首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 310 毫秒
1.
对小麦抗病种质贵农775与西农97148的F2后代人工接种CY32条锈病菌,对其进行了抗性鉴定,通过卡方检测抗感病单株分离比例,确定贵农775携带有2对重叠抗条锈病基因。从128个AFLP引物组合中,筛选到与其中1个抗病基因YrG775共分离的多态性标记M8P15(1 200 bp),该标记仅能在原始亲本偏凸山羊草中检测到。由于已知来源于偏凸山羊草的Yr17苗期不抗CY32条锈病菌,所以根据抗性鉴定和分子生物学试验结果,推断YrG775很可能是1个来自偏凸山羊草,并与已知抗条锈病基因都不同的新基因。  相似文献   

2.
小麦贵农775抗条锈病新基因YrGA的研究   总被引:2,自引:0,他引:2  
小麦抗病种质贵农775具有抗条锈性,研究其抗条锈遗传,对揭示其抗病机制和培育持久抗病品种具有重要意义。以西农97148×贵农775的杂交群体为材料,利用RAPD,SCAR分子标记和荧光原位杂交技术研究其抗性基因来源及在染色体上的位置。贵农775中的YrGA基因来自于簇毛麦,特异标记与抗条锈病基因YrGA(暂时命名)遗传距离为(0.355+0.001)cM,荧光原位杂交结果显示,贵农775为小麦-簇毛麦新的易位系。由于抗条锈病基因Yr26来源于簇毛麦,位于6VS,而与YrGA连锁的特异片段位于染色体长臂,综合分子生物学试验结果,可以推断YrGA很可能是一个来自簇毛麦并与已知抗条锈病基因不同的新基因。  相似文献   

3.
优质强筋小麦品种川麦36自育成以来对条锈病成株期抗性为高抗-免疫,是一份重要优质抗病资源。为研究川麦36抗条锈基因组成及遗传特点,本研究用条锈病条中30(CY30)、条中31(CY31)和条中32(CY32)混合菌种对抗感病双亲、F1、F2、BC1和BC2进行人工接种并做抗性遗传分析。根据F1及BC1、BC2的抗感反应确定抗性基因的显隐性,根据F2的抗感分离比例,经卡方测验确定抗性基因对数。结果表明,川麦36对条锈病条中30(CY30)、条中31(CY31)和条中32(CY32)混合菌种的成株期抗性是由1对显性基因控制。  相似文献   

4.
【目的】明确小麦品种秦农142的抗条锈病特征及其抗条锈性遗传规律,以利于该抗病品种的合理利用和抗病基因的发掘。【方法】利用9个中国条锈菌系(CYR23、CYR29、CYR31、CYR32、CYR33、CH42、Sull-4、Sull-5和Sull-7)和3个国外条锈菌系(PK-CDRD、Hu09-2和104E137A)鉴定秦农142苗期及成株期的抗条锈性特征,并推导其抗病基因。苗期接种鉴定含7个常见抗条锈病基因(Yr5、Yr9、Yr10、Yr15、Yr17、Yr18、Yr26)的单基因抗性材料的抗性,分子标记检测秦农142的抗病基因,结合单基因抗病材料的抗病谱和分子标记检测结果推断秦农142是否含有以上7个抗条锈病基因。通过与感病亲本Avocet S杂交,构建秦农142的F1、F2和F2∶3遗传分析群体,鉴定亲本及各杂交后代群体的田间成株期条锈病抗性,分析其抗条锈病的遗传规律。【结果】苗期和成株期抗条锈性鉴定结果表明,秦农142在成株期有高度抗病性,在苗期抗性表现良好,仅对当前各麦区流行优势小种CYR32感病,对其他11个小种均表现高度抗病。基因分析结果显示,秦农142不含有已知的7个抗条锈病基因,其苗期抗病性由未知抗条锈病基因决定;成株期抗病性遗传分析表明,秦农142成株期抗病性由1对显性基因和1对隐性基因共同决定。【结论】秦农142具有典型的成株期抗病特征,是很好的抗病育种材料。  相似文献   

5.
小麦抗病种质贵农775是原贵州大学张庆勤教授利用远缘杂交育成的著名抗源材料,具有抗条锈性,研究其抗条锈遗传,对揭示其抗病机制和培育持久抗病品种具有重要意义.以西农97148×贵农775的杂交群体为研究对象,利用RAPD,SCAR分子标记和荧光原位杂交技术对其进行了研究.贵农775中的YrGA基因来自于簇毛麦,特异标记与抗条锈病基因YrGA(暂时命名)遗传距离为(0.355 0.001)cm,用荧光原位杂交技术鉴定贵农775为簇毛麦的新的易位系.由于抗条锈病基因Yr26来源于簇毛麦,位于6VS,而与YrGA连锁的特异片段位于染色体长臂,综合分子生物学试验结果,可以推断YrGA很可能是一个来自簇毛麦并与已知抗条锈病基因不同的新基因.  相似文献   

