首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Local, field-scale, VisNIR-DRS soil calibrations generally yield the most accurate predictions but require a substantial number of local calibration samples at every application site. Global to regional calibrations are more economically efficient, but don't provide sufficient accuracy for many applications. In this study, we quantified the value of augmenting a large global spectral library with relatively few local calibration samples for VisNIR-DRS predictions of soil clay content (clay), organic carbon content (SOC), and inorganic carbon content (IC). VisNIR models were constructed with boosted regression trees employing global, local + global, and local spectral data, using local samples from two low-relief, sedimentary bedrock controlled, semiarid grassland sites, and one granitic, montane, subalpine forest site, in Montana, USA. The local + global calibration yielded the most accurate SOC predictions for all three sites [Standard Error of Prediction (SEP) = 3.8, 6.7, and 26.2 g kg− 1]. This was similarly true for clay (SEP = 95.3 and 102.5 g kg− 1) and IC (SEP = 5.5 and 6.0 g kg− 1) predictions at the two semiarid grassland sites. A purely local calibration produced the best validation results for soil clay content at the subalpine forest site (SEP = 49.2 g kg− 1), which also had the largest number of local calibration samples (N = 210). Using only samples from calcareous soils in the global spectral library combined with local samples produced the best SOC and IC results at the more arid of the two semiarid sites. Global samples alone never achieved more accurate predictions than the best local + global calibrations. For the temperate soils used in this study, the augmentation of a large global spectral library with relatively few local samples generally improved the prediction of soil clay, SOC, and IC relative to global or local samples alone.  相似文献   

2.
Cycloheximide inhibits specifically the ribosomal protein synthesis of eukaryotic cells, i.e. the metabolism of soil fungi. We measured cycloheximide effects on adenylates in 20 different soils (0-10 cm depth) from arable, grass and forest land with a large variety of soil properties. The aims were (1) to assess the interactions between cycloheximide effects and soil properties and (2) to prove the relationship between cycloheximide effects on ATP and the ergosterol-to-microbial biomass C ratio, which is an indicator for the fungal proportion of the total microbial biomass. The adenylates ATP, ADP and AMP were measured 6 h after adding either 10 mg cycloheximide per gram soil in combination with 24 mg talcum per gram soil or 24 mg talcum per gram soil solely. The medians of the relative increases in AMP and ADP were 45 and 25% and the medians of the relative decreases in ATP and adenylates were −36 and −12%. These changes in adenylate composition lead to a cycloheximide-induced relative decrease in the adenylate energy charge level of 15%. The relative decrease in ATP content after cycloheximide addition was significantly correlated with the ATP-to-microbial biomass C ratio, but not with the ergosterol-to-microbial biomass C ratio. The absolute increase in ADP and the absolute decrease in ATP were affected by the clay content according to principal component analysis. The reduction of the ATP-to-microbial biomass C ratio indicates that this ratio had the potential of being an important ecotoxicological indicator of direct toxic effects of organic pollutants on soil microorganisms.  相似文献   

3.
Water dispersible clay (WDC) is a good indicator of the risk of soil erosion by water and the consequent losses of nutrients and contaminants in overland flow. We measured the content and studied the properties of WDC in 26 samples of calcareous Xeralfs, Xerepts and Xererts of southwestern Spain collected from fields under different crop and tillage management; the soils ranged widely in total clay content (60–455 g kg− 1), calcium carbonate equivalent (CCE) (< 1–559 g kg− 1) and active calcium carbonate equivalent (ACCE; 2–135 g kg− 1), and were poor in organic carbon and soluble salts. The WDC content was determined by shaking 10 g of soil in 1 L of simulated rainwater for 4 hours. Non-carbonate WDC contents were found to be strongly correlated with the total clay content of the soils and ranged from 1 to 92 g kg− 1 soil (mean = 29 g kg− 1), the non-carbonate WDC/total clay ratio ranging from 0.01 to 0.29 (mean = 0.12). Based on regression analyses, illite was more dispersible than smectite and iron oxides decreased dispersion of clay. Carbonate WDC contents ranged from 1 to 27 g kg− 1 (mean = 8 g kg− 1) and were averaged one third the non-carbonate WDC contents; also, they were strongly correlated with the soil ACCE. WDC was rich in phosphorus (P) relative to the bulk soil. The enrichment ratio (ER) for total P (i.e. the ratio of total P in WDC to total P in soil) ranged from 0.2 to 29 (mean = 5) and was inversely related to the total clay content. On average, about one tenth of the soil total P was exported in the WDC and about one fifth of the total P in WDC was in the form of bicarbonate-extractable P (i.e. relatively soluble or ‘labile’ P). Part of the P in WDC seemingly occurred as metal phosphate particles formed by reaction of P fertilizers with soil. In summary, significant amounts of P can be exported via WDC, even though the proportion of total clay that is water dispersible is substantially lower in these soils than in cultivated soils of other semiarid regions.  相似文献   

