首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The venturi aeration is an effective practice to increase the dissolved oxygen accessibility in the water bodies. This study aims to optimize the various geometrical parameters of the venturi aeration system. A non-dimensional technique was applied to find the optimum performance of various geometric parameters i.e. throat lengths (tl), number of air holes (N), and converging and diverging angles (α and β). These experiments have been carried out using 1124 L capacity of tank having dimensions of 105 cm long, 105 cm wide and 102 cm deep. The experiments were conducted at a constant flow velocity of water (1.096 m/s) with varying throat length (tl = 20–100 mm keeping 20 mm as interval between two consecutive length), number of air holes (N = 1–17 at an equal hole to hole distance of 5 mm between them), and converging and diverging angles (α and β = 10°, 15°, 20° and 25°). Multiple non-linear regression equations were also developed from the linear relation with the dependent variable (Non-dimensional form of standard aeration efficiency, NDSAE) and independent variables (tl and N). With the geometrically optimized venturi aerator the optimum performance was found for tl =100 mm, N = 17, and α and β = 15°. The maximum value of standard oxygen transfer rate (SOTR) and standard aeration efficiency (SAE) obtained was 0.0216 kgO2/h and 0.611 kgO2/kWh respectively. From the non-dimensional study, it was found that the NDSAE is the function Reynolds number (Re) and Froude number (Fr). The simulation equations were developed on the basis of Re and Fr for NDSAE, and subjected to 7.378 × 10−6 < Re < 3.689 × 10-5 and 0.163 < Fr < 0.817, respectively.  相似文献   

2.
Daily aeration periods of 4, 6, 12, and 24 h were examined for their effects on productivity of Gracilaria sp. Strain G-16 and on resultant agar quality. There were significant effects on biomass productivity, with decreases from 22 to 12 g·m2·d−1 at decreases from 24 h to 4 h of daily aeration, respectively. However, there were no effects of daily aeration periods on agar content, gel strength, or gelling and melting temperatures, suggesting that daily aeration period can be adjusted to provide maximum economic return based on seaweed and agar productivity. An analysis of total revenue, marginal revenue and aeration costs indicated that the most cost-effective aeration period was 11 h/day.  相似文献   

3.
The effects of aeration and alkalinity on water quality and product quality of Nile tilapia (Oreochrmis niloticus) were determined for simulated commercial hauling conditions. Three types of aeration were tested: pure oxygen aeration with a fine bubble diffuser (Oxygen), air aeration with medium bubble diffusers (Air), and a combination of both pure oxygen aeration with a fine bubble diffuser and air aeration with a medium bubble diffuser (Mixed). Simulated transport hauls were conducted at two initial alkalinities: 1.74 ± 0.11 meq/L (Low) and 8.84 ± 0.55 meq/L (High).The Air treatments resulted in the lowest carbon dioxide concentration, and the highest pH and un-ionized ammonia concentrations. At high alkalinities, the Air treatments were unable to maintain adequate dissolved oxygen levels. The Mixed treatment resulted in reduced carbon dioxide and dissolved oxygen concentrations. The Oxygen treatment resulted the highest dissolved oxygen, highest carbon dioxide, and lowest pH and un-ionized ammonia. Un-ionized ammonia concentrations were higher with the High Alkalinity treatments because of higher pH. Significant mortality was observed in the Air treatments in both the Low- and High-Alkalinity treatments. Mortality in the Oxygen and Mixed treatments for both low and high alkalinities were comparable to that observed in commercial tilapia transport using fine bubble diffusers and pure oxygen.These results indicate that mortality due directly to hauling water quality will not be increased at high alkalinity, if pure oxygen aeration is used. The potential effects of water quality during hauling on survival and product quality may be less than the impact from (a) physical damage from loading and un-loading and (b) physiological problems resulting from pH and temperature shock during the transfer from the hauling tanks to retail holding systems, especially for fish of reduced fitness.  相似文献   

