首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Rhizobium-legume symbioses are important for their nitrogen input, but salinity and elevated temperature in arid and semi-arid areas limit their effectiveness, and therefore plant growth and productivity. Sixteen Rhizobium strains isolated from root nodules of Leucaena trees grown in different geographical areas of Egypt varied in their degree of tolerance to salinity and in their symbiotic effectiveness with Leucaena leucocephala under saline conditions. Three strains were tolerant to >3% NaCl. L. leucocephala grown in the greenhouse at concentrations of NaCl up to 1.0% and inoculated either with strain DS 78 or strain DS 158 displayed significantly better growth than those plants grown at the same levels of salinity and inoculated with reference strain TAL 583. Although nine of the Rhizobium strains grew at 42  °C, their mean generation times were lengthened two- to fourfold. When daylight growth temperatures were elevated from 30  °C to 42  °C, nodule number and mass, nitrogenase activities and shoot top dry weight of plants inoculated with strains DS 78, DS 157 and DS 158 significantly increased, whereas these parameters decreased in plants inoculated with strain TAL 583. Rhizobium strains that effectively nodulate Leucaena under adverse saline conditions and at high temperatures were thus isolated, identified and characterized. Received: 12 September 1997  相似文献   

2.
Naturally growing Sesbania species with tolerance to unfavourable habitats are widely distributed in non-cultivated seasonally wetland areas in Uruguay. We investigated the relative abundance, diversity and symbiotic efficiency of Sesbania punicea and S. virgata rhizobia in three ecologically different undisturbed and water-logged sites in Uruguay. Numbers of native-soil rhizobia infective on S. punicea or S. virgata were low, with higher numbers associated with the presence of S. virgata. Plants of S. virgata inoculated with soil suspension showed aerial and nodule biomass greater than that obtained with S. punicea. The rhizobia nodulating Sesbania species in water-logged lands in different regions of Uruguay were diverse differing in growth rates, acid production, growth at 39°C and in LB medium, host range and symbiotic efficiency. Seventeen representative strains clustered into four groups on the basis of phenotypic characteristics, ARDRA and DNA fingerprinting (GTG5-PCR). Partial sequence of 16S rRNA from eight of these strains classified them into at least two genera with four species: Azorhizobium doebereinerae, Rhizobium sp. related to R. etli and two different Rhizobium sp.-Agrobacterium. Our results confirm the presence of the specie Azorhizobium doebereinerae as microsymbionts of S. virgata in South America. No strain of Rhizobium etli has previously been reported as a microsymbiont of Sesbania, though R. etli like organisms have also been recovered from Dalea purpurea and Desmanthus illinoensis. Significant increases in dry matter production were obtained with S. virgata plants inoculated with selected rhizobial strains under growth chamber conditions.  相似文献   

3.
Performance of three exotic species of Leucaena (L. diversifolia, L. shannonii and L. leucocephala) and one local selection of L. leucocephala was evaluated on sodic soil sites (pH 8.6–10.5) in order to select promising species for biomass production and reclamation of these soils. There were significant differences among three species with respect to their field survival (47.7–95.5 per cent), growth in terms of stem volume (40.8–118.6 m3 ha−1) and biomass production (24–70 Mg ha−1) after eight years of growth. L. leucocephala was rated as the most promising species irrespective of seed source, followed by L. shannonii. L. diversifolia could not perform well on these hostile soils. A definite improvement in physicochemical properties of soil particularly in surface layers (0–5 cm) was observed after eight years of plantations as compared to the same at uncultivated site. The soil pH and sodium content decreased followed by an increase in organic carbon, nitrogen and phosphorus content. However, efficiency of different species varied greatly to ameliorate these soils depending on quantity and quality of organic matter lying on the floor. L. leucocephala, irrespective of seed origin, showed greater promise for afforestation of sodic soils because of its potential to produce higher biomass per unit area and greater efficiency to ameliorate fertility status of these soils. The study revealed that matching of species to soil conditions is very important for a successful plantation programme and sustainable development of degraded soil sites. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Nodulation and nitrogen fixation of black locust (Robinia pseudoacacia L.), a legume tree broadly used in Argentina for urban and agricultural afforestation, was studied in hydroponic culture. The development of seedlings inoculated with a local strain of Rhizobium, highly specific for R. pseudoacacia, was also compared with respect to non-inoculated but N-fertilised seedlings. This strain produced fast nodulation and high crop yield and leaf N content. Already nodulated plants with the local Rhizobium strain were assayed for growth in a greenhouse pot experiment with soil from a field where topsoil has been removed for industrial purposes, whilst pots with non-desurfaced soil from the same field were used as control. Non-inoculated plants were also grown in either control or desurfaced soil. Inoculated plants developed better than non-inoculated plants in desurfaced soil, and in control soil as well, suggesting that the symbiosis was able to overcome the nutrient limitation of the desurfaced soil. Non-inoculated plants were nodulated by native soil born Rhizobium, either in control or desurfaced soil, but they showed low final nitrogen leaf content and low nitrogen fixation activity, suggesting that native rhizobia were ineffective.  相似文献   

