 in 2000), while canopy photosynthesis decreased by 202 g C m−2. As a result the ecosystem shifted from a net sink of CO2 in 1999 (−201 g C m−2) to a small net source in 2000 (13 g C m−2). Woody and leaf debris resulting from thinning only accounted for maximum 1% and 7% of the total respiration flux, respectively. Thinning did not affect the relative proportion of the different components of respiration to an observable degree. Low soil water availability in summer 2001 and 2002 decreased the proportion of soil respiration to the total respiration. It also imposed limitations on canopy photosynthesis: as a result the ecosystem shifted from a sink to a source of carbon 1 month earlier than in a wetter year (1999). The leaf area index and biomass of the stand increased rapidly after the thinning. The ecosystem was again a sink of carbon in 2001 (−97 g C m−2) and 2002 (−172 g C m−2). The net carbon uptake outside the traditionally-defined growing season can be important in this ecosystem (NEE = −50 g C m−2 in 2000), but interannual variations are significant due to differences in winter temperatures.  相似文献   

5.
In view of the significance of agricultural soils in affecting global C balance, the impact of manipulation of the quality of exogenous inputs on soil CO2–C flux was studied in rice–barley annual rotation tropical dryland agroecosystem. Chemical fertilizer, Sesbania shoot (high quality resources), wheat straw (low quality resource) and Sesbania + wheat straw (high + low quality), all carrying equivalent recommended dose of N, were added to soil. A distinct seasonal variation in CO2–C flux was recorded in all treatments, flux being higher during rice period, and much reduced during barley and summer fallow periods. During rice period the mean CO2–C flux was greater in wheat straw (161% increase over control) and Sesbania + wheat straw (+129%) treatments; however, during barley and summer fallow periods differences among treatments were small. CO2–C flux was more influenced by seasonal variations in water-filled pore space compared to soil temperature. In contrast, the role of microbial biomass and live crop roots in regulating soil CO2–C flux was highly limited. Wheat straw input showed smaller microbial biomass with a tendency of rapid turnover rate resulting in highest cumulative CO2–C flux. The Sesbania input exhibited larger microbial biomass with slower turnover rate, leading to lower cumulative CO2–C flux. Addition of Sesbania to wheat straw showed higher cumulative CO2–C flux yet supported highest microbial biomass with lowest turnover rate indicating stabilization of microbial biomass. Although single application of wheat straw or Sesbania showed comparable net change in soil C (18% and 15% relative to control, respectively) and crop productivity (32% and 38%), yet they differed significantly in soil C balance (374 and −3 g C m−2 y−1 respectively), a response influenced by the recalcitrant and labile nature of the inputs. Combining the two inputs resulted in significant increment in net change in soil C (33% over control) and crop yield (49%) in addition to high C balance (152 g C m−2 y−1). It is suggested that appropriate mixing of high and low quality inputs may contribute to improved crop productivity and soil fertility in terms of soil C sequestration.  相似文献   

6.
Soil management causes changes in physical, chemical, and biological properties that consequently affect soil CO2 emission (FCO2). Here, we studied the soil carbon dynamics in areas with sugarcane production in southern Brazil under two different sugarcane management systems: green (G), consisting of mechanized harvesting that produces a large amount of crop residues left on the soil surface, and slash-and-burn (SB), in which the residues are burned before manual harvest, leaving no residues on the soil surface. The study was conducted during the period after harvest in two side-by-side grids installed in adjacent areas, having 60 points each. The aim was to characterize the temporal and spatial variability of FCO2, and its relation to soil temperature and soil moisture, in a red latosol (Oxisol) where G and SB management systems have been recently used. Mean FCO2 emission was 39% higher in the SB plot (2.87 μmol m−2 s−1) when compared to the G plot (2.06 μmol m−2 s−1) throughout the 70-day period after harvest. A quadratic equation of emissions versus soil moisture was able to explain 73% and 50% of temporal variability of FCO2 in SB and G, respectively. This seems to relate to the sensitivity of FCO2 to precipitation events, which caused a significant increase in SB emissions but not in G-managed area emissions. FCO2 semivariogram models were mostly exponential in both areas, ranging from 72.6 to 73.8 m and 63.0 to 64.7 m for G and SB, respectively. These results indicate that the G management system results in more homogeneous FCO2 when spatial and temporal variability are considered. The spatial variability analysis of soil temperature and soil moisture indicates that those parameters do not adequately explain the changes in spatial variability of FCO2, but emission maps are clearly more homogeneous after a drought period when no rain has occurred, in both sites.  相似文献   