4.
Soil aggregation is of great importance in agriculture due to its positive effect on soil physical properties, plant growth and the environment. A long-term (1996-2008) field experiment was performed to investigate the role of mycorrhizal inoculation and organic fertilizers on some of soil properties of Mediterranean soils (Typic Xerofluvent, Menzilat clay-loam soil). We applied a rotation with winter wheat (Triticum aestivum L.) and maize (Zea mays L.) as a second crop during the periods of 1996 and 2008. The study consisted of five experimental treatments; control, mineral fertilizer (300-60-150 kg N-P-K ha−1), manure at 25 t ha−1, compost at 25 t ha−1 and mycorrhiza-inoculated compost at 10 t ha−1 with three replicates. The highest organic matter content both at 0-15 cm and 15-30 cm soil depths were obtained with manure application, whereas mineral fertilizer application had no effect on organic matter accumulation. Manure, compost and mycorrhizal inoculation + compost application had 69%, 32% and 24% higher organic matter contents at 0-30 cm depth as compared to the control application. Organic applications had varying and important effects on aggregation indexes of soils. The greatest mean weight diameters (MWD) at 15-30 cm depth were obtained with manure, mycorrhiza-inoculated compost and compost applications, respectively. The decline in organic matter content of soils in control plots lead disintegration of aggregates demonstrated on significantly lower MWD values. The compost application resulted in occurring the lowest bulk densities at 0-15 and 15-30 cm soil depths, whereas the highest bulk density values were obtained with mineral fertilizer application. Measurements obtained in 2008 indicated that manure and compost applications did not cause any further increase in MWD at manure and compost receiving plots indicated reaching a steady state. However, compost with mycorrhizae application continued to significant increase (P < 0.05) in MWD values of soils. Organic applications significantly lowered the soil bulk density and penetration resistance. The lowest penetration resistance (PR) at 0-50 cm soil depth was obtained with mycorrhizal inoculated compost, and the highest PR was with control and mineral fertilizer applications. The results clearly revealed that mycorrhiza application along with organic fertilizers resulted in decreased bulk density and penetration resistance associated with an increase in organic matter and greater aggregate stability, indicated an improvement in soil structure.  相似文献   

5.
Our aim was to establish the long-term effects of repeated applications after 20 y of organic amendments (farmyard manure at 10 t ha−1 y−1, and urban sewage sludge at two different rates, 10 t ha−1 y−1 and 100 t ha−1 every 2 y) on the quality of a sandy and poorly buffered soil (Fluvisol, pH 6). Chemical characteristics and biodegradability of the labile organic matter, which is mainly derived from microbial biomass and biodegradation products of organic residues, were chosen as indicators for soil quality. The organic C content had reached a maximal value (30.6 g C kg−1 in the 100 t sludge-treated soil), i.e. about 2.5 times that in the control. Six years after the last application, the organic C content and the microbial biomass content remained higher in sludge-treated soils than in the control. In contrast, the proportion of labile organic matter was significantly lower in sludge-treated soils than in manure-treated and control soils. The labile organic matter of sludge extracts appeared less humified than that of manure-treated and control soils.  相似文献   