5.
Abstract

Lines of Leucaena leucocephala (Lam.) de Wit were grown in greenhouse pots of an acid, Al‐toxic Tatum subsoil (clayey, mixed, thermic typic Hapludult) treated with 0 or 3000 ppm CaCO3 to give final soil pH values of 4.1 and 5.3, respectively. Lines of L. leucocephala, plus those of other Leucaena species, were also tested on an acid, Monmouth soil (clayey, mixed, mesic, typic Hapludult) treated with 0 or 1500 ppm CaCO3 to give final soil pH values of 4.8 and 6.6, respectively. The major index of acid soil tolerance used was relative root yield (unlimed/limed %).

Relative root yields of 117 L. leucocephala lines on Tatum soil ranged from 34 to 246%. Hence, liming the soil from pH 4.1 to 5.3 was highly beneficial to some lines and highly detrimental to others. Because Tatum subsoil is 89% Al saturated at pH 4.1, line tolerance to unlimed soil indicates tolerance to Al. Causes of yield depression at pH 5.3 were not determined.

On Monmouth soil, in a test involving 148 lines of 6 Leucaena species, relative root yields (unlimed/limed %) ranged from 23 to 386%. The line showing highest tolerance to the acid soil (P.I. 279578) and that showing lowest tolerance (P.I? 281636) are both L,. leucocephala. The majority of lines used on Monmouth soil (124 of a total of 148) were from this species. Average performances of the 6 species indicated that L. diversifolia Benth. (5 lines) was most tolerant to the acid Monmouth soil and liming the soil from pH 4.8 to 6.6 actually decreased root yields. The species L.. leucocephala (124 entries) and L. pulverulenta Benth. (4 lines) were intermediate, and L. lanceolata S. Wats. (3 lines) and I., retusa Benth. (1 line) appeared more sensitive to acid Monmouth soil. The Al saturation of Monmouth soil at pH 4.8 was only 23% (compared with 89% for Tatum at pH 4.1). The major growth limiting factor in acid Monmouth soil is believed to be Al toxicity, but this soil has not been as throughly characterized as has Tatum, and other factors may well be involved in explaining differential tolerances of Leucaena lines on the unlimed versus limed soil.

Results of these studies indicate that Leucaena species and lines within species differ significantly in tolerance to acid soils having high levels of exchangeable Al. Acid soil tolerant lines of Leucaena may be useful in expanding the acreage of this crop on oxisols and ultisols of the tropics and subtropics.  相似文献   