7.
RZ-SHAW is a hybrid model, comprised of modules from the Simultaneous Heat and Water (SHAW) model integrated into the Root Zone Water Quality Model (RZWQM) that allows more detailed simulation of different residue types and architectures that affect heat and water transfer at the soil surface. RZ-SHAW allows different methods of surface energy flux evaluation to be used: (1) the SHAW module, where evapotranspiration (ET) and soil heat flux are computed in concert with a detailed surface energy balance; (2) the Shuttleworth–Wallace (S–W) module for ET in which soil surface temperature is assumed equal air temperature; and (3) the PENFLUX module, which uses a Penman transformation for a soil slab under incomplete residue cover. The objective of this study was to compare the predictive accuracy of the three RZ-SHAW modules to simulate effects of residue architecture on net radiation, soil temperature, and water dynamics near the soil surface. The model was tested in Akron, Colorado in a wheat residue-covered (both standing and flat) no-till (NT) plot, and a reduced till (RT) plot where wheat residue was incorporated into the soil. Temperature difference between the soil surface and ambient air frequently exceeded 17 °C under RT and NT conditions, invalidating the isothermal assumption employed in the S–W module. The S–W module overestimated net radiation (Rn) by an average of 69 Wm−2 and underestimated the 3-cm soil temperature (Ts3) by 2.7 °C for the RT plot, attributed to consequences of the isothermal assumption. Both SHAW and PENFLUX modules overestimated midday Ts3 for RT conditions but underestimated Ts3 for NT conditions. Better performances of the SHAW and PENFLUX surface energy evaluations are to be expected as both approaches are more detailed and consider a more discretized domain than the S–W module. PENFLUX simulated net radiation slightly better than the SHAW module for both plots, while Ts3 was simulated the best by SHAW, with a mean bias error of +0.1 °C for NT and +2.7 °C for RT. Simulation results for soil water content in the surface 30 cm (θv30) were mixed. The NT conditions were simulated best by SHAW, with mean bias error for θv30 within 0.006 m3 m−3; RT conditions were simulated best by the PENFLUX module, which was within 0.010 m3 m−3.  相似文献   

8.
Long term flux measurements of different crop species are necessary to improve our understanding of management and climate effects on carbon flux variability as well as cropland potential in terrestrial carbon sequestration. The main objectives of this study were to analyse the seasonal dynamics of CO2 fluxes and to establish the effects of climate and cropland management on the annual carbon balance.CO2 fluxes were measured by means of the eddy correlation (EC) method over two cropland sites, Auradé and Lamasquère, in South West France for a succession of three crops: rapeseed, winter wheat and sunflower at Auradé, and triticale, maize and winter wheat at Lamasquère. The net ecosystem exchange (NEE) was partitioned into gross ecosystem production (GEP) and ecosystem respiration (RE) and was integrated over the year to compute net ecosystem production (NEP). Different methodologies tested for NEP computation are discussed and a methodology for estimating NEP uncertainty is presented.NEP values ranged between −369 ± 33 g C m−2 y−1 for winter wheat at Lamasquère in 2007 and 28 ± 18 g C m−2 y−1 for sunflower at Auradé in 2007. These values were in good agreement with NEP values reported in the literature, except for maize which exhibited a low development compared to the literature. NEP was strongly influenced by the length of the net carbon assimilation period and by interannual climate variability. The warm 2007 winter stimulated early growth of winter wheat, causing large differences in GEP, RE and NEE dynamics for winter wheat when compared to 2006. Management had a strong impact on CO2 flux dynamics and on NEP. Ploughing interrupted net assimilation during voluntary re-growth periods, but it had a negligible short term effect when it occurred on bare soil. Re-growth events after harvest appeared to limit carbon loss: at Lamasquère in 2005 re-growth contributed to store up to 50 g C m−2. Differences in NEE response to climatic variables (VPD, light quality) and vegetation index were addressed and discussed.Net biome production (NBP) was calculated yearly based on NEP and considering carbon input through organic fertilizer and carbon output through harvest. For the three crops, the mean NBP at Auradé indicated a nearly carbon balanced ecosystem, whereas Lamasquère lost about 100 g C m−2 y−1; therefore, the ecosystem behaved as a carbon source despite the fact that carbon was imported through organic fertilizer. Carbon exportation through harvest was the main cause of this difference between the two sites, and it was explained by the farm production type. Lamasquère is a cattle breeding farm, exporting most of the aboveground biomass for cattle bedding and feeding, whereas Auradé is a cereal production farm, exporting only seeds.  相似文献   

