首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
An attenuated respiratory disease vaccine against feline viral rhinotracheitis (FVR) and feline calicivirus (FCV) disease was evaluated for safety and efficacy in specific-pathogen-free cats. Twenty cats were vaccinated twice intramuscularly, with 28 days between vaccinations. Ten unvaccinated cats were used as contact controls. Adverse effects were not noticed after vaccination, and the vaccinal virus did not spread to contact controls. Arithmetical mean serum-neutralizing titers against vaccinal FCV strain F9 and challenge FCV strain 255 were 1:13 and 1:15 at 28 days after the 1st inoculation. These titers increased to 1:45 and 1:196 after the 2nd inoculation. After challenge exposure of vaccinated cats to virulent FCV 255 virus, mean titers increased to 1:129 and 1:865, respectively for F9 and 255 viruses. The F9 postchallenge mean titer for vaccinated cats was 21.5 times higher than that for the 8 contact controls that survived challenge exposure. The arithmetical mean serum neutralizing titer for FVR was low (1:2) after the 1st vaccination, but increased to 1:35 after the 2nd vaccination. Challenge exposure to virulent FVR virus resulted in a marked anamnestic immune response (mean titer of 1:207, compared with 1:12 for contact controls). In general, vaccinated cats remained alert and healthy after challenge exposure with FCV-255, whereas unvaccinated contact control cats developed definite signs of FCV disease, including central nervous system (CNS) depression (6 of 10) and dyspnea indicative of pneumonia (5 of 10). Two controls died of severe pneumonia. A mild fibrile response was detected in 28% of vaccinated cats, compared with a more severe febrile response in 78% of control cats. Some vaccinated cats developed minute lingual ulcers that did not appear to be detrimental to the health of the cat. After FVR challenge exposure, vaccinated cats were free of serious clinical signs. Five of 18 vaccinated cats had mild signs of FVR, including an occasional sneeze, low temperature, and mild serous lacrimation for 1 or 2 days. Contact controls developed definite clinical signs of FVR. The combined FVR-FCV vaccine appears to be safe and reasonably efficacious. Vaccination against FCV disease and FVR should be part of the routine feline immunization program.  相似文献   

2.
The efficacy of an inactivated vaccine derived from feline calicivirus (FCV) strain FS2 was assessed against challenge with three UK field strains of FCV. The mean clinical score, calculated on the number of signs recorded per day over 21 days after challenge, was lower for vaccinated cats when compared to unvaccinated animals though the difference was not statistically significant. All cats excreted FCV throughout the three weeks following challenge and there was no difference in the number of days of virus shedding during this period between vaccinated and unvaccinated animals. The development of FCV serum neutralising antibody titres following vaccination and challenge was recorded. In the second part of the study the ability of vaccinated and challenged cats to become FCV carriers and then infect susceptible in-contact animals was demonstrated.  相似文献   

3.
OBJECTIVE: To evaluate duration of immunity in cats vaccinated with an inactivated vaccine of feline panleukopenia virus (FPV), feline herpesvirus (FHV), and feline calicivirus (FCV). ANIMALS: 17 cats. PROCEDURE: Immunity of 9 vaccinated and 8 unvaccinated cats (of an original 15 vaccinated and 17 unvaccinated cats) was challenged 7.5 years after vaccination. Specific-pathogen-free (SPF) cats were vaccinated at 8 and 12 weeks old and housed in isolation facilities. Offspring of vaccinated cats served as unvaccinated contact control cats. Virus neutralization tests were used to determine antibody titers yearly. Clinical responses were recorded, and titers were determined weekly after viral challenge. RESULTS: Control cats remained free of antibodies against FPV, FHV, and FCV and did not have infection before viral challenge. Vaccinated cats had high FPV titers throughout the study and solid protection against virulent FPV 7.5 years after vaccination. Vaccinated cats were seropositive against FHV and FCV for 3 to 4 years after vaccination, with gradually declining titers. Vaccinated cats were protected partially against viral challenge with virulent FHV. Relative efficacy of the vaccine, on the basis of reduction of clinical signs of disease, was 52%. Results were similar after FCV challenge, with relative efficacy of 63%. Vaccination did not prevent local mild infection or shedding of FHV or FCV. CONCLUSIONS: Duration of immunity after vaccination with an inactivated, adjuvanted vaccine was > 7 years. Protection against FPV was better than for FHV and FCV. CLINICAL IMPLICATIONS: Persistence of antibody titers against all 3 viruses for > 3 years supports recommendations that cats may be revaccinated against FPV-FHV-FCV at 3-year intervals.  相似文献   