6.
Nitrogen (N) fixation by legume-Rhizobium symbiosis is important to agricultural productivity and is therefore of great economic interest. Growing evidence indicates that soil beneficial bacteria can positively affect symbiotic performance of rhizobia. The effect of co-inoculation with plant growth-promoting rhizobacteria (PGPR) and Rhizobium, on nodulation, nitrogen fixation, and yield of common bean (Phaseolus vulgaris L.) cultivars was investigated in two consecutive years under field conditions. The PGPR strains Pseudomonas fluorescens P-93 and Azospirillum lipoferum S-21 as well as two highly effective Rhizobium strains were used in this study. Common bean seeds of three cultivars were inoculated with Rhizobium singly or in a combination with PGPR to evaluate their effect on nodulation and nitrogen fixation. A significant variation of plant growth in response to inoculation with Rhizobium strains was observed. Treatment with PGPR significantly increased nodule number and dry weight, shoot dry weight, amount of nitrogen fixed as well as seed yield and protein content. Co-inoculation with Rhizobium and PGPR demonstrated a significant increase in the proportion of nitrogen derived from atmosphere. These results indicate that PGPR strains have potential to enhance the symbiotic potential of rhizobia.  相似文献   

7.
Plant‐growth promoting rhizobacteria (PGPR), in conjuction with efficient Rhizobium, can affect the growth and nitrogen fixation in pigeonpea by inducing the occupancy of introduced Rhizobium in the nodules of the legume. This study assessed the effect of different plant‐growth promoting rhizobacteria (Azotobacter chroococcum , Azospirillum brasilense, Pseudomonas fluorescens, Pseudomonas putida and Bacillus cereus) on pigeonpea (Cajanus cajan (L) Milsp.) cv. P‐921 inoculated with Rhizobium sp. (AR‐2–2 k). A glasshouse experiment was carried out with a sandy‐loam soil in which the seeds were treated with Rhizobium alone or in combination with several PGPR isolates. It was monitored on the basis of nodulation, N2 fixation, shoot biomass, total N content in shoot and legume grain yield. The competitive ability of the introduced Rhizobium strain was assessed by calculating nodule occupancy. The PGPR isolates used did not antagonize the introduced Rhizobium strain and the dual inoculation with either Pseudomonas putida, P. fluorescens or Bacillus cereus resulted in a significant increase in plant growth, nodulation and enzyme activity over Rhizobium‐inoculated and uninoculated control plants. The nodule occupancy of the introduced Rhizobium strain increased from 50% (with Rhizobium alone) to 85% in the presence of Pseudomonas putida. This study enabled us to select an ideal combination of efficient Rhizobium strain and PGPR for pigeonpea grown in the semiarid tropics.  相似文献   

8.
Abstract

One of the reasons for the low rate of adoption of alley cropping in the humid tropics is the problem of establishing the desired hedgerow trees. A split plot experimental design trial was set up to investigate the effects of 4 levels of nitrogen (N) fertilizer (0, 30, 60, and 120 kg N ha‐1) on the growth of Leucaena leucocephala (Lam.) de Wit in an intercrop with maize. Maize (Ekona 83TZ SR Y) was planted at 0, 25, 50, and 75 cm from Leucaena hedgerows planted on the same day. Leucaena plants were harvested at 3, 6, and 12 months after planting for biomass yield, N uptake, nodulation and mycorrhization. Results showed that at 0, 25, and 50 cm Leucaena/maize intercrop, there was no effect of N on Leucaena biomass. Leucaena biomass yield at 75‐cm spacing compared favorably with the biomass of Leucaena sole cropped that had received 0, 30, and 60 kg N ha‐1. Application of 120 kg N ha‐1 to sole Leucaena increased biomass yield significantly above all the intercrop spacings. Measurement of the solar radiation in the system showed that there was a close relationship between the amount of solar radiation received by Leucaena and its biomass yield. Maize intercropped closer than 75 cm from Leucaena hedges reduced radiation received by Leucaena by 72% at 25 cm compared with 29% at 75 cm. This effect reduced Leucaena biomass yield at 25‐cm spacing by 50%. This study showed that Leucaena can be established in intercrop with maize, but it requires about 75‐cm intercrop spacing with crop and about 120 kg N ha‐1 for good establishment. Leucaena/maize intercrop at 75‐cm spacing enables Leucaena to receive about 72% solar radiation and larger area to forage for plant nutrients.  相似文献   

