首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The influence of organic matter and its cycling on soil pH change is still unclear. This study investigated the effect of organic compounds on carbon and nitrogen dynamics and their relationship with pH changes in two soils differing in initial soil pH (Podosol of pH 4.5 and Tenosol of pH 6.2). Seven organic compounds representing common compounds in decomposing plant residues or root exudates were added to the soils and incubated for 60 d. The largest cumulative soil respiration occurred when glucose, malic acid and citric acid were added. In addition, the Tenosol had the greater respiration compared to the Podosol. The addition of organic acids (acetic, malic, citric, ferulic and benzoic acid) instantly decreased soil pH due to the dissociation of H+ from the acids. The pH of both soils was then restored over time, which was positively correlated with decomposition % of these compounds. The pH of the Tenosol amended with all the organic acids and of the Podosol with malic acid exceeded that of the control, and net alkalization occurred, with the degree of alkalization being greater with malic and citric acid. Adding organic acids to the Tenosol generally increased NH4 concentrations but decreased NO3 concentrations. The addition of glucose decreased pH in Podosol but slightly increased it in the Tenosol. The addition of glucosamine hydrochloride decreased pH due to significant nitrification. The results suggest that the addition of organic acids stimulates microbial NO3 uptake, and ammonification and decomposition of indigenous soil organic matter, resulting in a priming effect on alkalinity release, and that the degree of the priming effect is influenced by the type of organic acid and initial soil pH.  相似文献   

2.
3.
Impact of organic matter addition on pH change of paddy soils   总被引:1,自引:1,他引:0  

Purpose

The objective of the present study was to explore the effect of initial pH on the decomposition rate of plant residues and the effect of residue type on soil pH change in three different paddy soils.

Materials and methods

Two variable charge paddy soils (Psammaquent soil and Plinthudult soil) and one constant charge paddy soil (Paleudalfs soil) were used to be incubated at 45 % of field capacity for 105 days at 25 °C in the dark after three plant residues (Chinese milk vetch, wheat straw, and rice straw) were separately added at a level of 12 g?kg?1 soil. Soil pH, CO2 escaped, DOC, DON, MBC, MBN, NH 4 + , and NO 3 ? during the incubation period were dynamically determined.

Results and discussion

Addition of the residues increased soil pH by 0.1–0.8 U, and pH reached a maximum in the Psammaquent and Plinthudult soils with low initial pH at day 105 but at day 3 in the Paleudalfs soil with high initial pH. Incorporation of Chinese milk vetch which had higher concentration of alkalinity (excess cations) and nitrogen increased soil pH more as compared with incorporation of rice and wheat straws. Microbial activity was the highest in Chinese milk vetch treatment, which resulted in the highest increase of soil pH as compared with addition of rice and wheat straws. However, nitrification seemed to be inhibited in the variable charge soils of Psammaquent and Plinthudult but not in the constant charge soil of Paleudalfs.

Conclusions

The effectiveness of increasing soil pH after incorporation of the plant materials would be longer in low initial pH soils of Psammaquent and Plinthudult than in high initial pH soil of Paleudalfs. In order to achieve the same degree of pH improvement, higher amounts of plant residues should be applied in constant charge soils than in variable charge soils.  相似文献   

4.
The retention of agricultural residues in cropping systems to maintain soil fertility is also important for the redistribution of alkalinity. In systems that adopt minimum or no‐tillage practices residue incorporation into the soil may occur slowly and the contribution of soluble and insoluble residue fractions to pH change may vary temporally and spatially. In this study we examined the contribution of whole, water soluble (70°C for 1 hour for two cycles) and insoluble fractions of canola, chickpea and wheat residues (added at 10 g kg?1 soil) to pH change in a Podosol (Podzol; initial pH 4.5) and a Tenosol (Cambisol; initial pH 6.2) over a 59‐day incubation period. Whole residues increased pH in both soils, with the magnitude of the pH increase (chickpea > canola > wheat) being related to alkalinity content (concentration of excess cations) of the residue. Temporal release of alkalinity was only observed for the larger alkalinity content canola and chickpea residues and the change in pH was greater than during the initial period (approximately 4 hours; T0). Increases in pH were attributed to the decarboxylation of organic anions and the association of H+ with organic anions and other negatively charged chemical functional groups. The relative contribution of these processes depended on the residue and the initial soil pH. Our results show that 40–62% of the alkalinity of canola and chickpea residues resided in the soluble fraction. Furthermore, pH increases caused by soluble fractions may be transient if these contain large N concentrations. Soil properties that influence inorganic N dynamics such as inhibition of nitrification at acid pH will be important in determining the subsequent direction and magnitude of pH change.  相似文献   