6.
Accurate estimation of microbial adenosine 5′-triphosphate (ATP) is a pre-requisite to quantify the impact of varying environments on microbial activity of soil. We investigated the effectiveness of a high efficiency soil ATP determination method (PA) [Webster, J.J., Hampton, G.J., Leach, F.R., 1984. ATP in soil: a new extractant and extraction procedure. Soil Biology & Biochemistry 4, 335-342] in 10 Ontario (Canada) soils collected along a 100 m transect and spanning a textural class gradient ranging from a sandy loam to clay loam with increasing organic matter. Modifications of the method involved using an extract of autoclaved soil to make the standard curve, as it was found that the light emitted by ATP luciferin-luciferase bioluminescence reaction in the pure extractant was different from that in the extracts. Replacing Tricine with Tris buffer in the assay significantly improved the light emission. On an average, the internal standard calibration method (ISM) measured a smaller amount of extracted ATP (1199 ng ATP g−1 soil) and a lower recovery of ATP spike (82.4±7.2%) than did the standard curve method (SCM) (1246 ng ATP g−1 soil and 91.2±4.5%, respectively) (P<0.05 for both comparisons). However, the average total estimated ATP was higher with ISM (1474±102 ng ATP g−1 soil) than with SCM (1373±88 ng ATP g−1 soil) (P<0.07). While the recovery rates determined using SCM were consistent among the soils tested, the rates measured using ISM was negatively correlated with soil clay and organic matter content, implying that the latter assay was affected by the soil properties. Our results confirmed that the recovery rates obtained by the PA method were the highest among those reported, when only SCM was used.  相似文献   

7.
The turnover of native and applied C and N in undisturbed soil samples of different texture but similar mineralogical composition, origin and cropping history was evaluated at −10 kPa water potential. Cores of structurally intact soil with 108, 224 and 337 g clay kg−1 were horizontially sliced and 15N-labelled sheep faeces was placed between the two halves of the intact core. The cores together with unamended treatments were incubated in the dark at 20 °C and the evolution of CO2-C determined continuously for 177 d. Inorganic and microbial biomass N and 15N were determined periodically. Net nitrification was less in soil amended with faeces compared with unamended soil. When adjusted for the NO3-N present in soil before faeces was applied, net nitrification became negative indicating that NO3-N had been immobilized or denitrified. The soil most rich in clay nitrified least N and 15N. The amounts of N retained in the microbial biomass in unamended soils increased with clay content. A maximum of 13% of the faeces 15N was recovered in the microbial biomass in the amended soils. CO2-C evolution increased with clay content in amended and unamended soils. CO2-C evolution from the most sandy soil was reduced due to a low content of potentially mineralizable native soil C whereas the rate constant of C mineralization rate peaked in this soil. When the pool of potentially mineralizable native soil C was assumed proportional to volumetric water content, the three soils contained similar proportions of potentially mineralizable native soil C but the rate constant of C mineralization remained highest in the soil with least clay. Thus although a similar availability of water in the three soils was ensured by their identical matric potential, the actual volume of water seemed to determine the proportion of total C that was potentially mineralizable. The proportion of mineralizable C in the faeces was similar in the three soils (70% of total C), again with a higher rate constant of C mineralization in the soil with least clay. It is hypothesized that the pool of potentially mineralizable C and C rate constants fluctuate with the soil water content.  相似文献   

8.
Considerable amounts of soil organic matter (SOM) are stabilized in paddy soils, and thus a large proportion of the terrestrial carbon is conserved in wetland rice soils. Nonetheless, the mechanisms for stabilization of organic carbon (OC) in paddy soils are largely unknown. Based on a chronosequence derived from marine sediments, the objectives of this study are to investigate the accumulation of OC and the concurrent loss of inorganic carbon (IC) and to identify the role of the soil fractions for the stabilization of OC with increasing duration of paddy soil management. A chronosequence of six age groups of paddy soil formation was chosen in the Zhejiang Province (PR China), ranging from 50 to 2000 years (yrs) of paddy management. Soil samples obtained from horizontal sampling of three soil profiles within each age group were analyzed for bulk density (BD), OC as well as IC concentrations, OC stocks of bulk soil and the OC contributions to the bulk soil of the particle size fractions. Paddy soils are characterized by relatively low bulk densities in the puddled topsoil horizons (1.0 and 1.2 g cm− 3) and high values in the plow pan (1.6 g cm− 3). Our results demonstrate a substantial loss of carbonates during soil formation, as the upper 20 cm were free of carbonates in 100-year-old paddy soils, but carbonate removal from the entire soil profile required almost 700 yrs of rice cultivation. We observed an increase of topsoil OC stocks from 2.5 to 4.4 kg m− 2 during 50 to 2000 yrs of paddy management. The OC accumulation in the bulk soil was dominated by the silt- and clay-sized fractions. The silt fraction showed a high accretion of OC and seems to be an important long-term OC sink during soil evolution. Fine clay in the puddled topsoil horizon was already saturated and the highest storage capacity for OC was calculated for coarse clay. With longer paddy management, the fractions < 20 μm showed an increasing actual OC saturation level, but did not reach the calculated potential storage capacity.  相似文献   