4.
The induction of a quick onset of immunity against feline parvovirus (FPV), feline herpesvirus (FHV) and feline calicivirus (FCV) is critical both in young kittens after the decline of maternal antibodies and in cats at high risk of exposure. The onset of immunity for the core components was evaluated in 8–9 week old specific pathogen free kittens by challenge 1 week after vaccination with a combined modified live (FPV, FHV) and inactivated (FCV) vaccine. The protection obtained 1 week after vaccination was compared to that obtained when the challenge was performed 3–4 weeks after vaccination. The protocol consisted of a single injection for vaccination against FPV and two injections 4 weeks apart for FHV and FCV.At 1 week after vaccination, the kittens showed no FPV-induced clinical signs or leukopenia following challenge, and after FCV and FHV challenges the clinical score was significantly lower in vaccinated animals than in controls. Interestingly, the relative efficacy of the vaccination was comparable whether the animals were challenged 1 week or 3–4 weeks after vaccination, indicating that the onset of protection occurred within 7 days of vaccination. Following the 1-week challenge, excretion of FPV, FHV and FCV was significantly reduced in vaccinated cats compared to control kittens, confirming the onset of immunity within 7 days of vaccination.  相似文献   

5.
Feline calicivirus (FCV) is characterised by a high degree of antigenic variation potentially compromising vaccine efficacy. Inclusion of several FCV strains or antigens in current vaccines could be a means to improve protection against antigenically distinct isolates. This study evaluated the synergy between two FCV strains (FCVG1 and FCV431) by comparing immunity induced by either strain with that provided by a combination of the two strains against an heterologous challenge with antigenically distant FCV strains (FCV393 and FCV220). Thirty-two SPF kittens were randomly allocated to four groups of eight cats in each group. Groups B, C and D cats were vaccinated once subcutaneously with strains FCVG1, FCV431, and FCVG1 + FCV431, respectively. Each kitten received a total dose of 10(3.4) CCID50 of FCV. Control group A was not immunised. On day 31, four cats from each group were challenged oronasally with FCV220 and four cats with FCV393. Following challenge, the cats were monitored for clinical signs, viral shedding and antibody responses. FCV220 and FCV393 induced severe clinical signs in control cats typical of FCV infection. Immunisation with both strains mixed together induced higher neutralizing antibody titres against FCV220 and FCV393 strains on average. Protection was observed in all groups, however combination of the two strains resulted in a better clinical protection and reduction of virus shedding after heterologous challenge. A moderate correlation was observed between neutralizing antibody titres at the time of challenge and protection against clinical signs. These results indicated that vaccines combining antigens from different FCV strains may induce a broader heterologous protection.  相似文献   

6.
The effect of field feline viral rhinotracheitis (FVR) virus challenge on cats previously vaccinated with a combined FVR/feline calicivirus intramuscular vaccine was studied in relation to the development of an FVR carrier state. There was no virus shedding of either of the two vaccine viruses following vaccination. Treatment with corticosteroid 60 days after vaccination and before challenge with FVR virus did not induce virus re-excretion in vaccinates or controls; neither did similar treatment induce shedding 63 days after challenge of both vaccinates and controls with virulent field virus. After a further 55 days however, FVR virus shedding was elicited in one of four previously vaccinated and challenged cats compared with two of four unvaccinated and challenged controls. Two sentinel cats remained virologically and serologically free of FVR throughout. The vaccine was shown to be effective in controlling the disease; 12 weeks after initial vaccination no clinical signs were seen in three of four cats following intranasal challenge with 10(5)CCID50 of virulent field FVR virus, and a mild transient unilateral ocular and nasal discharge was seen in the remaining cat for one day only. Severe clinical signs of approximately 10 days' duration were seen in all four unvaccinated challenged controls. The virological and serological responses of the cats were also recorded.  相似文献   

7.
Forty-three cats (experiments 1 and 2) were vaccinated (2 doses, 27 and 30 days between doses) with the F-9 strain of feline calicivirus by the intramuscular route. There was no untoward response in any of the cats to the administration of the vaccinal virus nor was there spread of the virus from 20 vaccinated cats to nonvaccinated cats held in contact during the next 6 months (experiment 2). The vaccinated cats developed serum-neutralizing antibodies that were increased further after the 2nd vaccination. The level of serum-neutralizing antibodies was related to the quantity of vaccinal virus administered. Twenty-three cats vaccinated with the F-9 strain were protected to a significant degree when challenge exposed to virulent calicivirus strain FPV-255 (experiment 1).  相似文献   