5.

Purpose

The aim of the research was to explore the effect of Chinese milk vetch (CM vetch) addition and different water management practices on soil pH change, C and N mineralization in acid paddy soils.

Materials and methods

Psammaquent and Plinthudult paddy soils amended with Chinese milk vetch at a rate of 12 g?kg?1 soil were incubated at 25 °C under three different water treatments (45 % field capacity, CW; alternating 1-week wetting and 2-week drying cycles, drying rewetting (DRW) and waterlogging (WL). Soil pH, dissolved organic carbon, dissolved organic nitrogen (DON), CO2 escaped, microbial biomass carbon, ammonium (NH4 +) and nitrate (NO3 ?) during the incubation period were dynamically determined.

Results and discussion

The addition of CM vetch increased soil microbial biomass concentrations in all treatments. The CM vetch addition also enhanced dissolved organic N concentrations in all treatments. The NO3–N concentrations were lower than NH4–N concentrations in DRW and WL. The pH increase after CM vetch addition was 0.2 units greater during WL than DRW, and greater in the low pH Plinthudult (4.59) than higher pH Paleudalfs (6.11) soil. Nitrogen mineralization was higher in the DRW than WL treatment, and frequent DRW cycles favored N mineralization in the Plinthudult soil.

Conclusions

The addition of CM vetch increased soil pH, both under waterlogging and alternating wet–dry conditions. Waterlogging decreased C mineralization in both soils amended with CM vetch. Nitrogen mineralization increased in the soils subjected to DRW, which was associated with the higher DON concentrations in DRW than in WL in the acid soil. Frequent drying–wetting cycles increase N mineralization in acid paddy soils.  相似文献   

6.

Purpose

Initial soil pH determines the direction and magnitude of pH change after residue addition. This study aimed to evaluate the relative importance of initial soil pH and rate of residue application in determining subsequent pH change, nitrogen (N) mineralization, and soil-exchangeable aluminum (Al).

Materials and methods

An incubation experiment was conducted for 102 days on a Plinthudult soil and a Paleudalf soil, where pH gradients were produced after application of direct current (DC). Rates of vetch applications were 0, 5, 15, 30, and 50 g kg?1 soil.

Results and discussion

Increasing rates of vetch application caused greater increases in soil pH, but no consistent increase in soil pH at higher initial pH range (4.40~6.74), because of nitrification. There was a positive correlation between alkalinity production and the initial soil pH at day 14, while correlations became negative at days 56 and 102. Mineral N accumulated as NH4 +–N in low pH soils, due to limited nitrification, while NO3 ?–N dominated in higher pH soils. Application of vetch decreased KCl-extractable Al, probably because of complexation of Al by organic matter and precipitation of Al as a result of increased pH, reductions in Al concentration increased with increasing rates of vetch application. However, this amelioration effect on Al concentration weakened with time in higher pH soils.

Conclusions

Application of vetch residue can significantly increase soil pH and concentrations of mineral N and reduce exchangeable Al. These amelioration effects are enhanced with increased rate of vetch addition and vary with time depending on the initial pH of the soil.  相似文献   

7.

Purpose

The effects of soil pH manipulation and KCl addition on N2O production in adjacent forest and grassland soils in central Alberta were studied in a 16-day laboratory incubation experiment.