9.
Three fast-growing rhizobia (Rhizobium meliloti isolated from Medicago saliva, R. trifolii from Trifolium subterraneum, and Rhizohium sp. from Leucaena leucocephala) and three slow-growing rhizobia R. japonicum from Glycine max, Rhizobium spp from Centrosema pubescens and Crotolaria anagyroides) were grown in defined media. The mean generation times of the fast-growing and slowgrowing strains were 3.8 h and 8.6 h respectively. Slow-growing organisms raised the initial pH of the defined medium while the fast-growing organisms lowered it. Rates of oxygen consumption tended to be higher in the slow-growing organisms.UMKL 19 (isolated from L. leucocephala) possessed all the normal reactions of fast-growing rhizobia but had a single sub-polar flagellum, similar to the three slow-growing strains studied.Certain combinations of amino acids and sugars (e.g. glutamine and galactose) induced an acidic reaction in the fast-growing organisms while the slow-growing ones changed the media to alkaline. Fast-growing organisms utilized more galactose for growth compared to slow-growing ones. Both types of organisms synthesized and released a wide range of amino acids into the medium.We suggest that pH changes produced by rhizobia growing on yeast-extract mannitol media are caused by the preferential utilization of sugars by fast-growing organisms and nitrogenous compounds by slow-growing ones.  相似文献   

10.
Thirty-nine endophytic bacterial strains were isolated from the nodule of Lespedeza sp. grown in two different locations of South Korea. All strains were checked for their plant growth promoting (PGP) abilities under in vitro conditions. Most of the isolates showed multiple PGP activity, i.e., indole acetic acid production, ACC deaminase activity, siderophore production, and phosphate solubilization. The strains were identified by using 16S rRNA gene sequence analysis as belonging to Alphaproteobacteria, Betaproteobacteria, Actinobacteria, and Firmicutes phylum with nine different genera Arthrobacter, Bacillus, Bradyrhizobium, Burkholderia, Dyella, Methylobacterium, Microbacterium, Rhizobium, and Staphylococcus. Gene nodA amplification showed positive results only for strains from Bradyrhizobium and Rhizobium genera. The strains from Bradyrhizobium and Rhizobium genera enhanced plant growth, nodulation, and acetylene reduction activity when inoculated on Vigna unguiculata L. (cowpea), whereas other strains did not induce nodule formation but enhanced plant growth. Herbaceous legume Lespedeza sp. formed root nodules with diverse bacterial group, and probably, these bacteria can be used for stimulating plant growth.  相似文献   

