首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Purpose

The purpose of this paper is to study the interactions of sedimentary humic substances (SHS) from a sugarcane cultivation area with Cu(II) and Cr(III) and to evaluate the occurrence of these metals in the pore water and SHS.

Materials and methods

For this study, the northwestern region of the State of São Paulo, Brazil, which is considered the region with the highest production of sugar cane in the state, was selected. Samples of sediment were collected from four sampling sites in the Preto, Turvo, and Grande rivers. The SHS and pore water were extracted from the sediment using the method suggested by the International Humic Substances Society and centrifugation, respectively. The complexing capacity (CC) of the SHS for Cu(II) and Cr(III) was determined by individually titrating these metals with an ultrafiltration system using tangential flow. The total concentrations of Cr and Cu were determined for the pore water, sediments, and humic substances with graphite furnace atomic absorption spectrometry and Zeeman background correction after an acid digestion, according to the methods described in US EPA Method 3050B.

Results and discussion

The SHS from a site in the Turvo River, which is typically cultivated with sugarcane, possessed the highest concentration of Cu bound to SHS (25.0%), the largest CC (0.63 mmol Cu g?1 HS) and the highest concentration of this metal in the pore water (1.38 mg Cu Kg?1 sed.). For Cr, the SHS collected from a location on the Preto River dam had the largest CC (0.90 mmol Cr g?1 HS) and the lowest Cr content in the pore water (0.29 mg Cr Kg?1 sed.), indicating that there was an inverse relationship between the CC and the concentration of metal available in the pore water.

Conclusions

Sedimentary humic substances might be one of the regulatory factors controlling the availability of Cu and Cr in the sediments found in a typical region that has been planted with sugarcane. Distinct behaviors were observed between the two elements investigated; higher CC and a larger fraction of Cu(II) were found in the pore water of samples originating from sugarcane crops. The opposite behavior was observed for the Cr(III) species.  相似文献   

2.

Purpose

The objective of the study was to obtain quantitative assessments of the hydrophobic impact of irreversible sorption of humic substances (HSs) onto clay mineral surfaces using a sessile drop contact angle method.

Materials and methods

Two clays (kaolin and montmorillonite) were modified with four humic materials: (1) sod podzolic soil, (2) chernozem, (3) peat, and (4) coal (leonardite). The humic materials were characterized using elemental analysis, size exclusion chromatography, and 13C NMR spectroscopy. Both clay samples were saturated with Ca2+ prior to modification with HS using a sorption isotherm technique. Contact angles (CAs) of the obtained HS-clay complexes were determined using a static sessile drop method after drying the obtained HS-clay complexes in the form of a thin film.

Results and discussion

HS modification rendered both clays under study—kaolin and montmorillonite—more hydrophobic. In case of Ca-kaolin, the CA values increased from 27° (Ca-kaolin) up to 31°–32° (all HS-kaolin complexes) with no significant difference among the HS types used for modification. In the case of Ca-montmorillonite, the CA values increased from 41° (Ca-montmorillonite) up to 51°–83° with the following ascending trend for the humic types investigated: chernozem HS < coal HS < peat HS < sod-podzolic HS. This trend is in reverse to the degree of aromaticity of the HS, expressed as the content of aromatic carbon, and it is directly proportional to the molecular weight of each HS.

Conclusions

Application of a sessile drop method showed increased surface hydrophobicity of HS-modified clays. Much more substantial hydrophobization was observed for montmorillonite as compared to kaolin, which was explained by the differences in the sorption mechanism.
  相似文献   

3.
采用H2O、NaOH以及NaOH-Na4P2O7混合液3种浸提剂对不同腐解期鸡粪中的腐殖质结合态铜(HS-Cu)进行提取,在研究腐殖质碳和铜变化的基础上,通过粪肥淋溶试验,研究了铜淋失量变化以及与腐殖质结合态铜的关系。结果显示,鸡粪中以NaOH-Na4P2O7提取的HS-Cu最高,平均占粪肥全铜量的46.8%;其次是NaOH提取的HS-Cu,平均占全铜量的34.5%,H2O提取的HS-Cu最少,仅占全铜量的6%左右。随腐解进行,NaOH-Na4P2O7提取的HS-Cu逐渐增加,而NaOH提取的HS-Cu在腐解50d以前呈增加趋势,而50d以后变化不大;H2O提取的HS-Cu在腐解21d前明显增加,21d后则下降。NaOH-Na4P2O7提取的HS-Cu以胡敏酸结合态(HA-Cu)为主,H2O提取的HS-Cu则以富里酸结合态(FA-Cu)为主;NaOH提取的HS-Cu在腐解50d以前以FA-Cu为主,50d以后则以HA-Cu 为主。粪肥铜淋失量在腐解35d以前随腐解进行逐渐增加,35d以后有所降低;淋失量平均占全铜量的20%左右。铜淋失量与H2O、NaOH提取的HS-Cu或腐殖质碳呈显著正相关,而与NaOH-Na4P2O7提取的HS-Cu无相关。  相似文献   

4.