Materials and methods

The soils were subjected to four pH and two salt treatments: CK (control)—no addition of acid or alkali solution (pH 4.50 and 4.48 for the forest and grassland soils, respectively; same below); HCl—addition of HCl solution to lower soil pH (3.95 and 3.75); L-KOH and H-KOH—addition of 6 mL of 0.2 (5.36 and 5.57) and 0.4 (6.41 and 6.72)?mol?L?1 KOH solution, respectively, to increase soil pH to two different levels. In order to differentiate between the effect of a change in pH and of changed salt concentrations on N2O production, 6 mL of 0.2 (L-KCl) (4.56 and 4.41) or 0.4 mol?L?1 (H-KCl) (4.59 and 4.42) KCl solutions were also applied as treatments to create two levels of salt application rates.

Results and discussion

Increasing pH promoted gross nitrification and cumulative N2O production in both soils, particularly in the forest soil. However, cumulative N2O production decreased in the forest soil but increased in the grassland soil when pH decreased. Cumulative N2O production in the grassland soil was 36 times higher in the L-KCl treatment (1,442 μg?N?kg?1) than in the CK (40 μg?N?kg?1), whereas the H-KCl treatment reduced cumulative N2O production. In contrast, in the forest soil, both KCl treatments reduced cumulative N2O production.

Conclusions

(1) The most important factor to increase N2O production in this study was increasing soil pH, suggesting that careful soil pH management could be used as a tool to control soil N2O production; (2) salt effect was also involved in affecting N2O production.  相似文献   

8.
Two acidic soils (initial pH, 4.6) with contrasting soil organic C (SOC) contents (11.5 and 40 g C kg?1) were incubated with 13C-labelled lime (Ca13CO3) at four different rates (nil, target pH 5, 5.8 and 6.5) and three application depths (0–10, 20–30 and 0–30 cm). We hypothesised that liming would stimulate SOC mineralisation by removing pH constraints on soil microbes and that the increase in mineralisation in limed soil would be greatest in the high-C soil and lowest when the lime was applied in the subsoil. While greater SOC mineralisation was observed during the first 3 days, likely due to lime-induced increases in SOC solubility, this effect was transient. In contrast, SOC mineralisation was lower in limed than in non-limed soils over the 87-day study, although only significant in the Tenosol (70 μg C g?1 soil, 9.15%). We propose that the decrease in SOC mineralisation following liming in the low-C soil was due to increased microbial C-use efficiency, as soil microbial communities used less energy maintaining intracellular pH or community composition changed. A greater reduction in SOC mineralisation in the Tenosol for low rates of lime (0.3 and 0.5 g column?1) or when the high lime rate (0.8 g column?1) was mixed through the entire soil column without changes in microbial biomass C (MBC) could indicate a more pronounced stabilising effect of Ca2+ in the Tenosol than the Chromosol with higher clay content and pH buffer capacity. Our study suggests that liming to ameliorate soil acidity constraints on crop productivity may also help to reduce soil C mineralisation in some soils.  相似文献   

9.

Purpose

Field survey and sampling of vegetable greenhouse soils were conducted in Shouguang, Shandong Province, and Ningbo, Zhejiang Province to study the acidification and salinization characteristics of soils with different initial soil pH values and greenhouse cultivation time.

Materials and methods

The pH, electrical conductivity (EC), and ion composition of 74 composite soil samples were analyzed to evaluate their relation to soil acidification and salinization.

Results and discussion

Compared with their corresponding open-field soils, acidification and salinization of the greenhouse soils occurred in both 0-20 cm and 20-40 cm soil layers for the Shouguang and Ningbo soils. The soil pH decreased gradually at different rates as greenhouse cultivation time increased in the two surveyed regions, but the opposite trend was observed for soil EC. For the Shouguang soils, while the percentages of K+ and NO3 ? increased dramatically and Ca2+ and HCO3 - decreased significantly after the soils were converted to greenhouse use, the correlation between soil pH and EC was significant, and the stepwise multiple regression analysis further showed that there was a significant correlation between pH and the percent of Ca2+ and HCO3 ?.