11.
Biserrula pelecinus is a pasture legume species new to Australian agriculture. The potential N benefit from B. pelecinus pastures in agricultural systems may not be realised if its symbiotic interactions with Mesorhizobium spp. are not well understood. This study evaluated the symbiotic interactions of four strains of Biserrula root-nodule bacteria (WSM1271, WSM1283, WSM1284, WSM1497) with four genotypes of B. pelecinus (cv. Casbah, 93GRC4, 93ITA33, IFBI1) and with a range of related legumes, including species known to be nodulated by strains of Mesorhizobium loti and other Mesorhizobium spp. Structures of root nodules were studied using light and electron microscopy enabling the ultrastructure of effective and ineffective nodules to be compared. B. pelecinus always formed typical indeterminate, finger-like nodules. The number of bacteroids inside symbiosomes varied between host×strain combinations, however, nodules formed by ineffective associations had well developed peribacteroid membranes and abundant bacteroids. Considerable variation was found in N2-fixing effectiveness of strains isolated from B. pelecinus on the four B. pelecinus genotypes. Strains WSM1271, WSM1284 and WSM1497 nodulated Astragalus membranaceus, only strains WSM1284 and WSM1497 nodulated Astragalus adsurgens. Strain WSM1284 also nodulated Dorycnium rectum, Dorycnium hirsutum, Glycyrrhiza uralensis, Leucaena leucocephala, Lotus edulis, Lotus glaber, Lotus maroccanus, Lotus ornithopodioides, Lotus pedunculatus, Lotus peregrinus, Lotus subbiflorus and Ornithopus sativus. The four strains from B. pelecinus did not nodulate Amorpha fruticosa, Astragalus sinicus, Cicer arietinum, Hedysarum spinosissimum, Lotus parviflorus, Macroptilium atropurpureum or Trifolium lupinaster. M. loti strain SU343 nodulated all four genotypes of B. pelecinus. However, M. loti strain CC829 only nodulated B. pelecinus genotypes 93ITA33 and IFBI1 and the nodules were ineffective. The root nodule isolates from H. spinosissimum (E13 and H4) nodulated B. pelecinus cv. Casbah whereas the commercial inoculant strain for Cicer (CC1192) could not nodulate any genotype of B. pelecinus. These results indicate that strains WSM1271, WSM1283 and WSM1497 isolated originally from B. pelecinus have a specific host range while strain WSM1284 is promiscuous in its capacity to nodulate with a broad range of related species. As B. pelecinus can be nodulated by Mesorhizobium spp. from other agricultural legumes, particularly Lotus, there is an opportunity to utilise this trait in cultivar development.  相似文献   

12.
Summary There were significant differences among pigeonpea [Cajanus cajan (L.) Millsp] Rhizobium sp. strains (IC 3506, IC 3484, IC 3195, and IC 3087) in their ability to nodulate and fix N2 under saline conditions. Pigeonpea plants inoculated with IC 3087 and IC 3506 were less affected in growth by salinity levels of 6 and 8 dS m-1 than plants inoculated with the other strains. For IC 3506, IC 3484, and IC 3195, there was a decrease in the number of nodules with increasing salinity, while the average nodule dry weight and the specific nitrogenase activity remained unaffected. However, in IC 3087, the number of nodules increased slightly with increasing salinity. Leaf-P concentrations increased with salinity in the inoculated plants irrespective of the Rhizobium sp. strain, and leaf-N concentrations decreased with increasing salinity in IC 3484 and IC 3195 only. Shoot-Na and-Cl levels were further increased in these salt-sensitive strains only at 8 dS m-1. Therefore there may be scope for selecting pigeonpea Rhizobium sp. symbioses better adapted to saline conditions. The Rhizobium sp. strains best able to form effective symbioses at high salinity levels are not necessarily derived from saline soils.Submitted as JA No. 919 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)  相似文献   

13.
We compared the uptake of nitrogen, potassium and phosphorus (as well as 14C-labelled mannitol, 3H-labelled glutamate, and 32P-labelled phosphate) in three fast- and three slow-growing rhizobia. The fast-growing strains used were Rhizobium meliloti (isolated from Medicago sativa), R. trifolii (from Trifolium subterraneum), and Rhizobium spp from Leucaena leucocephala, while the slow-growing strains were R. japonicum (Glycine max), and two Rhizobium spp (from Centrosema pubescens and Crotolaria anagyroides). Slow-growing organisms preferentially utilized glutamate in the medium. Both fast- and slow-growing strains took up more NH+4-N than NO?3-N on a per cell basis. In the presence of mannitol, fast-growing strains can cause either acid or alkaline reactions, an effect that is dependent only on the N-source (NH+4 or NO?3). Uptake preferences of the fast-growing Leucaena isolate (UMKL 19) resembled those of the slow-growing rhizobia, further strengthening the argument that this organism (and others like it) may be intermediate between the normal fast- and slow-growing groups. Generally, the efficiency of uptake of N (either as NH+4 or NO?3), P, and therefore K, was greater in the fast-growing organisms.  相似文献   