Purpose

Humic substances (HS) play important functions in the environment by radical scavenging in biogeochemical redox reactions, thus influencing behavior of pollutants and preventing damage to cell membranes; this is due to antioxidant properties of HS. Previous studies focused primarily on assessing endpoint antioxidant capacity (AOC) of HS. Our work aimed to estimate long-term kinetics of the antioxidant capacities of humic and humic-like substances under different pH in relation to their specific structural features.

Materials and methods

The 10-h kinetic profiles of four standard HS and two fungi-produced humic-like substances (HLS) were established with Trolox equivalent antioxidant capacity (TEAC) approach using the ABTS decolorization assay. Three pH levels (3.75, 4.25, and 6.80) and a broad range of humic material concentrations (0.5–10 mg L?1) were examined. The data were divided into intervals and fit using exponential functions to evaluate the endpoint AOCs as well as rate constants for the reaction of humic materials with the ABTS radical cation. To further explore the nature of the antioxidant activities of humic materials, the physicochemical features and antioxidant activities of humic compounds were subjected to correlation analysis.

Results and discussion

Our results demonstrated that during the first 40 min, the determined AOCs did not exceed 50 % of the endpoint AOCs for studies of humic materials, indicating that short-term measures of the AOCs of humic materials provide artificially low values due to the presence of slow-acting antioxidant compounds. Due to the instability of ABTS?+ at neutral and alkaline pH values, only the fast antioxidant moieties of humic materials can be assessed with ABTS decolorization approach under these conditions. Our results show that at acidic pH, the antioxidant activity of HLS is mainly related to the presence of nitrogen-containing groups rather than phenols. However, for HS, both nitrogen-containing compounds and phenolic compounds should be considered.

Conclusions

To obtain clearer information concerning the AOC of humic materials, kinetic profiles should first be established, and then endpoint measurements should be taken at a time when the reaction has reached, or at least neared, the endpoint.
  相似文献   

5.
6.

Purpose

Sorption of humic substances on other soil components plays an important role in controlling their function and fate in soil. Sorption of humic substances by individual soil components has been studied extensively. However, few studies reported the sorption characteristic of humic substances on composites of soil components. This study aimed to investigate the sorption characteristics of humic acid on Fe oxide-bacteria composites and improve the understanding on the interaction among humic substance Fe oxide bacteria in soil.

Materials and methods

Humic acid was purchased from Sigma-Aldrich and was purified. Hematite and ferrihydrite were synthesized in the lab. Bacillus subtilis and Pseudomonas putida were cultivated in Luria-Broth medium and harvested at stationary growth phase. Batch sorption experiments were carried out at pH 5.0. Various amounts of humic acid were mixed with 20 mg of Fe oxide, bacteria, or Fe oxide-bacteria composite (oxide to bacteria of 1:1) in 10 mL of KCl (0.02 mol L?1) to construct sorption isotherms. The effects of phosphate concentration and addition order among humic acid, Fe oxide, bacteria on the sorption of humic acid were also studied. The sorption of humic acid was calculated by the difference between the amount of humic acid added initially and that remained in the supernatant.

Results and discussion

The maximum sorption of humic acid on hematite, ferrihydrite, B. subtilis and P. putida was 73.2, 153.5, 69.1, and 56.7 mg C g?1, respectively. The maximum sorption of humic acid on examined Fe oxide-bacteria composite was 28.2–57.2 % less than the predicted values, implying that the sorption of humic acid was reduced by the interaction between Fe oxides and bacteria. The presence of phosphate exerted negligible influence on the sorption of humic acid on bacteria while it inhibited the sorption of humic acid on Fe oxides. On Fe oxide-bacteria composites, inhibiting influences followed by promoting or weak inhibiting effects of phosphate with increasing concentration on the sorption of humic acid were found.

