首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A variety of Bartonella species were detected in two species of ticks and three species of fleas collected from marsupial hosts; brush-tailed bettong or woylie (Bettongia penicillata) and western barred bandicoots (Perameles bougainville) and from a rodent host; Rattus fuscipes in Western Australia. Bartonella species were detected using nested-PCR of the gltA gene and the 16S–23S ribosomal internal transcribed spacer region (ITS), and species were characterized using DNA sequencing of the 16S rRNA, gltA, rpoB, ftsZ genes and the ITS region. Bartonella rattaustraliani and B. coopersplainsensis were detected in Ixodes spp. ticks and fleas (Stephanocircus pectinipes) respectively collected from rodents. Two novel Bartonella species were detected from marsupials; Candidatus Bartonella woyliei n. sp. was detected in both fleas (Pygiopsylla hilli) and ticks (Ixodes australiensis) collected from woylies and Candidatus Bartonella bandicootii n. sp. was detected in fleas (Pygiopsylla tunneyi) collected from western barred bandicoots. Concatenated phylogenetic analysis of all 5 loci clarified the marsupial cluster of Bartonella species in Australia and confirmed the species status of these two Bartonella species in ticks and fleas from woylies and western barred bandicoots, which are classified as threatened species and are vulnerable to extinction.  相似文献   

2.
At least 15 of the 30 Bartonella species are involved in human pathologies, and several of them are associated with rodents and their fleas. The aims of this study were detect and molecularly characterize the Bartonella infections in rodents from an urban protected area of ​Buenos Aires City (Argentina). A total of 186 rodents were captured and identified. For PCR of the 16S rRNA fragment, 23.7 % of the samples tested positive, and two groups (GrA and GrB) were identified. Likewise, the comparison between the sequences obtained for the gltA gene determined the presence of three genotypes, closely related to Bartonella spp. detected in sigmodontine rodents and their fleas in the Americas, which form a well-separated clade. The high prevalence of Bartonella in rodents from an urban protected area of ​Buenos Aires city is relevant from a public health perspective.  相似文献   

3.
Several Bartonella spp. associated with fleas can induce a variety of clinical syndromes in both dogs and humans. However, few studies have investigated the prevalence of Bartonella in the blood of dogs and their fleas. The objectives of this study were to determine the genera of fleas infesting shelter dogs in Florida, the prevalence of Bartonella spp. within the fleas, and the prevalence of Bartonella spp. within the blood of healthy dogs from which the fleas were collected. Fleas, serum, and EDTA-anti-coagulated whole blood were collected from 80 healthy dogs, and total DNA was extracted for PCR amplification of Bartonella spp. The genera of fleas infesting 43 of the dogs were determined phenotypically. PCR amplicons from blood and flea pools were sequenced to confirm the Bartonella species. Amplicons for which sequencing revealed homology to Bartonella vinsonii subsp. berkhoffii (Bvb) underwent specific genotyping by targeting the 16S–23S intergenic spacer region.A total of 220 fleas were collected from 80 dogs and pooled by genus (43 dogs) and flea species. Bartonella spp. DNA was amplified from 14 of 80 dog blood samples (17.5%) and from 9 of 80 pooled fleas (11.3%). B. vinsonii subsp. berkhoffii DNA was amplified from nine dogs and five of the flea pools. Bartonella rochalimae (Br) DNA was amplified from six dogs and two flea pools. One of 14 dogs was co-infected with Bvb and Br. The dog was infested with Pulex spp. fleas containing Br DNA and a single Ctenocephalides felis flea. Of the Bvb bacteremic dogs, five and four were infected with genotypes II and I, respectively. Of the Bvb PCR positive flea pools, three were Bvb genotype II and two were Bvb genotype I.Amplification of Bvb DNA from Pulex spp. collected from domestic dogs, suggests that Pulex fleas may be a vector for dogs and a source for zoonotic transfer of this pathogen from dogs to people. The findings of this study provide evidence to support the hypothesis that flea-infested dogs may be a reservoir host for Bvb and Br and that ectoparasite control is an important component of shelter intake protocols.  相似文献   