9.
Effects of diatomite on soil physical properties   总被引:1,自引:0,他引:1  
Organic and inorganic soil amendments are commonly added to soil for improving its physical and chemical characteristics which promote plant growth. Although many inorganic amendments are extensively used for this purpose, diatomite (DE) is not commonly used. This study was conducted to determine effects of diatomite applications (10, 20, and 30% v/v) on physical characteristics of soils with different textures (Sandy Loam, Loam, and Clay), under laboratory conditions. The results indicated that diatomite application protects large aggregate (> 6.4 mm) formation in clay-textured soils, however it reduced the mean weight diameter in sand-textured soil. 30% diatomite reduced mean weight diameter in sand-textured soils from 1.74 to 1.49 mm. Diatomite applications significantly increased aggregate stability of all the experimental soils in all aggregate size fractions. In overall, aggregate stability increased from 28.04% to 45.70% with the application rate of 30%. Diatomite application also significantly increased soil moisture content at field capacity in SL textured soil. 30% diatomite increased field capacity in sand-textured soil in the percent of 43.78 as compared with control. Therefore it is suggested that diatomite may be considered as a soil amendment agent for improving soil physical characteristics. However, its effectiveness in enhancing soil properties depends on initial soil factors and texture. Moreover, since its protective effect against large aggregate (> 6.4 mm) formation and reducing effect on soil penetration resistance in clay textured soils, diatomite might be an alternative soil amendment agent in soil tillage practices and seedling.  相似文献   

10.
Winter conditions with seasonally frozen soils may have profound effects on soil structure and erodibility, and consequently for runoff and erosion. Such effects on aggregate stability are poorly documented for Nordic winter conditions. The purpose of this study was to quantify the effect of variable freeze–thaw cycles and soil moisture conditions on aggregate stability of three soils (silt, structured clay loam—clay A and levelled silty clay loam—clay B), which are representative of two erosion prone areas in southeastern Norway. A second purpose was to compare aggregate stabilities measured by the Norwegian standard procedure (rainfall simulator) and the more widely used wet-sieving procedure. Surface soil was sampled in autumn. Field moist soil was sieved into the fraction 1–4 mm and packed into cylinders. The water content of the soil was adjusted, corresponding to matric potentials of − 0.75, − 2 and − 10 kPa. The soil cores were insulated and covered, and subjected to 0, 1, 3 or 6 freeze–thaw cycles: freezing at − 15 °C for 24 h and thawing at 9 °C for 48 h. Aggregate stability was measured in a rainfall simulator (all soils) and a wet-sieving apparatus (silt and clay B). The rainfall stability of silt was found to be significantly lower than of clay A and clay B. Clay A and clay B had similar rainfall stabilities, even though it was expected that the artificially levelled clay B would have lower stability. Freezing and thawing decreased the rainfall stability of all soils, but the effect was more severe on the silt soil. There was no evident effect of water content on the stability, probably due to experimental limitations. The same effects were observed for wet-sieved soil, but the wet-sieving resulted in less aggregate breakdown than the rainfall simulator. Rainfall impact seemed to be more detrimental than wet-sieving on more unstable soil, that is, on silt soil and soil subjected to many freeze–thaw cycles. Such conditions are expected to occur frequently during field conditions in unstable winters.  相似文献   