Conclusions

The interaction between Fe oxides and bacteria reduced the sorption of humic acid; moreover, the reduction was greater by the interaction of bacteria with ferrihydrite than that with hematite. Phosphate exerted negligible and inhibiting influence on the sorption of humic acid by bacteria and Fe oxides, respectively. On Fe oxide-bacteria composites, humic acid sorption was initially inhibited and then promoted or weakly inhibited by phosphate with increasing concentration.  相似文献   

7.

Purpose

The purpose of this study was to investigate relationships between chemical and thermal stabilities of Cu–humic complexes. The study of the chemical stability was based on pedological methods used for the determination of the bond strength of metal ions in soils by chemical leaching agents. The samples with various contents of the Cu(II) ions and their bond strength were put to the thermal analysis in order to correlate their thermo-oxidative behavior with their stability determined by leaching.

Materials and methods

The humic acid was extracted from the South-Moravian lignite by standard alkaline extraction. The humic sample was used in two different forms: as the solid powder and as the hydrogel prepared by the acidic precipitation of humate. Six various concentrations of copper(II) solutions were used for the complexation of the humic powder and the hydrogel, in order to study the influence of their initial concentration on both the determined stabilities of the prepared complexes. Their chemical stability was assessed in terms of the Cu(II) ions release from the humic acid structure into two different extraction agents (MgCl2 and HCl solutions). Their thermo-oxidative behavior was investigated employing the thermogravimetry.

Results and discussion

The complexation capacity of the humic hydrogel was higher in comparison with the humic powder. The amounts extractable from the Cu–humic complexes by the used leaching agents are higher for the humic powder, which shows on the lower chemical stability. The thermal degradation of the prepared complexes proceeds in several steps and this character remains also after the removal of the mobile and the ion-exchangeable fractions by the MgCl2. The elimination of these fractions as well as the extraction of the strongly bound Cu(II) ions shift the thermal degradation to higher temperatures. The incombustible residue increases with the Cu(II) content in the complexes except for the samples extracted by the HCl.

Conclusions

The form of humic sample used for the preparation of the Cu–humic complexes influences both the chemical stability and the thermal one. The main reason is probably a better accessibility of the functional groups in the humic gel, which enables forming stronger binding copper(II) ions. The results showed that the thermal and chemical stabilities are closely related, which corresponds with the shift of the thermal degradation to higher temperatures after removing the less stable fractions from the humic complexes.  相似文献   

8.

Purpose

Polycyclic aromatic hydrocarbons (PAHs) are unintentional products that are classified as persistent toxic substances. The goal of the present study was to generate data on the presence of 15 priority PAHs that are found in surface sediment and core sediment in the region of the Turvo/Grande watershed, São Paulo State, Brazil, which is an area of expanding sugarcane cultivation, and to correlate these data with the sources of these PAHs and the guiding values for sediment quality analysis.

Materials and methods

Surface sediments and sediment cores were sampled during the rainy and dry seasons in February and July 2010. The extraction of PAHs from sediments was performed using a Soxhlet extractor, and then the extract was cleaned according to the methods of the US EPA 3630C (US EPA 1996) using a silica gel column. Quantification was performed using high performance liquid chromatography with fluorescence detection.

Results and discussion

The concentrations of all 15 PAHs decreased as the depth of the sediment core increased. Overall, the concentrations decreased along the sediment core; however, the RTURARG (region predominantly used for planting sugarcane and livestock) during the rainy season and the CAPRP sampling site (located at part of the Preto River dam) during the dry season showed increased concentrations in the first few sediment fractions, and then the concentrations decreased. Higher concentrations were observed in urban locations, and the concentration of naphthalene was higher than the probable effect level (PEL) determined by the Canadian environmental agency. The obtained diagnostic ratios indicate that the sediment from areas with an abundance of sugarcane was a pyrolytic source of PAHs, which indicates a contribution from burning straw to the PAH concentrations in those areas.

Conclusions

For all sampling sites and all PAHs, we found a decreasing trend in PAH concentrations with increasing sediment core depth, and the locations, such as CAPRP, that experienced a higher level of human activity had the highest total concentrations of PAHs. These locations were the only areas in which the PAH naphthalene was found in higher concentrations than the PEL. The diagnostic ratios reveal that regions with sugarcane plantations had predominantly pyrolytic sources of PAHs, indicating the contribution of PAHs from sugarcane straw burning.
  相似文献   

9.