Conclusions

Soil acidification and salinization are common in greenhouse soils with different initial soil pH. Soil acidification in the Shouguang soils is a result of decrease in the percent of Ca2+, HCO3 ? due to over application of N and K fertilizers. Future research should be devoted to understanding the relevant mechanisms in greenhouse soils with lower initial soil pH values to assess if there are correlations between soil acidification and salinization under greenhouse cultivation.  相似文献   

10.
The mechanisms by which organic materials affect soil pH are not fully understood. This study for the first time compared the short-term effect of various model organic compounds on pH change of two soils differing in initial pH (Podosol of pH 4.4 and Tenosol of pH 6.1). Eight organic compounds, representing common compounds in plant residues, were selected based on the number and type of chemical functional groups. The addition of organic acids (acetic, malic, citric, and benzoic acid) reduced soil pH immediately due to H+ dissociation. The magnitude of pH decrease depended on the rate of application, degree of dissociation of the acids, and initial soil pH. During a subsequent incubation, pH was slowly restored as these compounds were decomposed. The degree to which pH was restored was reduced with increasing addition rate. The production of H+ ions was increased with increasing rate of acid addition and decreased over time. When potassium citrate (organic anion) was added, soil pH increased due to H+ consumption upon decomposition. Compounds with amine groups (glucosamine hydrochloride) and less easily decomposable compounds (phenol) did not significantly alter pH during 16-day shaking. Changes in pH after glucose addition were relatively small compared with other compounds and were not expected because hydroxyl chemical groups of glucose are neutral. The present study demonstrated that the addition of model organic compounds to soil caused soil pH to increase, decrease, or remains unaffected. The extent and direction of pH change was dependent on the chemical functional group, addition rate, decomposition, and the initial soil pH.  相似文献   

11.
Anaerobic ammonium oxidation (anammox process) widely occurs in paddy soil and may substantially contribute to permanent N removal; however, little is known about the factors controlling this process. Here, effects of temperature, pH, organic C, and substrates on potential rate of anammox and the relative contribution of anammox to total N2 production in a paddy soil were investigated via slurry incubation combined with 15N tracer technique. Anammox occurred over a temperature range from 5 to 35 °C with an optimum rate at 25 °C (1.7 nmol N g?1 h?1) and a pH range from 4.8 to 10.1 with an optimum rate at pH 7.3 (1.7 nmol N g?1 h?1). The presence of glucose and acetate (5–100 mg C L?1) significantly inhibited anammox activities and the ratio of anammox to total N2 production. The response of potential rates of anammox to ammonium concentrations fitted well with Michaelis-Menten relationship showing a maximum rate (Vmax) of 4.4 nmol N g?1 h?1 and an affinity constant (Km) of 6.3 mg NH4+-N L?1. Whereas, nitrate addition (5–15 mg 15NO3?-N L?1) significantly inhibited anammox activities and the ratio of anammox to total N2 production. Our results provide useful information on factors controlling anammox process and its contribution to N loss in the paddy soil.  相似文献   

12.

Purpose

Carbon (C) flux is largely controlled by the highly bio-reactive labile C (LC) pool, while long-term C storage is determined by the recalcitrant C (RC) pool. Soil nitrogen (N) availability may considerably affect changes of these pools. The aim of this study was to investigate the effects of N treatments on soil LC and RC pools.

Materials and methods

A field experiment was conducted in a city lawn soil for 600 days with three N treatments, i.e., the control (0 kg N ha?1 year?1), low-N (100 kg N ha?1 year?1), and high-N (200 kg N ha?1 year?1) treatments. As the N source, NH4NO3 solution was added to soil surface monthly. Measurements of LC, RC, and other soil biochemical properties, including pH, soil respiration rates, microbial biomass, and enzymes activities, were taken during the experiment period.