4.
Flea-borne pathogens were screened from 100 individual cat fleas using a PCR approach, of which 38 % were infected with at least one bacterium. Overall, 28 % of the flea samples were positive for Bartonella as inferred from ITS DNA region. Of these, 25 % (7/28) were identified as Bartonella clarridgeiae, 42.9 % (12/28) as Bartonella henselae consisted of two different strains, and 32.1 % (9/28) as Bartonella koehlerae, which was detected for the first time in Malaysia. Sequencing of gltA amplicons detected Rickettsia DNA in 14 % of cat flea samples, all of them identified as Rickettsia asembonensis (100 %). None of the flea samples were positive for Mycoplasma DNA in 16S rRNA gene detection. Four fleas were co-infected with Bartonella and Rickettsia DNAs. Statistical analyses reveal no significant association between bacterial infection and mtDNA diversity of the cat flea. Nevertheless, in all types of pathogen infections, infected populations demonstrated lower nucleotide and haplotype diversities compared to uninfected populations. Moreover, lower haplotype numbers were observed in infected populations.  相似文献   

5.
The Neotropical region shows a great diversity of fleas, comprising more than 50 genera. The importance of the study of fleas is linked to their potential role as disease vectors. The aim of this study is to investigate the presence of Rickettsia spp. and Bartonella spp. in Neotropical fleas collected from wild rodents in Southern Brazil. From 350 rodents captured, 30 were parasitized by fleas. A total of 61 fleas belonging to two genera and six different species were collected (Craneopsylla minerva minerva, Polygenis occidentalis occidentalis, Polygenis platensis, Polygenis pradoi, Polygenis rimatus, and Polygenis roberti roberti). In 13 % of fleas of three different species (C. minerva, P. platensis, and P. pradoi) Rickettsia sp. DNA was found. Phylogenetic analysis of concatenated sequences of gltA, htrA, and ompA genes showed that Rickettsia sp. found in rodent fleas (referred as strain Taim) grouped together with Spotted Fever Group Rickettsia. In reference to Bartonella spp., five genotypes were identified in seven fleas of two species (C. minerva and P. platensis) and in five rodent spleens. Also, 207 frozen samples of wild rodents were screened for these pathogens: while none was positive for Rickettsia spp.; five rodent spleens were PCR-positive for Bartonella spp.. Herein, we show the detection of potential novel variants of Bartonella sp. and Rickettsia sp. in fleas collected of wild rodents from Southern Brazil. Further studies are needed to fully characterize these microorganisms, as well as to improve the knowledge on the potential role of Neotropical flea species as diseases vectors.  相似文献   

6.
Bartonella are blood-borne and vector-transmitted bacteria, some of which are zoonotic. B. bovis and B. chomelii have been reported in cattle. However, no information has yet been provided on Bartonella infection in cattle in Algeria. Therefore, 313 cattle from 45 dairy farms were surveyed in Kabylia, Algeria, in order to identify Bartonella species infecting cattle using serological and molecular tests. In addition, 277 ticks and 33 Hippoboscidae flies were collected. Bartonella bovis and B. chomelii were identified as the two species infecting cattle. Bartonella DNA was also amplified from 6.8 % (n = 19) of ticks and 78.8 % (n = 26) of flies. Prevalence of B. bovis DNA in dairy cattle was associated both with age and altitude. This study is the first one to report of bovine bartonellosis in Algeria, both in dairy cattle and in potential Bartonella vectors, with the detection of B. bovis DNA in tick samples and B. chomelii in fly samples.  相似文献   