Purpose

The feasibility of applying the method of single-scan fluorescence emission spectra of humic substances (HSs) without chemical pretreatments of sediment pore-water samples was tested to ascertain the past productivity and sources of organic matter of lakes.

Materials and methods

Sediment samples were collected from ten Estonian lakes (located between 57°36′ and 59°25′N and 22°12′ and 26°59′E) covering all levels of the trophic scale. The height (fluorescence intensity), location (fluorescence maximum) and shape (fluorescence index, the ratio of intensities at the emission wavelengths 450 and 500 nm) of the fluorescence emission spectrum at an excitation of 340 nm were under consideration.

Results and discussion

Pore-water humic substances (pwHSs) from sediments of eutrophic lakes had generally a high fluorescence intensity and fluorescence index and their fluorescence maximum was located at shorter wavelengths. Characteristic features of pwHSs from oligotrophic lakes were low fluorescence intensity, emission of maximum fluorescence at shorter wavelengths and high fluorescence index values. Pore-water humic substances from sediments of dystrophic lakes were characterized by a low fluorescence intensity and fluorescence index and their spectral peak was shifted to longer wavelengths. The study also demonstrated that a shift in the peak location of pwHSs fluorescence was accompanied with a change in the C/N ratios of sedimentary organic matter, and the alteration in the fluorescence index of pwHSs was synchronous with the changes in their molecular weight.

Conclusions

The obtained results suggest that fluorescence spectroscopy of pwHSs without using chemical pretreatments has a great potential in the reconstruction of past lake conditions.  相似文献   

10.

Purpose

This contribution investigates agricultural soils and sedimentary deposits in the province of Ferrara (Padanian alluvial plain, Northern Italy) in order to: examine their genesis; to define the geochemical background of the area; and to evaluate the existence of anthropogenic contamination. Moreover, environmental risk related to the presence of potentially toxic heavy metals that can be transferred into agricultural products (and consequently bio-accumulated in the food chain) was also assessed.

Materials and methods

The analyses (reported in an extensive supplementary dataset) include XRD, XRF and ICP-MS assessment of bulk sediments, tests of metal extraction with aqua regia, as well as analyses of local agricultural products, i.e. biomonitoring which is important in the evaluation of element mobility.

Results and discussion

Based on the results, GIS-based geochemical maps were produced and local background levels were defined. This approach demonstrated that high concentrations of Cr and Ni is a natural (geogenic) feature of the local alluvial terrains, which in turn is related to the origin and provenance of the sediments, as confirmed by the lack of top enrichment in all of the investigated sites. Tests of metal extraction and analyses of agricultural products provide guidelines for agricultural activities, suggesting that extensive use of sewage sludge, industrial slurry and manure (that are often rich in metals) should be minimised.

Conclusions

The dataset reported in this paper shows that the agricultural terrains of the studied alluvial plain are not characterised by anthropogenic heavy metal pollution. In spite of the elevated natural background of Cr and Ni, most of the local agricultural products do not show significant evidence of bio-magnification. Exceptions are represented by forage grass (alfalfa) and corn (maize) that tend to uptake As and Ni, respectively. This demonstrates that in agricultural areas, a geochemical risk assessment must include both soil and plant investigations.  相似文献   

11.

Purpose

Despite experiments with humic substances and positively charged proteins, the colloidal behavior of HS-protein mixture in the system of two immiscible liquids has been neglected. In this context, the main objective of this study was to reveal the interference of HS and globular proteins on its partition in an aqueous/organic liquid system and the adsorption at liquid/liquid interface as a model of natural organic matter interaction with proteins in nature at hydrophobic/hydrophilic surfaces.

Materials and methods

Coal humic acids (HA) and two globular proteins lysozyme and albumin were under the test. Aqueous phase was prepared in phosphate-buffered saline (pH 7.2?±?0.1, 0.16 M); p-xylene was chosen as an organic phase. Experiments were performed for fixed concentration of protein (0.1 g L?1 for lysozyme and 0.06 g L?1 for albumin) and varied HA concentration from 0.2 to 50 mg L?1. Radiotracer method including tritium thermal activation and scintillation phase method, dynamic light scattering, and optical microscopy were used to control mixed adsorption layer at the aqueous/p-xylene interface and composition of each contact phase.