11.
To better understand the nature of the C flush that follows the rewetting of dry soil, we chemically characterized the water soluble pools following rewetting of soil dried to several different water potentials. To assess the impact that historical soil water status has on the size of the rewetting labile soluble pool, a laboratory water stress gradient was applied to soils that were collected from drought-prone and irrigated tallgrass prairie soils. In the laboratory, soils were either incubated at −33 kPa or dried steadily over a 0.6, 1, 2, or 3 day period to −1.5, −4, −15, and −45 MPa respectively. On the 4th day, samples were wetted back to −33 kPa and immediately assayed for soluble, microbial, or respiratory pools of carbon. After extraction, samples were also assayed using NMR, GC-MS, and LC-MS to assess carbohydrate, amino acid, osmolyte and sugar pools. The greater the degree of drying before rewetting was associated with greater concentrations of microbial, soluble and respiratory pools of carbon, increasing by 50, 400 and 250%, respectively, in the most water stressed compared to continuously moist soil. Compared to drought-prone soils, the amount of soluble C released as a result of rewetting was 30 to 50% greater in soils that were irrigated for 11 years. The pool of organics was not completely characterized and only small amounts of TBDMS and TMS derived compounds accounting for 2-4% of the soluble C pool were detected. In contrast, oligosaccharides constituted approximately 20-25% of the sample C. Our results suggest that the flush of C following wetting of a dry soil is not dominated by common microbial osmolytes (e.g. proline, glycine betaine, ectoine, glycerol, mannitol, trehalose). In light of this finding more research is needed to better understand the adaptations that microbial communities utilize to respond to the rewetting of dried soil.  相似文献   

12.
In salt-affected soils, soil organic carbon (SOC) levels are usually low as a result of poor plant growth; additionally, decomposition of soil organic matter (SOM) may be negatively affected. Soil organic carbon models, such as the Rothamsted Carbon Model (RothC), that are used to estimate carbon dioxide (CO2) emission and SOC stocks at various spatial scales, do not consider the effect of salinity on CO2 emissions and may therefore over-estimate CO2 release from saline soils. Two laboratory incubation experiments were conducted to assess the effect of soil texture on the response of CO2 release to salinity, and to calculate a rate modifier for salinity to be introduced into the RothC model. The soils used were a sandy loam (18.7% clay) and a sandy clay loam (22.5% clay) in one experiment and a loamy sand (6.3% clay) and a clay (42% clay) in another experiment. The water content was adjusted to 75%, 55%, 50% and 45% water holding capacity (WHC) for the loamy sand, sandy loam, sandy clay loam and the clay, respectively to ensure optimal soil moisture for decomposition. Sodium chloride (NaCl) was used to develop a range of salinities: electrical conductivity of the 1:5 soil: water extract (EC1:5) 1, 2, 3, 4 and 5 dS m−1. The soils were amended with 2% (w/w) wheat residues and CO2 emission was measured over 4 months. Carbon dioxide release was also measured from five salt-affected soils from the field for model evaluation. In all soils, cumulative CO2-C g−1 soil significantly decreased with increasing EC1:5 developed by addition of NaCl, but the relative decrease differed among the soils. In the salt-amended soils, the reduction in normalised cumulative respiration (in percentage for the control) at EC1:5 > 1.0 dS m−1 was most pronounced in the loamy sand. This is due to the differential water content of the soils, at the same EC1:5; the salt concentration in the soil solution is higher in the coarser textured soils than in fine textured soils because in the former soils, the water content for optimal decomposition is lower. When salinity was expressed as osmotic potential, the decrease in normalised cumulative respiration with increasing salinity was less than with EC1:5. The osmotic potential of the soil solution is a more appropriate parameter for estimating the salinity effect on microbial activity than the electrical conductivity (EC) because osmotic potential, unlike EC, takes account into salt concentration in the soil solution as a function of the water content. The decrease in particulate organic carbon (POC) was smaller in soils with low osmotic potential whereas total organic carbon, humus-C and charcoal-C did not change over time, and were not significantly affected by salinity. The modelling of cumulative respiration data using a two compartment model showed that the decomposition of labile carbon (C) pool is more sensitive to salinity than that of the slow C pool. The evaluation of RothC, modified to include the decomposition rate modifier for salinity developed from the salt-amended soils, against saline soils from the field, suggested that salinity had a greater effect on cumulative respiration in the salt-amended soils. The results of this study show (i) salinity needs to be taken into account when modelling CO2 release and SOC turnover in salt-affected soils, and (ii) a decomposition rate modifier developed from salt-amended soils may overestimate the effect of salinity on CO2 release.  相似文献   