Results and discussion

The low-N and high-N treatments increased 6.3 and 13% of the LC pool, respectively, which was caused by decreased microbial biomass and soil respiration rates under the N treatments. By contrary, the low-N and high-N treatments decreased 5.9 and 12% of the RC pool, respectively. The N addition treatments enhanced phenol oxidase activities. The enhanced oxidase activities decreased new RC input and the increased dissolved organic C stimulated RC pool decomposition. The LC and RC pools were highly influenced by the N treatments, whereas effect of the N treatments on soil organic C was not significant. The N addition treatments also caused soil acidification and reduced bacterial biomass proportion in the soil microbial composition.

Conclusions

The N addition increased the LC pool but decreased the RC pool in the soil. These changes should greatly impact soil long-term C storage.  相似文献   

13.

Purpose

Long-term manure applications can prevent or reverse soil acidification by chemical nitrogen (N) fertilizer. However, the resistance to re-acidification from further chemical fertilization is unknown. The aim of this study was to examine the effect of urea application on nitrification and acidification processes in an acid red soil (Ferralic Cambisol) after long-term different field fertilization treatments.

Materials and methods

Soils were collected from six treatments of a 19-year field trial: (1) non-fertilization control, (2) chemical phosphorus and potassium (PK), (3) chemical N only (N), (4) chemical N, P, and K (NPK), (5) pig manure only (M), and (6) NPK plus M (NPKM; 70 % N from M). In a 35-day laboratory incubation experiment, the soils were incubated and examined for changes in pH, NH4 +, and NO3 ?, and their correlations from urea application at 80 mg N kg?1(?80) compared to 0 rate (?0).

Results and discussion

From urea addition, manure-treated soils exhibited the highest acidification and nitrification rates due to high soil pH (5.75–6.38) and the lowest in the chemical N treated soils due to low soil pH (3.83–3.90) with no N-treated soils (pH 4.98–5.12) fell between. By day 35, soil pH decreased to 5.21 and 5.81 (0.54 and 0.57 unit decrease) in the NPKM-80 and M-80 treatments, respectively, and to 4.69 and 4.53 (0.43 and 0.45 unit decrease) in the control-80 and PK-80 treatments, respectively, with no changes in the N-80 and NPK-80 treatments. The soil pH decrease was highly correlated with nitrification potential, and the estimated net proton released. The maximum nitrification rates (K max) of NPKM and M soils (14.7 and 21.6 mg N kg?1 day?1, respectively) were significantly higher than other treatments (2.86–3.48 mg N kg?1 day?1). The priming effect on mineralization of organic N was high in manure treated soils.

Conclusions

Field data have shown clearly that manure amendment can prevent or reverse the acidification of the red soil. When a chemical fertilizer such as urea is applied to the soil again, however, soil acidification will occur at possibly high rates. Thus, the strategy in soil N management is continuous incorporation of manure to prevent acidification to maintain soil productivity. Further studies under field conditions are needed to provide more accurate assessments on acidification rate from chemical N fertilizer applications.  相似文献   

14.

Purpose

The present work evaluates the influence of different soil properties and constituents on As solubility in laboratory-contaminated soils, with the aim of assessing the toxicity of this element from the use of bioassays to evaluate the soil leachate toxicity and thereby propose soil guideline values for studies of environmental risk assessment in soil contamination.

Materials and methods

Seven soils with contrasting properties were artificially contaminated in laboratory with increasing concentrations of As. Samples were incubated for 4 weeks, and afterwards, soil solution (1:1) was obtained after shaking for 24 h. The soil leachate toxicity was assessed with two commonly used bioassays (seed germination test with Lactuca sativa and Microtox ® test with Vibrio fischeri).

Results and discussion

The relationship between soluble As and soil properties indicated that iron oxides and organic matter content were the variables most closely related to the reduction of the As solubility, while pH and CaCO3 increased As solubility in the soil solutions. Toxicity bioassays showed significant differences between soils depending on their properties, with a reduction of the toxicity in the iron-rich soil (no observed effect concentration (NOEC)?=?150 mg kg?1) and a significant increase in the highly carbonate samples (NOEC between 15 and 25 mg kg?1).