7.
Mycoplasma spp. and Bartonella spp. are Gram-negative bacteria transmitted by arthropod vectors that infect red blood cells of several mammal species. This study investigated the occurrence and genetic diversity of hemoplasmas and Bartonella spp. in 68 howler monkeys kept in captivity in São Paulo, a southeastern state in Brazil. In addition, possible hematological, biochemical and electrophoretic changes of serum proteins associated with the occurrence of hemoplasmas and Bartonella spp. in captive primates were also investigated. The cPCR results showed that all sampled howler monkeys were negative for Bartonella spp. based on the gltA gene. The cPCR results indicated that 18 (26.47%) non-human primates (NHP) were positive for hemoplasmas based on the 16S rRNA gene. Monocyte and lymphocyte counts were higher in hemoplasma-positive howlers (P < 0.05). Platelet counts decreased in nonhuman primates (NHP) positive for hemoplasmas (P < 0.05). The results from the blood serum proteinogram and biochemistry analyses were not significantly different between NHPs positive and negative for hemotrophic mycoplasmas. Phylogenetic analysis using Bayesian Inference (BI) based on the 16S rRNA gene positioned the obtained sequences close to ‘Candidatus Mycoplasma kahanei’. The analysis of sequence diversity of the 16S rRNA gene showed that 5 different genotypes are circulating in NHP in Brazil and in the world; besides, a clear separation between the sequences of hemoplasmas that infect NHP of the Sapajus and Alouatta genus in Brazil was found, probably corresponding to two different species. The pathogenic potential of this hemoplasma species in NHP should be further investigated.  相似文献   

8.
Melophagus ovinus (sheep ked) is one of the most common ectoparasites that contributes to enormous economic losses in the productivity of sheep in many countries. The present study was conducted from January 2012 to July 2013 on M. ovinus collected from sheep at three sites in Ethiopia. Of the sheep studied, 65.7% (88/134) were infested with M. ovinus. The prevalence of M. ovinus was 76% (76/100), 47% (8/17) and 23.5% (4/17) at the Kimbibit, Chacha and Shano sites, respectively. An overall number of 229 M. ovinus specimens (138 females, 86 males and five pupae) and 554 M. ovinus specimens (272 females, 282 males) were collected from young and adult sheep, respectively. Bartonella DNA was detected in 89% (694/783) of M. ovinus using a quantitative Bartonella genus-specific PCR assay targeting the 16S/23S rRNA intergenic spacer region. The sequencing of the PCR products of fragments of the gltA and rpoB genes showed 99.6–100% and 100% homology, respectively, with B. melophagi. Statistically significant variation was not noted in the overall prevalence of Bartonella DNA between female and male M. ovinus. All of the sheep infested with M. ovinus 100% (88/88) harbored at least one M. ovinus specimen that contained Bartonella DNA. This study highlights that B. melophagi in M. ovinus from sheep in highlands in Ethiopia possibly has certain zoonotic importance.  相似文献   

9.
The prevalence of Bartonella spp. in wild rodents was studied in 19 geographical locations in Israel. One hundred and twelve rodents belonging to five species (Mus musculus, Rattus rattus, Microtus socialis, Acomys cahirinus and Apodemus sylvaticus) were included in the survey. In addition, 156 ectoparasites were collected from the rodents. Spleen sample from each rodent and the ectoparasites were examined for the presence of Bartonella DNA using high resolution melt (HRM) real-time PCR. The method was designed for the simultaneous detection and differentiation of eight Bartonella spp. according to the nucleotide variation in each of two gene fragments (rpoB and gltA) and the 16S–23S intergenic spacer (ITS) locus, using the same PCR protocol which allowed the simultaneous amplification of the three different loci. Bartonella DNA was detected in spleen samples of 19 out of 79 (24%) black rats (R. rattus) and in 1 of 4 (25%) Cairo spiny mice (A. cahirinus). In addition, 15 of 34 (44%) flea pools harbored Bartonella DNA. Only rat flea (Xenopsyla cheopis) pools collected from black rats (R. rattus) were positive for Bartonella DNA. The Bartonella sp. detected in spleen samples from black rats (R. rattus) was closely related to both B. tribocorum and B. elizabethae. The species detected in the Cairo spiny mouse (A. cahirinus) spleen sample was closely related to the zoonotic pathogen, B. elizabethae. These results indicate that Bartonella species are highly prevalent in suburban rodent populations and their ectoparasites in Israel. Further investigation of the prevalence and zoonotic potential of the Bartonella species detected in the black rats and the Cairo spiny mouse is warranted.  相似文献   