Results and discussion

The results suggest that if both HA and protein are negatively charged (HA-albumin mixture), the mechanism of interaction between them in the bulk of water and at liquid/liquid interface is controlled by HA concentration. At low HA concentrations, free protein prevents HA adsorption at liquid/liquid interface and its transition to the organic phase via coulomb repulsion. At high HA concentration, the formation of hydrophilic complexes occurs via both electrostatic attraction between positively charged amino acid residues and the hydrophobic interaction. In HA-lysozyme mixture, the interaction between protein and HA is preferably provided by electrostatic attraction that provides higher hydrophobicity of HA-lysozyme complex compared with free HA. An increase in HA concentration results in partial recharge of the conjugate that leads to lysozyme amount reduction at the interface. We also measured the composition of spontaneously formed precipitate of HA-lysozyme conjugate and followed its self-organization.

Conclusions

This work demonstrates colloidal chemical behavior of net positively and negatively charged model protein by coal humic acids under environmentally relevant solution conditions in the system of two immiscible liquids that were used as a model of natural membrane. For the first time, quantities of both protein and HA in mixed adsorption layer at the liquid/liquid interface in the cases of positively and negatively charged protein have been determined.  相似文献   

12.

Purpose

Humic substances (HS) being natural polyelectrolyte macromolecules with complex and disordered molecular structures are a key component of the terrestrial ecosystem. They have remarkable influence on environmental behavior of iron, the essential nutrient for plants. They might be considered as environmental friendly iron deficiency correctors free of synthetic iron (III) chelates disadvantages. The main goal of this study was to obtain water-soluble iron-rich humic compounds (IRHCs) and to evaluate their efficiency as chlorosis correctors.

Materials and methods

A facile preparation technique of IRHCs based on low-cost and available parent material was developed. The iron-containing precursor (ferrous sulfate) was added dropwisely into alkaline potassium humate solution under vigorous stirring and pH-control. A detailed characterization both of organic and inorganic parts of the compounds was provided, the iron species identification was carried out jointly by EXAFS and Mössbauer spectroscopy. Bioassay experiments were performed using cucumber Cucumis sativus L. as target plants. Plants were grown in modified Hoagland nutrient solution, prepared on deionized water and containing iron in the form of IRHCs. Total iron content in dry plants measured by spectrophotometry after oxidative digestion and the chlorophyll a content determined after acetone extraction from fresh plant were used as parameters illustrating plants functional status under iron deficiency condition.

Results and discussion

The high solubility (up to130 g/l) and iron content (about 11 wt%) of the IRHCs obtained allow considering them to be perspective for practical applications. A set of analytical methods has shown that the main iron species in IRHCs are finely dispersed iron (III) oxide and hydroxide nanoparticles. An application of the precursor solution acidification allows to obtain compounds containing a significant part of total iron (up to 30 %) in the form of partly disordered iron (II–III) hydroxysulphate green rust GR(SO4 2?). Bioavailability of iron from IRHCs was demonstrated using bioassay in cucumber plants grown up on hydroponics under iron deficiency conditions.

Conclusions

The application of iron oxides chemistry for humic substance containing solution was proved to be an effective approach to synthesis of IRHCs. Using bioassay on cucumber plants C. sativus L. under iron deficiency conditions, the efficiency of compounds obtained as chlorosis correctors was demonstrated. Application of water-soluble IRHCs led to significant increase of chlorophyll a content (up to 415 % of the blank) and iron content in plants (up to 364 % of the blank) grown up on hydroponics.  相似文献   

13.

Purpose

The aim of this study was to enhance the soil remediation of timber treatment sites; the potential application of biodegradable chelating agents and humic substances as enhancing agents was assessed in terms of the residual leachability of chromium, copper and arsenic (CCA).

Materials and methods

This study applied four leachability tests on a field-contaminated soil after 48-h washing with ethylenediamine-N,N-disuccinic acid (EDDS), glutamic-N,N-diacetic acid, ethylenediaminetetraacetic acid and humic substances derived from lignite and two other sources.

Results and discussion

It was noteworthy that the reduction in the total metal concentrations after soil washing was not predictive of the leaching behaviour. When assessed by toxicity characteristic leaching procedure (TCLP) and waste extraction test (WET), Cu and As leachability was decreased as a result of their extraction by soil washing. By contrast, when assessed by synthetic precipitation leaching procedure (SPLP) and European Council Waste Acceptance Criteria (ECWAC) tests, Cu and As leachability was found to increase, probably because the effect of destabilization of residual metals during soil washing was more observable in unbuffered leaching solutions. On the other hand, Cr leachability was acceptably low in TCLP and WET but still exceeded drinking water standard in SPLP and ECWAC tests.