8.
In this pilot study, 12 adult, gang-housed cats that were known to be previously exposed (n=12) to feline herpesvirus-1 (FHV-1) and/or vaccinated against (n=2) feline calicivirus (FCV) and FHV-1 were randomly assigned to one of two groups of six cats each. Nasal and pharyngeal samples were collected from each cat on days -7, -3, and 0 prior to vaccination and on days 3, 7, 10, 14, 17, 21, and 28 after vaccination with an FHV-1, FCV, and panleukopenia (FVRCP) vaccine developed for intranasal (six cats) or parenteral (six cats) use. FHV-1 DNA was amplified from 1/12 cats (1/69 samples; 1.4%) prior to vaccination and 2/12 cats after vaccination (2/154 samples; 1.3%). FCV RNA was amplified from 2/12 cats (2/69 samples; 2.9%) prior to vaccination and 7/12 cats (12/154 samples; 7.8%) after vaccination. Positive molecular diagnostic assay results for FHV-1 and FCV were uncommon prior to or after vaccination in these cats.  相似文献   

9.
An ELISA test was developed to measure the levels of IgG antibody in specific-pathogen-free (SPF) cats immunised with two doses of an attenuated feline calicivirus (FCV) vaccine. All eight vaccinates were protected from virus challenge, but four out of five non-vaccinates were not. There was a significant difference in respect of protection from virus challenge between SPF cats with and without three-fold or greater increase in antibody units (P = 0.01). Each serum absorbance was standardised against the reference positive which has an arbitrary value of 100 antibody units. In SPF cats, the 99% confidence level for seropositivity to FCV was determined as greater than or equal to 2.5 antibody units. The results suggest that the sensitive ELISA test can be used to monitor the antibody status of SPF cat colonies prior to FCV vaccine trials, and to measure the immunogenicity of attenuated FCV vaccines. Thus, the ELISA test may replace the need for virus challenge, with consequent reduction in animals used in future FCV vaccine trials.  相似文献   

10.
11.
Forty-two seronegative cats received an initial vaccination at 8 weeks of age and a booster vaccination at 12 weeks. All cats were kept in strict isolation for 3 years after the second vaccination and then were challenged with feline calicivirus (FCV) or sequentially challenged with feline rhinotracheitis virus (FRV) followed by feline panleukopenia virus (FPV). For each viral challenge, a separate group of 10 age-matched, nonvaccinated control cats was also challenged. Vaccinated cats showed a statistically significant reduction in virulent FRV-associated clinical signs (P = .015), 100% protection against oral ulcerations associated with FCV infection (P < .001), and 100% protection against disease associated with virulent FPV challenge (P < .005). These results demonstrated that the vaccine provided protection against virulent FRV, FCV, and FPV challenge in cats 8 weeks of age or older for a minimum of 3 years following second vaccination.  相似文献   

12.
OBJECTIVE: To determine whether detection of virus-specific serum antibodies correlates with resistance to challenge with virulent feline herpesvirus 1 (FHV-1), feline calicivirus (FCV), and feline parvovirus (FPV) in cats and to determine percentages of client-owned cats with serum antibodies to FHV-1, FCV, and FPV. DESIGN: Prospective experimental study. ANIMALS: 72 laboratory-reared cats and 276 client-owned cats. PROCEDURES: Laboratory-reared cats were vaccinated against FHV-1, FCV, and FPV, using 1 of 3 commercial vaccines, or maintained as unvaccinated controls. Between 9 and 36 months after vaccination, cats were challenged with virulent virus. Recombinant-antigen ELISA for detection of FHV-1-, FCV-, and FPV-specific antibodies were developed, and results were compared with results of hemagglutination inhibition (FPV) and virus neutralization (FHV-1 and FCV) assays and with resistance to viral challenge. RESULTS: For vaccinated laboratory-reared cats, predictive values of positive results were 100% for the FPV and FCV ELISA and 90% for the FHV-1 ELISA. Results of the FHV-1, FCV, and FPV ELISA were positive for 195 (70.7%), 255 (92.4%), and 189 (68.5%), respectively, of the 276 client-owned cats. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that for cats that have been vaccinated, detection of FHV-1-, FCV-, and FPV-specific antibodies is predictive of whether cats are susceptible to disease, regardless of vaccine type or vaccination interval. Because most client-owned cats had detectable serum antibodies suggestive of resistance to infection, use of arbitrary booster vaccination intervals is likely to lead to unnecessary vaccination of some cats.  相似文献   