9.
A general approach to estimate soil water content from thermal inertia   总被引:1,自引:0,他引:1  
Remote sensing is a promising technique for obtaining information of the earth's surface. Remotely sensed thermal inertia has been suggested for mapping soil water content. However, a general relationship between soil thermal inertia and water content is required to estimate soil water content from remotely sensed thermal inertia. In this study, we propose a new model that relates soil thermal inertia as a function of water content. The model requires readily available soil characteristics such as soil texture and bulk density. Heat pulse measurements of thermal inertia as a function of water content on nine soils of different textures were made to generate a universal Kerstan function. Model validation was performed independently in both laboratory and field, and the retrieved soil water contents from the new model were compared with previous models. Laboratory evaluation on an Iowa silt loam showed that the RMSE of the new model was 0.029 m3 m−3, significantly less than [Murray, T., Verhoef, A., 2007. Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements. I. A universal approach to calculate thermal inertia. Agric. For. Meteorol. 147, 80–87] model (0.109 m3 m−3) and [Ma, A.N., Xue, Y., 1990. A study of remote sensing information model of soil moisture. In: Proceedings of the 11th Asian Conference on Remote Sensing. I. November 15-21. International Academic Publishers, Beijing, pp. P-11-1P-11-5.] model (0.105 m3 m−3). Similar results were obtained in a field test on a Chinese silt loam: the RMSE of the new model, [Murray, T., Verhoef, A., 2007. Moving towards a more mechanistic approach in the determination of soil heat flux from remote measurements. I. A universal approach to calculate thermal inertia. Agric. For. Meteorol. 147, 80–87] model, and [Ma, A.N., Xue, Y., 1990. A study of remote sensing information model of soil moisture. In: Proceedings of the 11th Asian Conference on Remote Sensing. I. November 15-21. International Academic Publishers, Beijing, pp. P-11-1P-11-5.] model were 0.018, 0.071, and 0.159 m3 m−3, respectively. Additionally the model was validated using literature data in which soil thermal properties were estimated from in situ temperature measurements. The mean errors of estimated water content were generally less than 0.02 m3 m−3. We concluded that the new model was able to provide accurate water content predictions from soil thermal inertia.  相似文献   

10.
Data on surface runoff and soil loss on gentle slopes with vineyards are analysed. Using a rainfall simulator, 22 rainstorms with varied intensities from 30 to 117.5 mm h−1 and return periods from 2 to 127 years were reproduced. The experimental plots were installed on vineyards planted in straight rows and oriented with the slope direction having a mean gradient of 3.8°. The texture of soils was loamy, with a very heterogeneous surface gravel cover. Values of measured surface runoff varied from 7.2 mm h−1 for low rainfall intensities (30 mm h−1) and short return periods (2 years) to 41.9 mm h−1 with simulation experiments of higher rainfall intensity (104 mm h−1) and long return periods (68 years). Runoff increased linearly with rainfall intensity resulting in soil losses that also increased with rainfall intensity (18.2 g m−2 h−1 with storms of 30 mm h−1, and 93.2 g m−2 h−1 with storms of 104 mm h−1); however, r2 explains only 36% of the variance. It was necessary to add other factors to improve the coefficient of determination (0.74; p = 0.001) and the predictive function of the equation. These variables were rainfall intensity, kinetic energy of the storm, runoff, soil resistance to drop detachment, surface gravel cover, and gradient. The equation obtained was validated with the USLE-M. In comparison with similar experiments in other regions, the results obtained for soil loss were very moderate, especially those caused by rainstorms of intermediate and low intensity.  相似文献   