13.
Surface runoff, soil loss, suspended sediment concentration (SSC), texture of eroded soils and suspended sediment were determined on slightly eroded chernozems (mouldboard fall-ploughed) during years with different amounts of snow in three areas of southern West Siberia (Predsalairye, Priobye and Kuznetsk hollow). These areas have different geomorphological and climatic characteristics and soils. Observations were made from 1969 to 2007. The soil loss during very low-snow and low-snow years did not exceed 2 t ha− 1. After winters with normal amounts of snow, the runoff led to slight soil loss (2–5 t ha− 1). Soil losses in high-snow and very high-snow years varied from slight to severe (4.8–15.8 t ha− 1) depending on studied area. The main sediment exported during intensive snowmelt and the 1 mm of runoff transported from 35 to 150 kg ha− 1 of soil material. The removal of soil particles < 0.01 mm (especially clay) prevailed during the initial and final stages of snowmelt. Clay removal by meltwater from the ploughed layer in high-snow and very high-snow years varied from 3300 to 4200 kg ha− 1 and, in the initial and final stages of snowmelt clay removal, accounted for 1260–1,500 kg ha− 1. Among the three studied regions, Predsalairye had decreased soil erosion resistance and was the area with the greatest danger of erosion.  相似文献   

14.
The survival of free-living rhizobia in soil is sensitive to elevated heavy metals in soil and can explain adverse effects of metals on symbiotic nitrogen fixation in soils. A survival experiment was set-up to derive critical cadmium (Cd) and zinc (Zn) concentrations in a range of field-contaminated soils in the absence of their host plant (Trifolium repens L.). Soils applied with metal salts or sewage sludge >10 years ago were sampled and were inoculated with Rhizobium leguminosarum bv. trifolii (108 cells g−1 soil) and incubated outdoors for up to 6 months. The most probable number (MPN) decreased 1-2 orders of magnitude in uncontaminated soils during the incubation. There was no significant effect of total metal concentrations on rhizobia survival in soils contaminated with Cd salts or with high Ni/Cd sewage sludge with highest Cd concentrations between 18 and 118 mg Cd kg−1. In contrast, survival was strongly affected in soils contaminated by sewage sludge, where Zn was the principal metal contaminant. Neither total Cd nor soil solution Cd was large enough to attribute these effects to Cd when compared with the soil series, where Cd salts had been applied. The MPN decreased at least one order of magnitude above total Zn concentrations of 233 mg Zn kg−1 (soil pH 5.6) and 876 mg Zn kg−1 (soil pH 6.3). The EC50s of log MPN were 204 and 604 mg Zn kg−1, respectively, and were lower than those for the symbiotic nitrogen fixation measured in the pot trial on the same soils (respectively 602 and 737 mg Zn kg−1). This study corroborates the evidence that symbiotic nitrogen fixation is affected by Zn in the field when Zn decreases the free-living population of rhizobia to below a critical threshold.  相似文献   

15.
We examined effects of wetting and then progressive drying on nitrogen (N) mineralization rates and microbial community composition, biomass and activity of soils from spinifex (Triodia R. Br.) grasslands of the semi-arid Pilbara region of northern Australia. We compared soils under and between spinifex hummocks and also examined impacts of fire history on soils over a 28 d laboratory incubation. Soil water potentials were initially adjusted to −100 kPa and monitored as soils dried. We estimated N mineralization by measuring changes in amounts of nitrate (NO3-N) and ammonium (NH4+-N) over time and with change in soil water potential. Microbial activity was assessed by amounts of CO2 respired. Phospholipid fatty acid (PLFA) analyses were used to characterize shifts in microbial community composition during soil drying. Net N mineralized under hummocks was twice that of open spaces between hummocks and mineralization rates followed first-order kinetics. An initial N mineralization flush following re-wetting accounted for more than 90% of the total amount of N mineralized during the incubation. Initial microbial biomass under hummocks was twice that of open areas between hummocks, but after 28 d microbial biomass was<2 μ g−1 ninhydrin N regardless of position. Respiration of CO2 from soils under hummocks was more than double that of soils from between hummocks. N mineralization, microbial biomass and microbial activity were negligible once soils had dried to −1000 kPa. Microbial community composition was also significantly different between 0 and 28 d of the incubation but was not influenced by burning treatment or position. Regression analysis showed that soil water potential, microbial biomass N, NO3-N, % C and δ15N all explained significant proportions of the variance in microbial community composition when modelled individually. However, sequential multiple regression analysis determined only microbial biomass was significant in explaining variance of microbial community compositions. Nitrogen mineralization rates and microbial biomass did not differ between burned and unburned sites suggesting that any effects of fire are mostly short-lived. We conclude that the highly labile nature of much of soil organic N in these semi-arid grasslands provides a ready substrate for N mineralization. However, process rates are likely to be primarily limited by the amount of substrate available as well as water availability and less so by substrate quality or microbial community composition.  相似文献   