14.
Abstract

High nitrogen (N2)‐fixing potential is a desirable characteristic for any candidate hedgerow tree. Thus a study was conducted to evaluate Albizia lebbeck as a N2‐fixing tree in comparison to Gliricidia sepium and Leucaena leucocephala currently used in alley cropping. Nitrogen fixation and utilization were assessed in a screenhouse at four months after planting by the 15N dilution technique using Senna siamea as the non N2‐fixing reference. A. lebbeck accumulated significantly more N than L. leucocephala, but G. sepium was intermediate. This superiority in N yield was mainly due to its abundant nodule dry weight production which accounted for up to 10.8% of its total N. This was equivalent to 2.5 and 6 fold that of Gliricidia and Leucaena nodules, respectively. A. lebbeck had bigger but significantly (P<0.05) lower number of nodules per plant than G. sepium, but it did not differ from Leucaena. Albizia was the best N2 fixer with 44% Ndfa equivalent to 533 mg N per plant. G. sepium followed with 28% Ndfa and L. leucocephala with 18% Ndfa corresponding to 321 and 191 mg N fixed, respectively. However, the relatively higher N2 fixation in Albizia was not translated into higher N or dry matter yields. As A. lebbeck fixed more N, it depended less on soil N (49.8%) than did Leucaena (72.5% Ndfs) and Gliricidia (63.9% Ndfs) and less on fertilizer N as well. Thus A. lebbeck appears to be a potential hedgerow species for alley cropping purpose.  相似文献   

15.
An experiment was conducted to identify the main nitrogenous compound transported in the xylem sap of soybean plants nodulated with Rhizobium fredii. Soybean (Glycine max L. Merr.) cultivars, wild type Bragg (nod+, fix+) and its nitrate tolerant, hypernodulating mutant ntsll16 (nod++, fix+) were used for this experiment. These soybean plants were inoculated with a slowgrowing rhizobium, Bradyrhizobium japonicum USDAllO or fast-growing rhizobia consisting of a mixture of R. fredii USDA191, USDA193, and USDA-194 and grown in a phytotron under natural light and controlled temperature conditions. Xylem sap was collected from Bragg and ntsll16 plants at the flowering and pod elongation stages. Acetylene reduction activity per plant or per nodule weight was not different between soybean lines and inoculums. The composition of the nitrogenous compounds in the xylem sap was compared between the symbionts, with B. japonicum and R. fredii. At the flowering stage, ureide-N and amide-N accounted for 53 to 70% and 20 to 27% respectively of the total N in the sap collected from the plants inoculated either with B. japonicum or R. fredii. At the pod elongation stage, ureide-N and amide-N accounted for 74 to 85%, and 7 to 19% of total sap N. With the growth of the soybean plants, the ratio of ureide-N in the xylem sap increased. These results suggest that in the case of wild soybean and the hypernodulating mutant line nodulated by R. fredii, ureide is transported as the main nitrogenous compound of fixed nitrogen in the xylem sap in the same way as in plants nodulated with B. japonicum.  相似文献   

16.
The effect of soil sterilization, and seed inoculation with three Rhizobium strains (3889, CP5b and IC 26) were studied on 5 chickpea (Cicer arietinum L.) genotypes (Jordan local, ILC 72 from Spain, ILC 484 from Turkey, C 235 from India, and ILC 1272 from U.S.A.). The main objective of the work was to investigate the effect of inoculation with different Rhizobium strains on yield, nodulation and other agronomic characteristics of different chickpea genotypes. Inoculation with Rhizobium resulted in a significant increase in grain yield for all genotypes tested. The average increase due to inoculation was 110% over the uninoculated control. Inoculation resulted in more nodules, greater nodule fresh weight and higher nitrogen uptake. The various Rhizobium strains differed in their effects. Genotypes responded differently to inoculation.  相似文献   