11.
准确量化分析地气之间的物质和能量交换对于水资源管理和农业可持续发展是十分重要的。能量平衡闭合是评估观测数据准确性和分析地表能量平衡的一个重要的评价指数。本研究利用开路涡度相关系统和全要素自动气象站对华北平原典型冬小麦农田生态系统2013—2014年度的能量通量及常规气象要素进行了连续观测,分析了冬小麦农田各能量通量的日变化和年变化特征,计算冬小麦在4个生育时期(出苗期、越冬期、拔节期和灌浆期)的能量闭合和波文比。结果表明:在日尺度上,选取的4个生育时期净辐射和各能量分量的日变化趋势均为单峰二次曲线,净辐射、显热通量和潜热通量的峰值出现在12:00—13:00,土壤热通量的峰值出现在14:00—15:00。在年尺度上,净辐射和潜热通量的变化趋势较为一致,均在越冬期达到最低值114.51 W·m~(-2)和13.47 W·m~(-2),而在灌浆期达到最大值327.02 W·m~(-2)和116.56 W·m~(-2)。选取的4个生育时期的代表性观测日期能量闭合良好,能量闭合率分别为0.49、0.77、0.81和0.76。4个生育时期内波文比值日变化趋势均呈倒"U"型,出苗期波文比在14:00达到最大值2.12;越冬期、拔节期和灌浆期在10:00左右达到最大值,分别为1.48、0.31和0.58。本文的定量化结果可为华北平原农田生态系统水热通量等研究提供依据。  相似文献   

12.
Temporal and spatial variability of soil respiration (Rs) was measured and analyzed in a 74-year-old, mixedwood, boreal forest in Ontario, Canada, over a period of 2 years (August 2003–July 2005). The ranges of Rs measured during the two study years were 0.5–6.9 μmol CO2 m−2 s−1 for 2003–2004 (Year 1) and 0.4–6.8 μmol CO2 m−2 s−1 for 2004–2005 (Year 2). Mean annual Rs for the stand was the same for both years, 2.7 μmol CO2 m−2 s−1. Temporal variability of Rs was controlled mainly by soil temperature (Ts), but soil moisture had a confounding effect on Ts. Annual estimates of total soil CO2 emissions at the site, calculated using a simple empirical RsTs relationship, showed that Rs can account for about 88 ± 27% of total annual ecosystem respiration at the site. The majority of soil CO2 emissions came from the upper 12 to 20 cm organic LFH (litter–fibric–humic) soil layer. The degree of spatial variability in Rs, along the measured transect, was seasonal and followed the seasonal trend of mean Rs: increasing through the growing season and converging to a minimum in winter (coefficient of variation (CV) ranged from 4 to 74% in Year 1 and 4 to 62% in Year 2). Spatial variability in Rs was found to be negatively related to spatial variability in the C:N ratio of the LHF layer at the site. Spatial variability in Rs was also found to depend on forest tree species composition within the stand. Rs was about 15% higher in a broadleaf deciduous tree patch compared to evergreen coniferous area. However, the difference was not always significant (at 95% CI). In general, Rs in the mixedwood patch, having both deciduous and coniferous species, was dominated by broadleaf trees, reflecting changing physiological controls on Rs with seasons. Our results highlight the importance of discerning soil CO2 emissions at a variety of spatial and temporal scales. They also suggest including the LFH soil layer and allowing for seasonal variability in CO2 production within that layer, when modeling soil respiration in forest ecosystems.  相似文献   