10.
Ecological, immunological, and epidemiological factors enable bats to transmit an increasingly recognized spectrum of zoonotic agents, and bartonellae are among those emerging pathogens identified in bats and their arthropod ectoparasites. Current data reveal a multifaceted disease ecology where diverse host species distributed around the world interact with a number of Bartonella spp. and several potential vectors. This review summarizes the methods and findings of studies conducted since 2005 to illustrate that Bartonella bacteremia varies by bat species, location, and other potential variables, such as diet with a very high prevalence in hematophagous bats. Among bat families, Bartonella prevalence ranged from 7.3% among Nycteridae to 54.4% in Miniopteridae. Further research can build on these current data to better determine risk factors associated with Bartonella infection in bat populations and the role of their ectoparasites in transmission.  相似文献   

11.
Bartonella and Babesia infections and the association with cattle breed and age as well as tick species infesting selected cattle herds in Taiwan were investigated. Blood samples were collected from 518 dairy cows and 59 beef cattle on 14 farms and 415 ticks were collected from these animals or in a field. Bartonella and Babesia species were isolated and/or detected in the cattle blood samples and from a selected subset (n = 254) of the ticks either by culture or DNA extraction, PCR testing and DNA sequence analysis. Bartonella bovis was isolated from a dairy cow and was detected in 25 (42.4%) beef cattle and 40 (15.7%) tick DNA samples. This is the first isolation of B. bovis from cattle in Asia and detection of a wide variety of Bartonella species in Rhipicephalus microplus. Babesia spp. were detected only on one farm from dairy cows either infected by Babesia bovis (n = 10, 1.9%) or B. bigemina (n = 3, 0.6%).  相似文献   

12.
Little is known about the prevalence and genetic diversity of Bartonella spp. and hemoplasmas in nonhuman primates (NHP). The present study aimed to investigate the occurrence of and assess the phylogenetic position of Bartonella spp. and hemoplasma species infecting neotropical NHP from Brazilian Amazon. From 2009 to 2013, a total of 98 blood samples from NHP belonging to the Family Cebidae were collected in the island of São Luís, state of Maranhão, of which 87 NHP were from Wild Animal Screening Center (CETAS) in the municipality of São Luís, and 11 (9 Sapajus sp. and 2 Saimiri sciureus) were from NHP caught in the Sítio Aguahy Private Reserve. DNA samples were screened by previously described PCR protocols for amplifying Bartonella spp. and Mycoplasma spp. based on nuoG, gltA and 16S rRNA genes, respectively. Purified amplicons were submitted to sequencing and phylogenetic analysis. Bacteremia with one or more Bartonella spp. was not detected in NHP. Conversely, 35 NHP were PCR positive to Mycoplasma spp. The Blastn analysis of seven positive randomly selected sequencing products showed percentage of identity ranging from 95% to 99% with other primates hemoplasmas. The Maximum Likelihood phylogenetic analysis based on a 1510 bp of 16S rRNA gene showed the presence of two distinct clusters, positioned within Mycoplasma haemofelis and Mycoplasma suis groups. The phylogenetic assessment suggests the presence of a novel hemoplasma species in NHP from the Brazilian Amazon.  相似文献   