Conclusions

The three chelating agents were able to meet the criteria for Cu in all leachability tests, while the limits of As concentrations could only be met by EDDS in TCLP test. The three humic substances reduced the leachate concentrations of Cu and As without destabilizing the residual metals; however, the reduction was insufficient to meet the required limits in all leachability tests considered.  相似文献   

14.

Purpose

The emerging recycling of electronic and electric waste (e-waste) is causing critical levels of soil pollution in those relatively poor towns surrounding the central cities, which have been involved in recycling activities for quite some time. Agricultural soil is of great importance due to its direct impact on food and human health. The objective of this study was to provide a systematic investigation of the contamination in agricultural soil for a range of inorganic compounds (Cr, Cd, Pb, Zn, Cu, and Ni) and organic compounds (PAHs and PCBs) in town A, an emerging e-waste recycling town in China.

Materials and methods

A total of 20 agricultural soil samples were collected from three sampling locations throughout town A. Levels of inorganic compounds (Cr, Cd, Pb, Zn, Cu, and Ni) and organic compounds (PAHs and PCBs) were determined by AAS, GC/MS, and GC/electron capture detector, respectively. Data was processed with SPSS 13 and Arcview 3.3 GIS software.

Results and discussion

The findings demonstrate that agricultural soil was contaminated to various extents by inorganic and/or organic pollutants. Comparison among the three sampling areas indicated that the soil was highly contaminated in the agricultural area near e-waste recycling workshops. Moreover, the contaminants (Cu, Pb, PAHs, and PCBs) may be connected through a common source as found in the Pearson correlations and cluster analysis.

Conclusions

There exists a heightened sense of awareness concerning the hazardous implications of current emerging e-waste recycling issues in the agricultural soil of those areas close to the central city in Taizhou.  相似文献   

15.

Purpose

The Shallow Landsliding Stability Model (SHALSTAB) and Stability Index Mapping (SINMAP) models have been applied to various landslide management and research studies. Both models combine a hydrological model with an infinite slope stability model for predicting landslide occurrence. The objectives of the present study were to apply these two models to the Cunha River basin, Santa Catarina State, southern Brazil, where many landslides occurred in November 2008, and perform a comparative analysis of their results.

Materials and methods

Soil samples were collected to determine the input parameters. The models were calibrated with a landslide scar inventory, and rainfall data were obtained from three rain gauges. A comparison of their results obtained from the models was undertaken with the success and error index.

Results and discussion

Based on the maps of stability and instability areas for the study basin, the models performed well. Since the initial equations of both models are not particularly different, their results are similar. Locations with steep slopes, as well as areas with concave relief that tend to have larger contribution areas and moisture, have lower stability indexes. SHALSTAB classified only ~13 % of the total area of the Cunha River basin as unstable, while SINMAP classified ~30 % as unstable.

Conclusions

The analysis of maps based on the results of the two models shows that if SHALSTAB is correctly calibrated, based on hydrological parameters, its results could be more accurate than SINMAP in the prediction of landslide areas. Although SINMAP showed better calibration of the landslide scars, its classification over the basin results in an overestimation of stability areas. The conclusion is that SHALSTAB is more suitable than SINMAP for the prediction of landslides in the Cunha River basin, Brazil.  相似文献   

16.

Purpose

Interestingly, soil is the component of the natural environment in which most hydrophobic organic pollution including polycyclic aromatic hydrocarbons (PAHs) gets accumulated. The aim of the present paper was to determine the effect of soil pollution with PAHs on the elemental composition, spectral properties, and hydrophobic and hydrophilic properties of humic acids. The research was performed on different types of soil samples that were artificially polluted with selected PAHs (anthracene, pyrene, fluorene and chrysene).

Materials and methods

The soil samples were polluted with selected PAHs in an amount corresponding to 10 mg PAHs kg?1. The PAHs-polluted soil samples were incubated for 180 and 360 days at a temperature of 20–25 °C and fixed moisture (50 % of field water capacity). Humic acids (HAs) were extracted from the soil samples prior to the incubation (additionally, soils not polluted with PAHs) and after 180 and 360 days of incubation. For isolated HAs, the following analyses were performed: elemental composition, UV–Vis and IR spectra, susceptibility to oxidation, and hydrophilic (HIL) and hydrophobic (HOB) properties were determined using high-performance liquid chromatography.