13.
This article reports an outbreak of 24 cases of an unusually virulent feline calicivirus (FCV) infection in a small animal hospital. The circumstances and disease signs were very similar to those recently described in an outbreak of FCV hemorrhagic disease in Northern California (Vet. Microbiol. 73 (2000) 281). The virus entered the facility through shelter cats showing upper respiratory signs. Affected cats manifested high fever, anorexia, labored respirations, oral ulceration, facial and limb edema, icterus, and pancreatitis. The infection spread rapidly among the patients by contaminated animal caretakers and hospital equipment. One case of fomite transmission from an employee to a housecat was documented. Prior vaccination, even with multiple doses of FCV-F9-based live calicivirus vaccine, was not protective. Affected cats often required extensive supportive care for 7-10 days, and the overall mortality from death and euthanasia was 32%. The strain of FCV responsible for this outbreak was genetically and serologically distinct from the FCV strain responsible for a similar epizootic and the FCV-F9 strain contained in most vaccines. Outbreaks of this type are being reported with increasing frequency, and are often associated with the practice of treating sick shelter cats in private practices. Similar to the present epizootic, outbreaks of FCV hemorrhagic disease have been self-limiting, but require prompt application of strict quarantine, isolation, personnel sanitation, and disinfection procedures.  相似文献   

14.
Two groups of cats were inoculated oro-nasally with one of two isolates of feline calicivirus (FCV) from clinical cases of chronic stomatitis. All cats developed signs typical of acute FCV infection; namely, ocular and nasal discharge, conjunctivitis, and marked oral ulceration. None of the cats shed virus beyond 28 days. Seronegative control cats were then infected with a lower dose of one isolate, but again only acute signs were seen and no carriers produced. The original cats were then re-infected with the heterologous isolate. As before, only signs of acute disease were seen, but the range of clinical signs and severity was reduced. Virus shedding patterns in one group were similar to those seen originally, but in the other the duration was reduced. No chronic stomatitis developed over the 10 months of the study. Serum virus neutralising and serum and salivary class specific immunoglobulin responses were investigated. Although long-term carriers were not induced, no relationship between cessation of virus shedding in an individual animal and systemic and local antibody responses was seen.  相似文献   

15.
OBJECTIVE: To determine whether vaccinated cats either remained seropositive or responded serologically to revaccination against 3 key viral antigens after extended periods since their last vaccination. DESIGN: Serologic survey. ANIMALS: 272 healthy client-owned cats. PROCEDURE: Cats were > or = 2 years old and vaccinated for feline panleukopenia virus (FPV), feline calicivirus (FCV), and feline herpesvirus (FHV). On day 0, cats were revaccinated with a vaccine from the same line of vaccines as they had historically received. Antibody titers were measured in sera collected on day 0 (prevaccination titer) and 5 to 7 days later (postvaccination titer). Cats were considered to have responded serologically if they had a day-0 hemagglutination inhibition titer to FPV > or = 1:40, serum neutralization (SN) titer to FCV > or = 1:32, SN titer to FHV > or = 1:16, or > or = 4-fold increase in antibody titer after revaccination. RESULTS: The percentage of cats that had titers at or above the threshold values or responded to revaccination with a > or = 4-fold increase in titer was 96.7% for FPV, 97.8% for FCV, and 88.2% for FHV. CONCLUSIONS AND CLINICAL RELEVANCE: In most cats, vaccination induced a response that lasted up to and beyond 48 months for all 3 antigens. Although not equivalent to challenge-of-immunity studies as a demonstration of efficacy, results suggest that revaccination with the vaccine used in our study provides adequate protection even when given less frequently than the traditional 1-year interval. The study provides valuable information for clinicians to determine appropriate revaccination intervals.  相似文献   

16.
BackgroundFeline calicivirus (FCV) is a common pathogen of felids, and FCV vaccination is regularly practiced. The genetic variability and antigenic diversity of FCV hinder the effective control and prevention of infection by vaccination. Improved knowledge of the epidemiological characteristics of FCV should assist in the development of more effective vaccines.ObjectivesThis study aims to determine the prevalence of FCV in a population of cats with FCV-suspected clinical signs in Hangzhou and to demonstrate the antigenic and genetic relationships between vaccine status and representative isolated FCV strains.MethodsCats (n = 516) from Hangzhou were investigated between 2018 and 2020. The association between risk factors and FCV infection was assessed. Phylogenetic analyses based on a capsid coding sequence were performed to identify the genetic relationships between strains. In vitro virus neutralization tests were used to assess antibody levels against isolated FCV strains in client-owned cats.ResultsThe FCV-positive rate of the examined cats was 43.0%. Risk factors significantly associated with FCV infection were vaccination status and oral symptoms. Phylogenetic analysis revealed a radial phylogeny with no evidence of temporal or countrywide clusters. There was a significant difference in the distribution of serum antibody titers between vaccinated and unvaccinated cats.ConclusionsThis study revealed a high prevalence and genetic diversity of FCV in Hangzhou. The results indicate that the efficacy of FCV vaccination is unsatisfactory. More comprehensive and refined vaccination protocols are an urgent and unmet need.  相似文献   