13.
Argasid ticks are one of the most important poultry ectoparasites. They affect poultry directly through blood meal and indirectly through the transmission of pathogens essentially Borrelia anserina, agent of avian borreliosis, one of the most widespread poultry diseases in the world, and is of great economic importance. This study was conducted between April 2014 and March 2015 in the region of Ksar El Boukhari, Algeria, in order to investigate the presence of soft ticks in laying hen farms and to detect B. anserina bacteria using molecular tools. DNA was extracted and screened for the presence of Borrelia spp. DNA by real-time polymerase chain reaction (qPCR). Borrelia spp. screening was performed using primers and probe targeting the 16S rRNA gene. A total of 83 traditional laying hen farms were visited, of which 39 (46.98 %) were found infested with A. persicus tick. Molecular analysis revealed that 2/34 (5.88 %) of ticks were infected by B. anserina. None of the ticks tested were positive for Rickettsia spp., and Coxiella burnetii. These results constitute the first report in Algeria of A. persicus harboring B. anserina.  相似文献   

14.
Hedgehogs have become a popular pet despite their potential role in zoonotic disease transmission. We conducted an entomological study in a mountainous region of northeast Algeria in which we collected 387 fleas (Archeopsylla erinacei) and 342 ticks (Rhipicephalus sanguineus and Haemaphysalis erinacei) from Paraechinus aethiopicus and Atelerix algirus hedgehogs. Of the hedgehogs sampled, 77.7% and 91% were infested with fleas and ticks, respectively. Significantly more ticks and fleas were collected from A. algirus than from P. aethiopicus. Rickettsia felis was detected in 95.5% of fleas and R. massiliae was detected in 6.25% of Rh. sanguineus ticks by molecular tools. A new Rickettsia species of the spotted fever group was detected in 11.25% of Rh. sanguineus and in 77% of H. erinacei ticks. Overall, we show that hedgehogs can act as hosts for ectoparasites infected with several rickettsial agents. These data justify a more detailed investigation of animal reservoirs for Rickettsiae.  相似文献   

15.
Objectives To define the prevalence of Bartonella spp., Rickettsia felis, Mycoplasma haemofelis, ‘Candidatus Mycoplasma haemominutum’ (Mhm) and ‘Candidatus Mycoplasma turicensis’ (Mtc) in cats and their fleas in eastern Australia. Design and procedure Conventional PCR assays that detect Bartonella spp., M. haemofelis, Mhm, Mtc, Rickettsia spp., Ehrlichia spp., Anaplasma spp. and Neorickettsia spp. were performed on DNA extracted from blood and fleas collected from 111 cats. Cat sera were assayed by ELISA for IgG of Bartonella spp. Results DNA of M. haemofelis, Mtc and Mhm was amplified from 1 (0.9%), 1 (0.9%) and 17 cats (15.3%), respectively. Only DNA of Mhm was amplified from the 62 of 111 pooled flea samples (flea sets; 55.9%). Overall, the prevalence rates for Bartonella spp. DNA in the cats and the flea sets was 16.2% (18 cats) and 28.8% (32 flea sets), respectively. Bartonella spp. IgG was detected in 42 cats (37.8%), of which 11 (26.2%) were positive for Bartonella spp. DNA in their blood. R. felis DNA was amplified from 22 flea sets (19.8%), but not from cats. Overall, DNA of one or more of the organisms was amplified from 27% (30) of cats and 67.6% (75) of the flea sets. Conclusions This is the first Australian study to determine the prevalence of R. felis and B. clarridgeiae in both fleas and the cats from which they were collected. Flea-associated infectious agents are common in cats and fleas in eastern Australia and support the recommendation that stringent flea control be maintained on cats.  相似文献   

16.
The aim of our study was to detect the presence of Rickettsia spp. and Bartonella spp. in ticks and fleas collected from red foxes (Vulpes vulpes) in southeastern France during 2008. Using a genus-specific quantitative PCR (qPCR) assay, which was followed by a species-specific qPCR assay for the positive samples, 45.2% (33/73) of ticks (Rhipicephalus turanicus) were found to be infected with Rickettsia massiliae. 10.5% (2/19) of the fleas (Archaeopsylla erinacei) collected in the study tested positive for Rickettsia felis. A genus-specific qPCR assay did not reveal any Bartonella species in any of the ticks or fleas collected. The role of red foxes in the epidemiology of spotted fever caused by Rickettsiae species requires further investigation.  相似文献   