13.
Two consecutive years of investigation on soil surface features, surface runoff and soil detachment within 1-m2 microplots on 40% slope highlighted the effects of land-use change, vegetation cover and biological activity on the water pathways in Northern Vietnam. Three replicate plots were set up on each of five land-uses: cassava (CAS), grass fodder of Bracharia ruziziensis (BRA), a 3-year old fallow (FAL), tree stands of Acacia mangium and Venicia montana (FOR), and a fallow with regrowth of Eucalyptus regularly cut (EUC). The second year, two of the microplots under FAL and EUC were treated with herbicide (FALh, EUCh), one of them was burnt (FALh+b, EUCh+b). The highest yearly surface runoff coefficient of 16%, and soil detachment rate of 700 g m− 2 yr− 1 in average with a maximum of 1305 g m− 2 yr− 1 have been recorded under CAS. On FALh and FALh+b, runoff ratios were 8.7 and 13.5%, respectively and detachment rates were 86 and 389 g m− 2. On FAL and BRA the yearly runoff ratio varied from 5.9 to 9.8% but the detachment rate was limited at 24 to 35 g m− 2. FOR and EUC annual runoff was ≤ 3.1% and annual soil detachment ≤ 71 g m− 2. These values were very low compared to the values reported on steep slopes in Laos within similar climate and vegetation cover.The runoff and detachment rates underlined the importance of rainfall intensities, soil physical properties, soil surface features, soil vegetation cover and biological activity. The annual surface runoff was highly correlated to the soil surface crusting. CAS and BRA plots were prone to crusting especially after weeding at the onset of the rainy season, when the soil surface was still uncovered. Soil bioturbation (earthworm casting activity) was the second factor that explains local variation of surface runoff and soil detachment. The continuous production of earthworms casts on soil surface, especially on FOR and EUC microplots, induced a marked surface roughness and reduced the surface runoff. The production of casts was very limited in FAL and completely absent in CAS microplots. So it is evident that our results confirm the deleterious effects of cassava on soil and water conservation.  相似文献   

14.
Forests play a significant role in the global carbon (C) cycle. Variability in weather, species, stand age, and current and past disturbances are some of the factors that control stand-level C dynamics. This study examines the relative roles of stand age and associated structural characteristics and weather variability on the exchange of carbon dioxide between the atmosphere and three different coastal Douglas-fir stands at different stages of development after clearcut harvesting. The eddy covariance technique was used to measure carbon dioxide fluxes and a portable soil chamber system was used to measure soil respiration in the three stands located within 50 km of each other on the east coast of Vancouver Island, British Columbia, Canada. In 2002, the recently clearcut harvested stand (HDF00) was a large C source, the pole/sapling aged stand (HDF88) was a moderate C source, and the rotation-aged stand (DF49) was a moderate C sink (net ecosystem production of −606, −133, and 254 g C m−2 year−1, respectively). Annual gross ecosystem production and ecosystem respiration also increased with increasing stand age. Differences in stand structural characteristics such as species composition and phenology were important in determining the timing and magnitude of maximum gross ecosystem production and net ecosystem production through the year. Both soil and ecosystem respiration were exponentially related to soil temperature in each stand with total ecosystem respiration differing more among stands than soil respiration. Between 1998 and 2003, annual net ecosystem production ranged from 254 to 424 g C m−2 year−1 over 6 years for DF49, from −623 to −564 g C m−2 year−1 over 3 years for HDF00, and from −154 to −133 g C m−2 year−1 over 2 years for HDF88. Interannual variations in C exchange of the oldest, most structurally stable stand (DF49) were related to variations in spring weather while the rapid growth of understory and pioneer species influenced variations in HDF00. The differences in net ecosystem production among stands (maximum of 1000 g C m−2 year−1 between the oldest and youngest stands) were an order of magnitude greater than the differences among years within a stand and emphasized the importance of age-related differences in stand structure on C exchange processes.  相似文献   

15.
In order to test two hypotheses: (i) that carbon (C) and energy exchanges between terrestrial ecosystems and the atmosphere are closely constrained by soil water availability, and (ii) that vegetation is able to optimize soil water uptake from different soil layers; two model simulations were conducted. The Boreal Ecosystem Productivity Simulator (BEPS) model was run to simulate an aspen forest in Saskatchewan, Canada during the period 1997–2004. In Simulation 1, the effect of soil water availability in different soil layers on stomatal conductance was weighted only by root fraction. In Simulation 2, the influence of soil water availability in different soil layers on stomatal conductance was weighted according to both the root fraction and soil water availability, in order to allow easier access of roots to soil layers containing more water.Comparison against measured fluxes showed that Simulation 2 was an improvement over Simulation 1 in predicting C, water and energy fluxes at different time scales in dry years. In Simulation 1, the daytime C and water fluxes were underestimated during the transition from adequate to insufficient soil water content in the upper layers. In this run, the model captured 92, 79 and 91% of the daily variances in gross primary productivity (GPP), net ecosystem productivity (NEP), and ecosystem respiration (Re) during 1997–2004. In Simulation 2, the daily variances of GPP, NEP, and Re explained by the model increased to 93, 82 and 92%, respectively. In Simulation 1, the annual NEP was considerably underestimated in the dry years and years with dry periods, with a root mean square error (RMSE) of 45 g C m−2 year−1 (n = 8) from 1997 to 2004. In Simulation 2, the RMSE value of simulated annual NEP was reduced to 14 g C m−2 year−1, a relatively small value compared with the average NEP of 157 g C m−2 year−1 during 1997–2004. This suggested that the ability of plant roots to extract water from deep soil layers is critical for the forest to maintain growth when surface layers dried out. Our model results showed that NEP was very sensitive to water conditions at this site. In wet years, heterotrophic respiration was enhanced and NEP was reduced.  相似文献   