17.
Prior to pre-exposure treatment of cats with two mouse-cat chimeric antibodies, FJH2 and F1D7, having neutralizing activity to feline herpesvirus-1 (FHV-1) and cat calicivirus (FCV), respectively, these chimeric antibodies were labeled with (125)I and administered to cats to examine their blood kinetics. Concentrations of the both administered chimeric antibodies in the blood reached maximum at the 48th hour post-administration, and the level was 34% for FJH2 and 54% for F1D7. Then the concentration levels declined gently, and decreased afterwards to 8.2% for FJH2 and 25% for F1D7 on the 20th day post-administration. The blood half-lives of FJH2 and F1D7 were 8.3 days and 10.7 days, respectively. In order to examine effectiveness in pre-exposure treatment of cats with these chimeric antibodies, cats were administered on the 15th day prior to the challenge infections with FHV-1 and FCV by subcutaneous route with 0.5 ml/kg of an FJH-F1D7 mixture being adjusted to contain each chimeric antibody of 10 mg/ml. The cats that received the pre-exposure treatment with the cocktail, showed obvious reductions in manifestations of symptoms caused by those viral infections. The protective effectiveness of the pre-exposure treatment against these viral challenge infections was almost equal to that of the treatment given at right after these challenge infections.  相似文献   

18.
In June 1993, two of five pet cats kept in Yokohama city in Japan suddenly became agitated and died. Feline calicivirus (FCV) was isolated from them. One strain (FCV-S) was isolated from the spinal cord, lung and tonsil of cat 1, another (FCV-B) from the ileum, medulla oblongata and cervical spinal cord of cat 2, and a third (FCV-SAKURA) from the oral cavity of one of the three surviving cats which showed no clinical signs. These three strains were equally resistant to pH 3.0 and serologically similar to each other, but distinct from strain F9. A genetic analysis, using a 208 base pair fragment from region E of the capsid, showed that FCV-Ari had a 70.4 per cent nucleotide and 77.3 per cent amino acid homology and FCV-F9 had a 68.6 per cent nucleotide and 73.9 per cent amino acid homology with the three strains, indicating that these two strains were genetically distinct from the three new isolates. Unvaccinated cats and cats which had been vaccinated against FCV-F9 developed watery diarrhoea but did not become agitated after the administration of FCV-S. The FCV-S strain did not induce signs of excitability after it was administered orally to specific pathogen-free cats.  相似文献   

19.
Feline calicivirus (FCV) could be isolated from four cats (2.6%) and feline herpesvirus-1 (FHV) from none of 152 clinically healthy cats from 22 Swedish breeding catteries. These cats had all previously shown signs of respiratory tract disease or conjunctivitis, although several years ago. The results suggest that carriers of FCV and FHV were uncommon in Swedish breeding catteries studied. Prevalence rates in other European countries and North America are usually higher, especially of FCV. The lower prevalence rates in our study might be explained by test group selection, differences in factors such as management, environment, or genetic constitution of the cats, or by sample handling. It was concluded that the presence of an FCV shedder in the cattery does not mean that all cats in the group are infected, but special measures are recommended to avoid infection of susceptible cats.  相似文献   

20.
Two groups of feline panleukopenia virus (FPV), feline calicivirus (FCV), and feline herpesvirus-1 (FHV-1) seronegative cats (five cats per group) were administered one of two modified live feline viral rhinotracheitis, calicivirus, and panleukopenia virus (FVRCP) vaccines and the serological responses to each agent were followed over 28 days. While all cats developed detectable FPV and FCV antibody titers; only two cats developed detectable FHV-1 antibody titers using the criteria described by the testing laboratory. For FPV and FHV-1, there were no differences in seroconversion rates between the cats that were administered the intranasal (IN) FVRCP vaccine and the cats that were administered the parenteral FVRCP vaccine on any day post-inoculation. For FCV, the cats that were administered the IN FVRCP vaccine were more likely to seroconvert on days 10 and 14 when compared to cats that were administered the parenteral FVRCP vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号