6.
为了解442份小麦材料苗期的抗病性,利用当前条锈菌优势流行生理小种CYR32、CYR33和CYR34对其进行苗期抗性鉴定,并利用基因芯片检测了其中241份春小麦所携带的抗条锈基因。结合苗期抗条锈病鉴定和基因芯片检测结果,共筛选出151个抗性品种,其中四川材料和CIMMYT材料中的抗条锈病基因较为丰富,且分布频率高。研究结果为筛选国内抗病性小麦种质资源以及国外优异种质的引进提供了参考,也为挖掘小麦抗条锈病基因及后续小麦抗条锈病分子育种研究奠定基础。  相似文献   

7.
对贵州、四川等省242份小麦材料在田间成株期进行抗条锈病鉴定,并利用5个已知抗条锈基因(Yr5、Yr10、Yr15、Yr18、Yr26)的分子标记对其进行检测,以期明确小麦材料的条锈病抗性水平和抗病基因类型,为科学合理利用小麦优异抗病材料奠定基础。结果表明,242份小麦材料经田间鉴定,成株期表现抗病的材料有116份,其中表现为免疫、近免疫、高抗和中抗的材料分别为11份、27份、41份和37份,分别占供试材料的4.54%、11.16%、16.94%和15.29%;表现为慢锈的材料仅有1份,占0.41%;表现中感和高感的材料有125份,占51.65%。经分子检测,供试材料中59份携带Yr26基因,13份含有Yr18基因,21份含有Yr15基因,14份含有Yr10基因,52份含有Yr5基因。其中,贵农19号等39份材料同时含有2个抗性基因;贵农775、贵协3号等7份材料携带3个抗性基因;80F-1-4-2含有4个抗性基因;其余抗性材料未检测到上述Yr基因,可能含有其他未检测的抗病基因。  相似文献   

8.
以小麦生产品种小偃22、科农199和西农1376为受体品种,植物抗菌蛋白基因LTP作为目的基因,构建pAHC25-LTP表达载体,利用基因枪法转化小麦幼胚愈伤组织,获得转LTP基因T0代小麦1247株。经草铵膦(Phosphinothricin,PPT)抗性筛选及PCR分子检测,获得阳性再生植株209株,转化率1.87%。阳性再生植株接种条锈菌CYR29、CYR31和CYR32混合小种后进行抗条锈病鉴定,获得抗性植株74株,其中抗性显著提高的抗病植株11株。本研究初步证明抗菌蛋白基因LTP在小麦抗条锈病菌的侵染中有一定作用,为获得转抗菌蛋白基因的抗条锈病小麦品种奠定基础,以期获得育种中可应用的新型抗源材料。  相似文献   

9.
粗山羊草抗条锈病鉴定及抗病基因YrY212 SSR标记   总被引:1,自引:0,他引:1  
【目的】粗山羊草是小麦野生近缘属种,是D基因组的供体,蕴含大量的抗病资源,是进行小麦遗传改良的重要遗传资源,明确其抗病基因的数量、类型、在染色体上的位置以及其与已知抗条锈病基因间的关系,挖掘抗条锈病新基因,为小麦育种提供优良抗病新种质。【方法】用离体叶和田间鉴定方法鉴别来自不同产地的38份粗山羊草的抗条锈病情况,对条锈病抗病性进行遗传分析,并利用SSR分子标记定位粗山羊草中的抗病基因。【结果】离体叶鉴定发现,有9份材料对条中29和条中31菌株免疫,占供试材料的23.68%;有6份材料高感或中感,占供试材料的15.79%,其余材料抗病等级不一致。田间混合菌种鉴定结果表明,有19份材料免疫,其中10份材料苗期感病但成株期抗病,占供试材料的26.32%。从粗山羊草(Aegilops tauschii (Coss.) Schmal)Y212中鉴定出1个显性抗小麦条锈病基因,暂定名为YrY212。应用分离群体分组法(BSA)筛选到Wmc506、Barc184、Wmc450和Cfd41标记,其与YrY212之间的遗传距离分别为3.0,4.0,7.0和20.0 cM,位于Wmc506和Barc184之间。【结论】根据连锁标记所在小麦微卫星图谱的位置,YrY212被定位在7DS染色体上,分析基因所在染色体的位置、抗病性特征认为,YrY212是一个新的抗小麦条锈病基因。  相似文献   