Conclusions

Soil guideline values for regulatory purposes usually set a single value for large areas (regions or countries) which can produce over- or underestimation of efforts in soil remediation actions. These values should consider different levels according to the main soil properties controlling arsenic mobility and the soil leachate toxicity.  相似文献   

15.

Purpose

The Escherichia coli (E. coli) O157:H7 survival dynamics in original and pH-modified agricultural soils were investigated to determinate how E. coli O157:H7 survival responded to the pH values of different soils, identify the relationships between E. coli O157:H7 survival time (t d ) and soil properties, and assess the potential pathogen contamination after soil pH changed.

Materials and methods

The six soil samples were collected from different provinces of China, and 18 pH-modified soil samples were obtained from original soils by treating the original soils with direct electric current. The E. coli O157:H7 cells were inoculated into 24 soils and incubated at soil moisture of ?33 kPa and 25 °C. The soils were sampled for determining the numbers of E. coli O157:H7 at given time intervals over the incubation. The effects of soil pH change and other properties on the t d values were analyzed.

Results and discussion

The t d values in the test soils were between 7.1—24.7 days. Results indicate that soil pH, texture, and free Fe2O3 (Fed) were the most important factors impacting the t d values in the test soils. Further, the response of E. coli O157:H7 survival to pH change varied with different soils. In the acidic soils (shorter t d values), the t d values decreased as the pH decreased and Fed increased, while in the neutral or alkaline soils (pH?≥?6.45, longer t d values), the t d values did not change significantly with pH.

Conclusions

The changes of amorphous and free sesquioxides induced by pH change might strengthen the response of E. coli O157:H7 survival to soil pH. Closer attention should be paid to E. coli O157:H7 long survival in soils and its potential environmental contamination risk.  相似文献   

16.
Seventeen Mollisols having pH(1:2) in the range of 6.00 to 8.42 were analyzed with five extractants, and the extractable zinc (Zn) ranges were 0.84 to 2.75 mg Zn kg?1 soil for diethylenetriaminepentaacetic acid (DTPA) (pH 7.3), 0.91 to 2.72 mg Zn kg?1 soil for DTPA + ammonium bicarbonate (pH 7.6), 1.82 to 7.18 mg Zn kg?1 soil for Mehlich 3, 1.22 to 3.83 mg Zn kg?1 soil for ethylenediaminetetraacetic acid (EDTA) + ammonium carbonate, and 0.88 to 1.18 mg Zn kg?1 soil for 1 mol L?1 magnesium chloride (MgCl2) (pH 6.0). Zinc extracted by DTPA (pH 7.3) and Mehlich 3 showed significant positive correlation with sand content, whereas only Mehlich 3 showed negative correlation with soil pH. All extractants showed significant positive correlation with each other except for 1 mol L?1 MgCl2‐extractable Zn, which had significant positive correlation with only Mehlich 3– and EDTA + ammonium carbonate–extractable Zn. A greenhouse experiment showed that Bray's percentage yield of rice was poorly correlated to extractable soil Zn but had a significant and negative linear correlation with soil pH (r = ?0.662, significant at p = 0.01). Total Zn uptake by rice had a significant positive correlation with 1 mol L?1 MgCl2– and Mehlich 3–extractable Zn. A proposed parameter (p extractable Zn + p OH?) involving both soil extractable Zn and pH terms together showed significant and positive correlation with Bray's percentage yield and total Zn uptake of rice. The calculated values of critical limits of soil Zn in terms of the proposed parameter were 14.1699 for DTPA (pH 7.3), 13.9587 for DTPA + ammonium bicarbonate, 13.7016 for Mehlich 3, 13.9402 for EDTA + ammonium carbonate, and 14.1810 for 1 mol L?1 MgCl2 (pH 6.0). The critical limits of Zn in rice grain and straw were 17.32 and 22.95 mg Zn kg?1 plant tissue, respectively.  相似文献   

17.