16.
The present study was conducted to determine the spatial heterogeneity of bulk density, soil moisture, inorganic N, microbial biomass C, and microbial biomass N in the ridge tillage system of Turiel compared to conventional mouldboard ploughing on three sampling dates in May, July, and August. The soil sampling was carried out under vegetation representing the ridge in a high spatial resolution down the soil profile. Bulk density increased with depth and ranged from 1.3 g cm−3 at 10 cm depth to 1.6 g cm−3 at 35 cm in ploughed plots and from 1.0 g m−3 at 5 cm to 1.4 g m−3 at 35 cm in the ridges. In the ploughed plots, the contents of microbial biomass C and microbial biomass N remained roughly constant at 215 and 33 μg g−1 soil, respectively, throughout the experimental period. The microbial biomass C/N ratio varied in a small range around 6.4. In the ridged plots, the contents of microbial biomass C and microbial biomass N were 5% and 6% higher compared to the ploughed plots. Highest microbial biomass C contents of roughly 300 μg g−1 soil were always measured in the crowns in July. The lowest contents of microbial biomass C of 85–137 μg g−1 soil were measured in the furrows. The ridges showed strong spatial heterogeneity in bulk density, soil water content, inorganic nitrogen and microbial biomass.  相似文献   

17.
A Lagrangian experiment was conducted over Iowa during the daytime (9:00–17:30 LT) on June 19, 2007 as part of the North American Carbon Program's Mid-Continent Intensive using a light-weight and operationally flexible aircraft to measure a net drawdown of CO2 concentration within the boundary layer. The drawdown can be related to net ecosystem exchange when anthropogenic emissions are estimated using a combination of the Vulcan fossil fuel emissions inventory coupled with a source contribution analysis using HYSPLIT. Results show a temporally and spatially averaged net CO2 flux of −9.0 ± 2.4 μmol m−2 s−1 measured from the aircraft data. The average flux from anthropogenic emissions over the measurement area was 0.3 ± 0.1 μmol CO2 m−2 s−1. Large-scale subsidence occurred during the experiment, entraining 1.0 ± 0.2 μmol CO2 m−2 s−1 into the boundary layer. Thus, the CO2 flux attributable to the vegetation and soils is −10.3 ± 2.4 μmol m−2 s−1. The magnitude of the calculated daytime biospheric flux is consistent with tower-based eddy covariance fluxes over corn and soybeans given existing land-use estimates for this agricultural region. Flux values are relatively insensitive to the choice of integration height above the boundary layer and emission footprint area. Flux uncertainties are relatively small compared to the biospheric fluxes, though the measurements were conducted at the height of the growing season.  相似文献   