10.
含有偏凸山羊草2NS染色体的普通小麦易位系带有三个紧密连锁的抗锈基因Lr37、Sr38和Yr17.以内切酶EcoRI和分子探针Xmwg682为基础,发现来自偏凸山羊草2NS的易拉片断在1.8kb处有一条独特的RFLP标记.通过DNA克隆和测序,这条RFLP被成功地转换成为引物UI和LN1为基础的PCR标记.回交后代的鉴定结果表明,该PCR标记的灵敏度和专化性与RFLP标记基本相同.  相似文献   

11.
A-3中抗条锈新基因YrTp1和YrTp2的分子标记定位分析   总被引:10,自引:1,他引:10  
【目的】半个多世纪的中国小麦育种史基本是育种家与条锈病的赛跑史。因此,筛选、鉴定、储备和利用新抗源是我国育种和资源研究中的一个长远战略性课题。【方法】利用小麦条锈菌条中31、32号生理小种,对来自小麦与十倍体长穗偃麦草[Thinopyrum ponticum (Host) Liu & Wang]的杂交后代材料A-3进行抗性遗传分析。用荧光SSR分子标记技术,鉴定所携带抗条锈病基因是否为新基因,并对其进行染色体定位研究。【结果】遗传分析表明,A-3对条中31号和32号的抗性由一显一隐2对基因控制。经过对196对微卫星引物的筛选,发现2B染色体短臂上的WMC477-167bp与显性基因紧密连锁,遗传距离为0.4 cM,将该显性基因定位于2BS上;7B染色体短臂上的WMC364-208bp与隐性基因连锁,遗传距离为5.8 cM。图位比较、系谱分析和抗谱分析表明,A-3所含抗条锈基因不同于已知抗条锈基因,暂定名为YrTp1和YrTp2。【结论】可利用A-3中与条锈病抗性紧密连锁的分子标记YrTp1和YrTp2将抗性基因转移到主栽品种中,在小麦育种和生产上发挥作用。  相似文献   

12.
Loss of variety resistance to stripe rust (Puccinia striiformis Westend f. sp. tritici) is an important factor causing massive periodical epidemic of rust in wheat production. Creation and development of new races of rust pathogen have led to serious crisis of resistance loss in widely planted varieties. This has quickened the search for new resistance resources.Molecular marker could facilitate the identification of the location of novel genes. A line A-3 with high resistance(immune) to currently epidemic yellow rust races (CY29, 31, 32) was screened out in offspring of Triticum aestivum ×Thinopyrum ponticum. Segregation in F2 and BC1 populations indicated that the resistance was controlled by two independent genes: one dominant and one recessive. SSR markers were employed to map the two resistant genes in the F2 and BC1 populations. A marker WMC477-167bp located on 2BS was linked to the dominant gene with genetic distance of 0.4 cM. Another marker WMC364-208bp located on 7BS was linked to the recessive-resistant gene with genetic distance of 5.8 cM. The two genes identified in this paper might be two novel stripe rust resistant genes, which were temporarily designated as YrTpl and YrTp2, respectively. The tightly linking markers facilitate transfer of the two resistant genes into the new varieties to control epidemic of yellow rust.  相似文献   

13.
节节麦SQ-214衍生系的抗条锈性状遗传分析   总被引:1,自引:0,他引:1  
利用高抗条锈CIMMYT节节麦衍生系川05W4578与Sy95-71构建的F2群体,对川05W4578成株期的抗锈性进行了遗传分析。结果表明,川05W4578的抗条锈性状受两对基因控制,可用于抗条锈病育种。  相似文献   

14.
小麦条锈菌鉴别寄主Lee中抗性基因Yr7的微卫星标记   总被引:2,自引:1,他引:2  
【目的】对近等基因系Taichung29*6/Lee对条锈菌(PST)菌系CYR27的抗性谱进行遗传分析,并运用微卫星技术对近等基因系Taichung29*6/Lee中的抗条锈性基因进行标记。【方法】将Taichung29*6/Lee 与Taichung29杂交、自交和测交并对双亲及其杂交后代进行苗期抗性鉴定。采用SSR技术,利用抗性供体Lee中含有目的基因Yr7的小麦抗条锈病近等基因系Taichung29*6/Lee,选用Yr7所在的2B染色体上88 对和Yr22、Yr23所在4D、6D染色体上22对SSR引物,对供试的Taichung29*6/Lee、Taichung29和Lee基因组DNA进行PCR扩增和电泳分析。【结果】根据F2分离群体的抗感单株分离比例,确定Taichung29*6/Lee对CYR27菌系的抗性为1个显性基因,2B染色体上的Xgwms526引物扩增出多态性谱带为Xgwms526/212bp和Xgwms526/216bp,并证明其DNA片段位点与抗条锈基因Yr7存在遗传连锁关系;用标记Xgwms526扩增F2作图群体的单株DNA,在75株抗病单株中,有22株扩增出A型带(Xgwm526-212bp),51株扩增出H型带(Xgwm526-212bp和Xgwm526-216),2株扩增出B型带(Xgwm526-216);在31株感病株中,有4株扩增出H型带,27株扩增出B型带。【结论】通过Map Manager QTX 17b软件计算,确定Xgwm526标记位点与Yr7基因位点的遗传距离为5.3cM,标准差为2.3,LOD值为18.4。该标记Xgwm526可作为Yr7基因的SSR标记利用。  相似文献   