Purpose

The area of cadmium (Cd)-contaminated soil in China is increasing due to the rapid development of the Chinese economy. To ensure that the rice produced in China meets current food safety and quality standards, the current soil quality standards for paddy soils urgently need to be updated.

Materials and methods

We conducted a pot experiment with 19 representative paddy soils from different parts of China to study the effects of soil properties on bioaccumulation of Cd in rice grains. The experiment included a control, a low treatment concentration (0.3 mg kg–1 for pH?<?6.5 and 0.6 mg kg–1 for pH?≥?6.5), and a high treatment concentration (0.6 mg kg–1 for pH?<?6.5 and 1.2 mg kg–1 for pH?≥?6.5) of Cd salt added to soils.

Results and discussion

The results showed that the Cd content in grains of the control and low and high Cd treatments ranged from 0.021 to 0.14, 0.07 to 0.27, and 0.12 to 0.33 mg kg–1, respectively. Stepwise multiple regression analysis indicated that soil pH and organic carbon (OC) content could explain over 60 % of the variance in the (log-transformed) bioaccumulation coefficient (BCF) of Cd in grains across soils. Aggregated boosted trees analysis showed that soil pH and OC were the main factors controlling Cd bioavailability in paddy soils. Validation of the models against data from recent literature indicated that they were able to accurately predict the BCF in paddy soils.

Conclusions

These quantitative relationships between the BCF of Cd in grains and soil properties are helpful for developing soil-specific guidance on Cd safety threshold value for paddy soils.  相似文献   

18.

Purpose

The influence of bone sorbent addition onto distribution of 90Sr in artificially contaminated soil was preliminary studied to assess the possibility of biogenic apatite utilization for reduction of 90Sr mobility and availability. Simultaneously, the disruption of soil micro- (Cd, Zn, Co, Cu, Cr, and Ni,) and macroelements (Al, Fe, Mn, K, Mg, and Ca) upon Sr contamination and sorbent addition was monitored.

Materials and methods

The model soil was contaminated by inactive Sr, in the form of Sr(NO3)2 solution. As a soil additive, sorbent obtained by annealing bovine bones at 400 °C (B400) was applied. Both the uncontaminated and Sr-contaminated soils were mixed with 1, 3, 5, and 10 % of sorbent, suspended in distilled water (initial pH?5; solid/solution ratio, 1:2), and equilibrated for 15 days on a rotary shaker. Solid residues were subjected to modified Tessier five-step sequential extraction analysis, and the amounts of chosen metals in each fraction were determined by inductively coupled plasma–optical emission spectroscopy.

Results and discussion

In the original soil, Sr was mainly found in exchangeable (61 %) and carbonate phase (16 %), whereas after contamination, the content of Sr in exchangeable phase raised to 94 %. With the addition of B400, the decrease in Sr amounts in exchangeable fraction was detected, whereas increase occurred mainly in operationally defined carbonate phase and in the residual. High level of Sr contamination caused the increase in Zn, Ni, Co, Cu, Cd, and Mn and decrease in Ca content in exchangeable phase. Sorbent addition resulted in a migration of these cations to less soluble fractions. This effect was observed even for major soil elements such as Fe, Al, and Mn, regardless of the excessive amounts of Sr in the soil.

Conclusions

Mixing the soil with B400 resulted in reduced Sr mobility and bioavailability. B400 acted as a stabilizing agent for heavy metals, as well. Apatite distinguished selectivity towards heavy metals may interfere with the Sr immobilization and disrupt original cation distribution. Further studies should include more realistic (lower) Sr concentrations in the soil, different soil types, pH, and longer incubation times.  相似文献   

19.

Purpose

The objectives of this study were to explore the influences of pH on the release of Cu, Zn, Cd, Pb, Ni, and Cr in sediments derived from the upstream, middle, and downstream reaches of Dongdagou stream in Gansu Province, Northwest China, and to examine the fractionation changes of heavy metals in the sediments after reaching their release equilibrium under different pH conditions.