16.
The aim of this study was to investigate the effects of increased N deposition on new and old pools of soil organic matter (SOM). We made use of a 4-yr experiment, where spruce and beech growing on an acidic loam and a calcareous sand were exposed to increased N deposition (7 vs. 70 kg N ha−1 yr−1) and to elevated atmospheric CO2. The added CO2 was depleted in 13C, which enabled us to distinguish between old and new C in SOM-pools fractionated into particle sizes. Elevated N deposition for 4 yr increased significantly the contents of total SOM in 0-10 cm depth of the acidic loam (+9%), but not in the calcareous sand. Down to 25 cm soil depth, C storage in the acidic loam was between 100 and 300 g C m−2 larger under high than under low N additions. However, this increase was small as compared with the SOM losses of 600-700 g C g C 0.25 m−1 m−2 from the calcareous sand resulting from the disturbance of soils during setting up of the experiment. The amounts of new, less than 4 yr old SOM in the sand fractions of both soils were greater under high N deposition, showing that C inputs from trees into soils increased. Root biomass in the acidic loam was larger under N additions (+25%). Contents of old, more than 4 yr old C in the clay and silt fractions of both soils were significantly greater under high than under low N deposition. Since clay- and silt-bound SOM consists of humified compounds, this indicates that N additions retarded mineralization of old and humified SOM. The retardation of C mineralization in the clay and silt fraction accounted for 60-80 g C m−2 4 yr−1, which corresponds to about 40% of the old SOM mineralized in these fraction. As a consequence, preservation of old and humified SOM under elevated N deposition might be a process that could lead to an increased soil C storage in the long-term.  相似文献   

17.
Soil texture is an important factor governing a range of physical properties and processes in soil. The clay and fine fractions of soil are particularly important in controlling soil water retention, hydraulic properties, water flow and transport. Modern soil texture analysis techniques (x‐ray attenuation, laser diffraction and particle counting) are very laborious with expensive instrumentation. Chilled‐mirror dewpoint potentiameters allows for the rapid measurement of the permanent wilting point (PWP) of soil. As the PWP is strongly dictated by soil texture, we tested the applicability of PWP measured by a dewpoint potentiameter in predicting the clay, silt and sand content of humid tropical soils. The clay, silt, and sand content, organic matter and PWP were determined for 21 soils. Three regression models were developed to estimate the fine fractions and validated using independent soil data. While the first model showed reasonable accuracy (RMSE 16.4%; MAE 13.5%) in estimating the clay, incorporating the organic matter into the equation improved the predictions of the second model (RMSE 17.3%; MAE 10.9%). When used on all soil data, the accuracy of the third model in predicting the fine fraction was poor (RMSE 31.9%; MAE 24.5%). However, for soils with silt content greater than 30%, the model prediction was quite accurate (RMSE 7–12%; MAE 7–9%). The models were used to estimate the sand content and soil textures of soils, which proved relatively accurate. The dewpoint potentiometer can serve a dual purpose of rapidly estimating the PWP and the clay, fine fraction, and soil texture of soils in a cost efficient way.  相似文献   