17.
Twenty-eight Rhizobium strains were isolated from the root nodules of faba bean (Vicia faba L.) collected from 11 governorates in Egypt. A majority of these strains (57%) were identified as Rhizobium leguminosarum bv. viciae (Rlv) based on analysis of a nodC gene fragment amplified using specific primers for these faba bean symbionts. The strains were characterized using a polyphasic approach, including nodulation pattern, tolerance to environmental stresses, and genetic diversity based on amplified ribosomal DNA-restriction analysis (ARDRA) of both 16S and 23S rDNA. Analysis of tolerance to environmental stresses revealed that some of these strains can survive in the presence of 1% NaCl and a majority of them survived well at 37 °C. ARDRA indicated that the strains could be divided into six 16S rDNA genotypes and five 23S rDNA genotypes. Sequence analysis of 16S rDNA indicated that 57% were Rlv, two strains were Rhizobium etli, one strain was taxonomically related to Rhizobium rubi, and a group of strains were most closely related to Sinorhizobium meliloti. Results of these studies indicate that genetically diverse rhizobial strains are capable of forming N2-fixing symbiotic associations with faba bean and PCR done using nodC primers allows for the rapid identification of V. faba symbionts.  相似文献   

18.
Effects of seed and root exudates obtained from common bean on the proliferation of Rhizobium sp. (Phaseolus) were examined in a combination of three plant cultivars with three Rhizobium strains. In the first experiment, seed or root exudate was mixed with an Andosol soil extract, and bacterial proliferation in the mixture was traced. Seed exudate was prepared from hydroponic solution used in seed imbibition for 24 h, and a series of root exudates was prepared from a hydroponic solution collected every 24 h from the initiation of rooting up to 96 h after rooting. Regardless of the common bean cultivars and Rhizobium strains used, Rhizobium population markedly increased of the 24 h of culture in the mixture containing seed exudates, whereas a negligible increase was detected in the mixture with root exudates. The mixture containing root exudates collected within a period of 72–96 h after initial rooting (96–120 h after seed imbibition) exerted an inhibitory effect on Rhizobium proliferation. The seed exudates contained large amounts of sugars, amino acids, nitrogen, phosphorus, potassium, and magnesium compared to any root exudates. In the second experiment, Rhizobium was inoculated directly to common bean seeds sowed in a vermiculite bed which was sterilized and moistened with a plant nutrient solution. Compared with the control (without seed), a remarkable increase in the number of bacterial cells was observed in all the combinations of plant cultivars and Rhizobium strains 24 h after sowing. These results reveal that seed exudates of common bean have a substantial potential to promote Rhizobium proliferation, and that root exudates in a particular period of culture contain some inhibitory factors.  相似文献   

19.
Summary Field studies were conducted over two seasons to examine the effect of Leucaena leucocephala as a green manure on the N uptake and yield of rice grown under lowland conditions. The treatments were 0, 4, 8, and 12t Leucaena ha-1 with 0,44, and 88 kg N ha-1 as urea in a factorial combination. N uptake was evaluated at maximum tillering, panicle initiation, and harvest. The incorporation of Leucaena increased N uptake throughout the vegetative period in both seasons, irrespective of the mineral-N level. At all levels of N, the grain yield increased significantly following the incorporation of Leucaena, and in both seasons the Leucaena treatment of 8 t ha-1 was almost as effective as the highest mineral-N application.  相似文献   

20.
We constructed lacZ fusions in Rhizobium sp. (Cicer) by random Tn5-lacZ mutagenesis. The lacZ+ fusants formed blue colonies on a Rhizobial minimal medium containing 5-bromo-4-chloro-3-indolyl--D-galactopyranoside (X-gal). Rhizobium sp. (Cicer) fusant HSL-2 was identified in nodules and soil in a mixed population on the basis of the lacZ+ phenotype. Nodule occupancy of inoculated Rhizobium sp. (Cicer) HSL-2 (lacZ+) was assessed by directly streaking the nodule sap on X-gal plates. This method revealed differences between rhizobia carrying identical antibiotic markers. The rhizobial population in soil was estimated by direct plate counts using a medium containing X-gal. Introduction of lacZ into the Rhizobium sp. thus provided a simple and direct method for identifying strains from nodules and soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号