Results and discussion

The research demonstrated that introducing anthracene, fluorene, pyrene and chrysene to soil samples resulted in a change in some of the quality parameters of humic acids. However, the intensity and the direction of those changes were determined by soil properties. The changes of the parameters, once PAHs were introduced, that did not depend on the soil properties were ΔA 665u and ΔA 465u (susceptibility to oxidation at wavelengths of 465 and 665 nm) as well as HIL/ΣHOB. The same tendency in changes in the structure of humic acids, once PAHs were introduced, was also observed based on the Fourier transform infrared spectra pattern.

Conclusions

A single pollution of soils with PAHs that leads to changes in the quality parameters of humic acids shows that, as for the soils permanently exposed to pollution with those compounds, significant changes can occur in the properties of humic acids. As a result, it can lead to a change in the functions played by humic acids in the environment.  相似文献   

17.

Purpose

Due to the modernization of the agro-industrial sector, compounds with different toxicity and effects on human health and animal have been used and consequently affecting the environment. Among them, tetracycline (TC) stands out as one of the antibiotics most commonly used worldwide. This study evaluated the TC interaction with different fractions of peat in natura and humic substances, humic acid, fulvic acid, and humin.

Materials and methods

The different fractions of the organic matter were characterized by organic matter content, elemental analysis, spectroscopic analysis (E4/E6), and nuclear magnetic resonance of carbon 13 (NMR 13C), and the interaction between TC and different fractions of organic matter was made by fluorescence spectrometry. We used the tangential ultra-filtration system for determining the complexation capability of humic substances (HSs), fulvic acids (FA), humic acids (HA), and humin (HUM) from peat with TC. Finally, we evaluated sorption kinetic experiments between TC and peat in natura.

Results and discussion

The peat samples, humic substances, FAs, HAs, and HUM were characterized by organic matter (OM), atomic ratio (H/C and C/O) calculated from elemental analysis data, functional groups quantified by NMR 13C data, and E4/E6 ratio, and the results show significant differences in the structural characteristics of the fractions of OM influenced by the type of microorganisms and environmental factors associated with this decomposition. Data analysis revealed the strongest interaction between HUM and TC (59.19 mg g?1), followed by interaction between HS and TC (43.36 mg g?1 HS). In the sorption studies, these conditions showed the best model to describe the system under consideration using the Freundlich model.

Conclusions

The results showed that the different fractions of the OM extracted from peat show different contributions that affect the bioavailability of contaminants to the environment.
  相似文献   

18.

Purpose

Fine-grained sediment is an important pollutant in streams and estuaries, including the Chesapeake Bay in the USA. The objective of this study was to determine the sources of fine-grained sediment using the sediment fingerprinting approach in the Linganore Creek watershed, a tributary to the Chesapeake Bay.

Materials and methods

The sediment fingerprinting approach was used in the agricultural and forested, 147-km2 Linganore Creek watershed, Maryland from 1 August 2008 to 31 December 2010 to determine the relative percentage contribution from different potential sources of fine-grained sediment. Fine-grained suspended sediment samples (<63 μm) were collected during storm events in Linganore Creek using an automatic sampler and manual isokinetic samplers. Source samples were collected from 40 stream bank sites, 24 agricultural (cropland and pasture) sites, and 19 forested sites. Suspended sediment and source samples were analyzed for elements and stable isotopes.

Results and discussion

Results of sediment fingerprinting for 194 samples collected in 36 separate storm events indicate that stream banks contributed 53% of the annual fine-grained suspended sediment load, agriculture contributed 44%, and forests contributed 3%. Peak flows and sediment loads of the storms correlate to stream bank erosion. The highest peak flows occurred in the winter and, along with freeze–thaw activity, contributed to winter months showing the highest rate of stream bank erosion. Peak flow was negatively correlated to sediment sources from agricultural lands which had the greatest contribution in non-winter months. Caution should be observed when trying to interpret the relation between sediment sources and individual storms using the sediment fingerprinting approach. Because the sediment fingerprinting results from individual storms may not include the temporal aspects of the sourced sediment, sediment that is in storage from previous events, remobilized and sampled during the current event, will reflect previous storm characteristics. Stream bank sediment is delivered directly to the channel during an event, whereas the delivery of upland sediment to the stream is lower due to storage on hillslopes and/or in channels, sediment from stream banks are more likely to be related to the characteristics of the sampled storm event.