18.
Atypical soil carbon distribution across a tropical steepland forest catena   总被引:1,自引:0,他引:1  
Soil organic carbon (SOC) in a humid subtropical forest in Puerto Rico is higher at ridge locations compared to valleys, and therefore opposite to what is commonly observed in other forested hillslope catenas. To better understand the spatial distribution of SOC in this system, plots previously characterized by topographic position, vegetation type and stand age were related to soil depth and SOC. Additional factors were also investigated, including topographically-related differences in litter dynamics and soil chemistry. To investigate the influence of litter dynamics, the Century soil organic model was parameterized to simulate the effect of substituting valley species for ridge species. Soil chemical controls on C concentrations were investigated with multiple linear regression models using iron, aluminum and clay variables. Deeper soils were associated with indicators of higher landscape stability (older tabonuco stands established on ridges and slopes), while shallower soils persisted in more disturbed areas (younger non-tabonuco stands in valleys and on slopes). Soil depth alone accounted for 77% of the observed difference in the mean 0 to 60 cm SOC between ridge soils (deeper) and valley soils (shallower). The remaining differences in SOC were due to additional factors that lowered C concentrations at valley locations in the 0 to 10 cm pool. Model simulations showed a slight decrease in SOC when lower litter C:N was substituted for higher litter C:N, but the effects of different woody inputs on SOC were unclear. Multiple linear regression models with ammonium oxalate extractable iron and aluminum, dithionite–citrate-extractable iron and aluminum, and clay contents explained as much as 74% of the variation in C concentrations, and indicated that organo-mineral complexation may be more limited in poorly developed valley soils. Thus, topography both directly and indirectly affects SOC pools through a variety of inter-related processes that are often not quantified or captured in terrestrial carbon models.  相似文献   

19.
Net carbon dioxide (CO2) emission from soils is controlled by the input rate of organic material and the rate of decomposition which in turn are affected by temperature, moisture and soil factors. While the relationships between CO2 emission and soil factors are well-studied in non-salt-affected soils, little is known about soil properties controlling CO2 emission from salt-affected soils. To close this knowledge gap, non-salt-affected and salt-affected soils (0-0.30 m) were collected from two agricultural regions: in India (irrigation induced salinity) and in Australia (salinity associated with ground water or non-ground water associated salinity). A subset (50 Indian and 70 Australian soils) covering the range of electrical conductivity (EC) and sodium adsorption ratio (SAR) in each region was used in a laboratory incubation experiment. The soils were left unamended or amended with mature wheat residues (2% w/w) and CO2 release was measured over 120 days at constant temperature and soil water content. Residues were added to overcome carbon limitation for soil respiration. For the unamended soils, separation in multidimensional scaling plots was a function of differences in soil texture (clay, sand), SOC pools (particulate organic carbon (POC) and humus-C) and also EC. Cumulative CO2-C emission from unamended and amended soils was related to soil properties by stepwise regression models. Cumulative CO2-C emission was negatively correlated with EC in saline soils (R2 = 0.50, p < 0.05) from both regions. In the unamended non-salt-affected soils, cumulative CO2-C emission was significantly positively related to the content of POC for the Indian soils and negatively related to clay content for the Australian soils. In the wheat residue amended soils, cumulative CO2-C emission had positive relationship with POC and humus-C but a negative correlation with EC for both Indian and Australian soils. SAR was negatively related (β = −0.66, p < 0.05) with cumulative CO2-C emission only for the unamended saline-sodic soils of Australia. Cumulative CO2-C emission was significantly negatively correlated with bulk density in amended soils from both regions. The study showed that in salt-affected soils, EC was the main factor influencing for soil respiration but the content of POC, humus-C and clay were also influential with the magnitude of influence depending on whether the soils were salt affected or not.  相似文献   

20.
Biochemical characterization of urban soil profiles from Stuttgart, Germany   总被引:1,自引:0,他引:1  
The knowledge of biochemical properties of urban soils can help to understand nutrient cycling in urban areas and provide a database for urban soil management. Soil samples were taken from 10 soil profiles in the city of Stuttgart, Germany, differing in land use—from an essentially undisturbed garden area to highly disturbed high-density and railway areas. A variety of soil biotic (microbial biomass, enzyme activities) and abiotic properties (total organic C, elemental C, total N) were measured up to 1.9 m depth. Soil organic matter was frequently enriched in the subsoil. Microbial biomass in the top horizons ranged from 0.17 to 1.64 g C kg−1, and from 0.01 to 0.30 g N kg−1, respectively. The deepest soil horizon at 170-190 cm, however, contained 0.12 g C kg−1 and 0.05 kg N kg−1 in the microbial biomass. In general, arylsulphatase and urease activity decreased with depth but in three profiles potentially mineralizable N in the deepest horizons was higher than in soil layers directly overlying. In deeply modified urban soils, subsoil beside topsoil properties have to be included in the evaluation of soil quality. This knowledge is essential because consumption of natural soils for housing and traffic has to be reduced by promoting inner city densification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号