Materials and methods

Sediment samples were obtained using a stainless steel grab sampler to collect the uppermost 10 cm of sediment from the channel bed. The pH-dependent release experiment was conducted in the solid-to-liquid ratio of 1:20 at different pH values (2, 4, 6, 8, 10, and 12) at room temperature. The total Cu, Zn, Cd, Pb, Ni, and Cr concentrations in the sediments were digested using an acid digestion mixture (HNO3 + HF + HClO4) in an open system. Metal fractionation of selected sediments was obtained using the Tessier sequential extraction procedure. Heavy metal concentrations in the samples were determined using atomic absorption spectrophotometry.

Results and discussion

The mean concentrations of heavy metals in sediments decreased in the following order: Zn (1676.67 mg kg?1) > Pb (528.65 mg kg?1) > Cu (391.34 mg kg?1) > Cr (53.48 mg kg?1) > Ni (34.27 mg kg?1) > Cd (11.53 mg kg?1). Overall, the solubility of Cu, Zn, Cd, Pb, and Ni decreased with increasing pH, and they were strongly released at pH 2. Moreover, the solubility of Cr increased with increasing pH, and its release was highest at pH 12. After reaching the release equilibrium of heavy metals under different pH conditions, the percentages of organic Cu, Zn, Cd, and Fe-Mn oxyhydroxide Pb decreased, compared to their initial fractions. The residual fractions of Ni and Cr were dominant, regardless of pH.

Conclusions

The average concentrations of Cu, Zn, Cd, and Pb in sediments were highly elevated compared with the soil background values in Gansu Province, China. The results of this pH-dependent release experiment showed that the release behaviors of Cu, Zn, Pb, and Cr followed an asymmetric V-shaped pattern, whereas Cd and Ni followed an irregular L-shaped pattern. The changes in the release of heavy metals in sediments were related to their redistribution between chemical fractionations.
  相似文献   

20.

Purpose

The nitrification inhibitor dicyandiamide (DCD) has been shown to be highly effective in reducing nitrate (NO3 ?) leaching and nitrous oxide (N2O) emissions when used to treat grazed pasture soils. However, there have been few studies on the possible effects of long-term DCD use on other soil enzyme activities or the abundance of the general soil microbial communities. The objective of this study was to determine possible effects of long-term DCD use on key soil enzyme activities involved in the nitrogen (N) cycle and the abundance of bacteria and archaea in grazed pasture soils.

Materials and methods

Three field sites used for this study had been treated with DCD for 7 years in field plot experiments. The three pasture soils from three different regions across New Zealand were Pukemutu silt loam in Southland in the southern South Island, Horotiu silt loam in the Waikato in the central North Island and Templeton silt loam in Canterbury in the central South Island. Control and DCD-treated plots were sampled to analyse soil pH, microbial biomass C and N, protease and deaminase activity, and the abundance of bacteria and archaea.

Results and discussion

The three soils varied significantly in the microbial biomass C (858 to 542 μg C g?1 soil) and biomass N (63 to 28 μg N g?1), protease (361 to 694 μg tyrosine g?1 soil h?1) and deaminase (4.3 to 5.6 μg NH4 + g?1 soil h?1) activity, and bacteria (bacterial 16S rRNA gene copy number: 1.64?×?109 to 2.77?×?109 g?1 soil) and archaea (archaeal 16S rRNA gene copy number: 2.67?×?107 to 3.01?×?108 g?1 soil) abundance. However, 7 years of DCD use did not significantly affect these microbial population abundance and enzymatic activities. Soil pH values were also not significantly affected by the long-term DCD use.

Conclusions

These results support the hypothesis that DCD is a specific enzyme inhibitor for ammonia oxidation and does not affect other non-target microbial and enzyme activities. The DCD nitrification inhibitor technology, therefore, appears to be an effective mitigation technology for nitrate leaching and nitrous oxide emissions in grazed pasture soils with no adverse impacts on the abundance of bacteria and archaea and key enzyme activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号