18.
This paper summarizes results from 8 years (1996–2003) of eddy covariance-based ecosystem CO2 exchange measurements at the Borden Forest Research Station (44°19′N, 79°56′W). The site represents a mid-latitude, 100-year-old, mixed deciduous and coniferous forest dominated by red maple, aspen and white pine. The years 1996 and 1997 were relatively cold, had a late spring and received below average photosynthetic photon flux density (PPFD). This contrasts with an early spring, warmer soil and air temperatures during 1998–1999, and with distinctly wet year of 2000 and dry years of 2001–2003. The combination of early spring, warmer air and soil temperature and relatively high level of PPFD was associated with higher net ecosystem productivity (NEP) that peaked during 1999. Photosynthetic capacity was reduced and NEP showed a mid-growing season depression during the dry years of 2001–2003. Annual average ecosystem respiration (R) determined from a light response model was 30% less than R derived from a logistic respiration equation, relating night time CO2 flux and soil temperature. However these independently determined R values were well correlated indicating that the site is unaffected by fetch and spatial heterogeneity problems. Based on the combined 8 years of growing season daytime data, an air temperature of 20–25 °C and a vapor pressure deficit (VPD) of 1.3 kPa were found to be the optimal conditions for CO2 uptake by the canopy. Over the 1996–2003 period, the forest sequestered carbon at an average rate of 140 ± 111 gC m−2 y−1. The corresponding gross ecosystem photosynthesis (GEP) and R over this period were 1116 ± 93 gC m−2 y−1 and 976 ± 68 gC m−2 y−1, respectively. The annual carbon sequestration ranged from 19 gC m−2 in 1996 to 281 gC m−2 in 1999. However, these estimates were sensitive to frictional velocity threshold () used for screening data associated with poor turbulent mixing at night. Increasing from 0.2 m s−1 (based on the inflection point in the nighttime CO2 flux vs. u* relationship) to 0.35 m s−1 (determined using a selection algorithm based on change-point detection) modified the 8-year mean NEP estimate from 140 ± 111 gC m−2 y−1 to 65 ± 120 gC m−2 y−1. Both approaches show that the Borden forest was a low to moderate sink of carbon over the 8-year period.  相似文献   

19.
To date, tillage erosion experiments in Canada have only been conducted on conventionally tilled corn-based production systems in Ontario and conventionally tilled cereal-based production in Manitoba. Estimates and assumptions have been made for all other production systems. Therefore, the objective of this study was to evaluate the erosivity of primary and secondary tillage operations within conventional and conservation potato production systems used in Atlantic Canada. Regression analysis determined that a direct relationship exists between slope gradient and both the mean displacement distance of the tilled layer (TL) and the mass of translocated soil (TM) for the chisel plough (CP), mouldboard plough (MP) and offset disc (OD), but not for the vibrashank (VS). Overall, the potential for tillage erosion of the MP, CP, and OD was similar (1.8–1.9 kg m−1 %−1 pass−1) and larger than that of the VS (0.3 kg m−1 %−1 pass−1). The regression coefficients for each implement were improved after including slope curvature, and we recommend that curvature be included in any future tillage erosion modelling. Our results show that both residue management to control wind and water erosion and soil movement to control tillage erosion must be considered when choosing implements and developing best management practices with regards to reducing the negative impacts of total soil erosion on potato production systems in Atlantic Canada.  相似文献   

20.
Many studies on land surface radiation balances have relied on geostationary satellites. These satellites have provided data with high temporal resolution (less than 3 h); however, the spatial resolution was too coarse (20–250 km scale) to investigate local-scale land surface radiation balances. Moderate resolution imaging spectroradiometer (MODIS) – onboard both the Terra and Aqua satellites – yields a tradeoff with regard to this problem by providing higher spatial resolution (1 km scale) and sensing all over the earth nearly twice a day during daytime; this provides a potential tool for the periodical monitoring of the land surface energy balance. The reliability of MODIS-derived estimates is, however, affected by the presence of multiple error sources, such as those related to heterogeneous land cover and complex topography. In this study, we have used atmospheric (5 and 10 km scale) and land (1 km scale) products obtained from both the Terra and Aqua MODIS devices as inputs in order to estimate the radiation components (1 km scale) under clear daytime conditions over a heterogeneous farmland area and a rugged deciduous forest in the Korea Flux Network (KoFlux). The reliability of these estimates and the associated errors were evaluated by comparing against field measurements taken for 41 and 26 clear days with regard to the farmland and forest sites, respectively. Solar radiation was successfully retrieved with a root mean square error (RMSE) of 20 W m−2 for both the Terra and Aqua devices over the flat farmland site, whereas the rugged forest site exhibited corresponding values of 40 and 65 W m−2 RMSE values with consistent positive biases (presumably caused by topographic effects). The RMSE values of the downward longwave radiation were 20 W m−2 for both the Terra and Aqua devices for both these sites. The sensitivities of the upward components of the shortwave and longwave radiations varied with the RMSE values to the scale of the spatial heterogeneity of both the sites. Consequently, the RMSE values of the net radiation ranged from 33 to 61 W m−2 for both the devices at both the sites. Our results suggest that the scales of the patch mosaics within the landscapes need to be quantified for proper retrieval of the MODIS-derived radiation products. More extensive validation efforts are required to identify and account for major error sources across diverse land surface conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号