17.
The European hedgehog (Erinaceus europaeus) is a synanthropic nocturnal insectivore commonly found in the countryside and in the parks and gardens. Because hedgehogs are already involved in the transmission of a number of zoonoses, including salmonellosis and ringworm, we decided to study their possible role in the epidemiology of the spotted fever group of Rickettsia. We collected ticks and fleas from a hedgehog that was captured in the city of Marseilles in France. Using a genus-specific quantitative PCR (qPCR) analysis followed by a species-specific qPCR analysis for positive samples, we observed that 91.7% (11/12) of the Rhipicephalus sanguineus ticks were positive for Rickettsia massiliae and 99.2% (128/129) of the Archaeopsylla erinacei fleas were positive for Rickettsia felis. Hedgehogs carry infected ectoparasites and then likely ensure the dissemination of spotted fever group Rickettsiae, and their epidemiological role requires further investigation.  相似文献   

18.
A wide range of blood-sucking arthropods have either been confirmed or are suspected as important vectors in Bartonella transmission to mammals, including humans. Overall, it appears that the diversity of Bartonella species DNA identified in ectoparasites is much broader than the species detected in their mammalian hosts, suggesting a mechanism of adaptation of Bartonella species to their host-vector ecosystem. However, these mechanisms leading to the fitness between the vectors and their hosts still need to be investigated.  相似文献   

19.
Streptococcus equi subsp. zooepidemicus (SEZ) is an opportunistic and zoonotic pathogen of horses. In this study, genetic intraspecies variability of SEZ obtained mainly from respiratory and genital samples of horses was investigated by analysis of the 16S–23S rRNA intergenic spacer region (ISR) and of the 16S rRNA gene. 16S–23S ISR rRNA type A1 was predominant, although a high rate of multiple products (30.5%) was obtained. Phylogenetic analysis of the 16S rRNA gene detected three genogroups (I, II and III). 16S rRNA variable regions V1 and V2 are the most important regions for evaluating SEZ intraspecies variability, but at least V1-V5 regions should be considered to avoid mistakes. Analysis of all 16S rRNA sequences available in databases assigned human SEZ to groups I and III but not to group II. These results show a high genetic variability in SEZ collected from different specimens of horses from various regions of Italy.  相似文献   

20.
Rickettsia spp. are zoonotic pathogens and mainly transmitted by various arthropod vectors, such as fleas, ticks, and lice. Previous epidemiological studies indicated that ectoparasites infested on dogs or cats may be infected by Rickettsia spp., and transmit them to human beings accidentally. In this study, the prevalence of Rickettsia infection was evaluated using fleas and ticks from stray dogs and cats in Taiwan. A total of 158 pools made by 451 cat fleas (Ctenocephalides felis) from 37 dogs and 4 cats were used for analysis. Besides, 386 Rhipicephalus ticks collected from the other 62 stray dogs were included in this study. Nymphal and adult ticks were individually analyzed but larvae were separated into 21 pools for molecular detection. Partial sequencing analysis of the gltA gene was applied for Rickettsia identification. The results showed that 44.3% (70/158) of the cat flea pools were harboring Rickettsia DNA. Although 6.9% (13/187) of adult ticks were infected with Rickettsia, neither larval pools nor nymphal ticks were found to contain Rickettsia DNA. According to the results of sequencing analyses, all Rickettsia PCR-positive cat flea pools were infected with R. felis, and all Rickettsia PCR-positive adult ticks were infected with R. rhipicephali. The results of this study demonstrated that C. felis but not Rhipicephlus sanguineus (the brown dog tick) and Rh. haemaphysaloides collected from stray animals in Taiwan could be infected the zoonotic pathogen R. felis. Moreover, R. rhipicephali was only identified in adult stage of Rhipicephalus sanguineus and Rh. haemaphysaloides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号