Conclusions

Stream banks and agricultural lands are both important sources of fine-grained sediment in the Linganore Creek watershed. Peak flows and sediment loads for the 36 storms show a significant relation to sediment sources from stream bank erosion. Attempting to link upland sediment sources to flow and seasonal characteristics is difficult since much of the upland sediment eroded in an event goes into storage. By averaging sediment sources over several storms, it may be possible to determine not only the sediment sources that are directly contributed during the current event but also sediment from previous events that was in storage and remobilized.  相似文献   

19.

Purpose

We review 2,4-dichlorophenoxyacetic acid (2,4-D) and other phenoxy herbicide sorption experiments.

Methods

A database with 469 soil–water distribution coefficients K d (in liters per kilogram) was compiled: 271 coefficients are for the phenoxy herbicide 2,4-D, 9 for 4-(2,4-dichlorophenoxy)butyric acid, 18 for 2-(2,4-dichlorophenoxy)propanoic acid, 109 for 2-methyl-4-chlorophenoxyacetic acid, 5 for 4-(4-chloro-2-methylphenoxy)butanoic acid, and 57 for 2-(4-chloro-2-methylphenoxy)propanoic acid. The following parameters characterizing the soils, solutions, or experimental procedures used in the studies were also compiled if available: solution CaCl2 concentration, pH, pre-equilibration time, temperature, soil organic carbon content (f oc), percent sand, silt and clay, oxalate extractable aluminum, oxalate extractable iron (Oxalate Fe), dithionite–citrate–bicarbonate extractable aluminum, dithionite–citrate–bicarbonate extractable iron (DCB Fe), point of zero negative charge, anion exchange capacity, cation exchange capacity, soil type, soil horizon or depth of sampling, and geographic location. K d data were also compiled characterizing phenoxy herbicide sorption to the following well-defined sorbent materials: quartz, calcite, α-alumina, kaolinite, ferrihydrite, goethite, lepidocrocite, soil humic acid, Fluka humic acid, and Pahokee peat.

Results

The data review suggests that sorption of 2,4-D can be rationalized based on the soil parameters pH, f oc, Oxalate Fe, and DCB Fe in combination with sorption coefficients measured independently for humic acids and ferrihydrite, and goethite.

Conclusions

Soil organic matter and iron oxides appear to be the most relevant sorbents for phenoxy herbicides. Unfortunately, few authors report Oxalate Fe and DCB Fe data.  相似文献   

20.

Purpose

Aquatic macrophytes are an important source of autochthonous dissolved organic carbon in aquatic ecosystems. Yield and mass loss of aquatic humic substances released from macrophytes decomposition could be affected by the plant species and oxygen availability. Our aim was to describe the kinetics of dissolved fulvic and humic acids formed from decomposition of four aquatic macrophytes under aerobic and anaerobic conditions.

Materials and methods

Samples of Eichhornia azurea (Sw.) Kunth, Egeria najas Planch, Oxycaryum cubense (Poepp. and Kunth), and Salvinia molesta (Mitchell) were incubated under aerobic and anaerobic conditions. On sampling days, the remaining particulate detritus were weighted and were measured for the pH, the electrical conductivity, and the organic carbon in the dissolved fraction. Humic substances were extracted from the dissolved fraction, separated into fulvic and humic acids, and then quantified. The mass loss of particulate and dissolved fractions were fitted to first order kinetic models.

Results and discussion

Aerobic environment favored mineralization of aquatic macrophyte detritus and humification of organic dissolved carbon. Incubations under aerobic conditions formed 3.6 times more humic acid than incubations under anaerobic conditions. However, incubations in an anaerobic environment formed 1.84 times more fulvic acid. The dissolved humic compounds presented low mineralization rates probably due to the presence of the macrophyte detritus in the incubation representing a more attractive source of resource for microorganisms.

Conclusions

In many cases, the mineralization of HS was not noticed, leading to an increase in humic and fulvic acid concentration in the water. O. cubense detritus presented the highest carbon concentration, were related to refractory features, and generated the highest amounts of dissolved HA (mainly under aerobic condition). Egeria najas detritus presented the lowest carbon concentration, were related to labile features, and generated the highest amounts of dissolved FA (mainly under anaerobic condition). Besides that, high humic substance concentrations in the dissolved organic carbon were related to low mineralization of this fraction.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号