15.
通过对抗条锈病品种陕农78与感病品种铭贤169杂交获得的F1代、F1代自交获得的F2代、及F1与铭贤169回交获得的BC1代植株,在人工控制条件下,利用条锈病菌优势生理小种条中31、条中32对苗期进行人工接种后的反应型分析认为:陕农78对条中31的抗性是由1对隐性基因所控制;陕农78对条中32的抗性是由2对隐性基因互作所控制。  相似文献   

16.
几个山羊草属物种抗条锈性在栽培小麦遗传背景中的表达   总被引:6,自引:0,他引:6  
利用人工接种小麦条锈菌生理小种条中30和31,测定了9个山羊草属物种47个居群及其与感病小麦杂交F1植株的抗性。结果表明山羊草属物种对小麦条锈病的抗性程度有一定的差异,抗病山羊草居群与小麦杂交的40个组合的F1植株的抗性与其亲本比较,仅22个组合中山羊草的抗性完全表达,1个组合为部分表达,其余的17个组合中山羊草的抗性并未表达。而且山羊草的抗性表达和抑制与小麦的基因型密切相关,因而在小麦育种中,利用来自山羊草的抗条锈性时应选择易于抗性表达的小麦遗传背景作受体。  相似文献   

17.
澳大利亚小麦品种Sunco成株期对中国条锈病小种条中32(CY32)表现高抗-免疫,而小麦品种川育12则表现为高感。利用Sunco/川育12的双单倍体(DH)群体对Sunco进行抗条锈病遗传研究,结果表明,品种Sunco可能具有持久抗性,抗性是由一对主效基因和两对微效基因联合作用的结果;主效基因的抗性反应为抗-中抗(R-MR),微效基因单独存在作用不明显,但与主效基因结合起来会加强抗条锈病能力。同时对微效多基因的持久抗性利用作了初步探讨。  相似文献   

18.
[目的]对普通小麦一柔软滨麦草易位系的抗条锈性进行遗传分析。[方法]以普通小麦-柔软滨麦草易位系M853-2、M853-4、M8657-1l、M8657-4及M853-1为材料,用中国小麦条锈菌条中29号、条中30号、条中31号、条中32号、水源11_4和水源11-11共6个生理小种对其抗条锈性进行评价,进而对2个易位系M853-2和M8657-1的抗条锈性进行遗传学分析。[结果]5个易位系的抗病谱存在明显差异,初步推测5个易位系所包含的抗条锈基因不尽相同;M853-2对条锈茵系CY31的抗条锈性由2对基因控制,对Su11-11的抗条锈性由1对显性基因控制;M8657.1对条锈菌CY31的抗条锈性由2对基因控制,对Su11-11的抗条锈性由l对隐性基因控制。[结论]小麦一柔软滨麦草易位系的抗条锈性由主效基因所控制,可将其作为重要抗源在抗锈育种中有目的地加以利用。  相似文献   

19.
一个谷子新抗锈基因的AFLP标记   总被引:2,自引:1,他引:1  
【目的】研究谷子抗源的抗锈遗传规律,寻找和定位与谷子抗锈基因连锁的分子标记,为谷子抗锈病基因的定位、克隆和抗病育种等研究奠定基础。【方法】用谷子锈菌单胞菌系93-5接种十里香和豫谷1号及杂交后代F1、F2进行抗锈鉴定,并根据鉴定结果构建抗、感基因池;利用AFLP技术筛选128对EcoRⅠ/MseⅠ引物组合,从中寻找和定位与谷子抗锈基因连锁的分子标记;根据AFLP分析结果进行抗锈基因连锁分析并进行SCAR标记转化。【结果】根据十里香×豫谷1号杂交后代F2群体(131株)抗感谷锈病分离比例,确定十里香抗锈性由显性单基因控制。筛选获得3个与谷子抗锈基因Rusi1(暂命名)连锁的AFLP分子标记,经计算标记与该抗锈基因的遗传距离分别为7.4、9.2和27.4cM。将3个标记片段回收、克隆和测序,成功地将AFLP标记E+CTT/M+TAC-256转化为SCAR标记。初步构建了谷子抗锈基因Rusi1的遗传连锁图谱。【结论】谷子十里香抗锈性由显性单基因控制,Rusi1是一个新发现的谷子抗锈基因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号