4.
程香菊  肖耿锋  谢骏  舒锐 《水产学报》2020,44(7):1075-1085
曝气流量是曝气推流循环养殖系统的重要控制性因素,为综合研究不同曝气流量对鱼类生长和鱼肉品质的影响,参照野外养殖基地,利用自行设计的室内循环流水养殖模型,在0、30和50 L/min三组曝气条件下,以尼罗罗非鱼[初始体质量为(23.61±3.50)g]为对象,进行为期56 d的研究。结果显示:①30 L/min组中尼罗罗非鱼的最终体质量和特定生长率分别为(79.56±3.82) g和(2.81±0.54)%/d,其中特定生长率比0和50 L/min组分别高出11.07%和8.49%,同时该曝气流量下血清中的总蛋白和甘油三酯浓度较高,而尿素氮浓度较低,比如第56天时总蛋白浓度比0和50 L/min组分别高出57.43%和10.43%,甘油三酯浓度则分别高出22.19%和12.32%,但尿素氮浓度降低了39.02%和37.50%。葡萄糖浓度受曝气流量影响不显著。50 L/min组谷丙转氨酶和谷草转氨酶活性高于0和30 L/min组;②第56天时30 L/min组中鱼肉的硬度、弹性和咀嚼性高于0和50 L/min组,硬度分别比0和50 L/min组高出27.10%和15.85%,弹性高出9.10%和3.54%,咀嚼性高出42.25%和24.06%,而回复性在50 L/min组略高于其他两组。研究表明,低曝气流量(0 L/min)下,由于缺少水流刺激和溶解氧含量不足,导致尼罗罗非鱼生长速率缓慢;而高曝气流量(50 L/min)下流速过大会加快尼罗罗非鱼体内营养物质的消耗;中等曝气流量(30 L/min)最有利于尼罗罗非鱼的生长和鱼肉品质的提升。  相似文献   

5.
Aeration experiments were conducted in a brick masonry tank of dimension 4 m × 4 m × 1.5 m to study the design characteristics of pooled circular stepped cascade (PCSC) aeration system. Based on dimensional analysis, non-dimensional numbers related to geometric, dynamic and process parameters were proposed. The non-dimensional geometric parameters – number of steps (N), ratio of total height of cascade (H) to the bottom radius of cascade (Rb), % coverage of circumference of each step by enclosure (Pe) and number of enclosures in each step (Ne) were optimized. Maintaining the optimized geometric parameters (N = 6, H/Rb = 0.25, Pe = 20% and Ne = 9), aeration experiments were further conducted at different discharges (Q) to develop simulation equations for prediction of aeration characteristics of PCSC aeration system at different dynamic conditions. Simulation equations for oxygen transfer and power consumption based on Froude (Fr) criterion were developed subject to 0.0014  Fr  0.0144. SAE of the developed prototype PCSC aerators based on estimated brake power ranged between 2.43 and 3.23 kg O2/kWh.  相似文献   

6.
The response of phytoplankton, zooplankton and benthos to four aeration rates was evaluated in ponds farming white shrimp, Penaeus vannamei Boone, with less than 5% water exchange. Phytoplankton biomass (measured as chlorophyll-fl) was higher in ponds with aeration rates of 0 and 6 h day?1 than in those with rates of 24 hday?1. The abundance of zooplankton and benthos (organisms m?2) were higher in ponds with aeration rates of 0 and 6 h day?1, and lower in ponds with rates of 12 and 24 h day?1. The nauplii of different crustaceans, copepods and larval polychaetes were the most abundant organisms of the zooplankton community. Differences in zooplankton composition were observed among treatments. Polychaetes were the most abundant benthic organisms during the culture period. These organisms were more abundant in ponds with lower aeration rates. The guts of shrimp from ponds with aeration rates of 0 and 6 h day?1 had a higher abundance of zooplankton and benthic organisms than those from the other treatments. That abundance decreased over time in all treatments. Shrimp had better growth in ponds with an aeration of 6 hday?1. Survival and yield were similar in ponds with aeration rates of 6, 12 and 24 h day?1, and lower in ponds with rates of 0 h day?1.  相似文献   

7.
Tropical and subtropical climatic conditions in India present an ideal and unique opportunity for being the leader in tropical marine finfish aquaculture. However, the problem persist due to non-availability of marine finfish seed for the culture. In response to this problem, broodstock development of different tropical marine finfishes for seed production was started. The present study was undertaken to design a recirculating aquaculture system (RAS) and studying their performance in managing the various water quality required for the marine finfish broodstock development and breeding. The design of RAS, developed in the present study, included a broodstock tank, egg collection chamber, electrical pump, rapid sand filter, venturi type protein skimmer and biological filter. Two RAS were designed, one was stocked with a demersal fish species, orange spotted grouper (Epinephelus coioides) and the other was stocked with a pelagic fish species, Indian pompano (Trachinotus mookalee) at the rate 1 and 0.5 kg/m3 with a sex ratio of 1:1 and 1:2 (female: male) respectively. Various physio-chemical parameters, viz, total ammonia nitrogen (TAN), nitrite, nitrate, pH, alkalinity, temperature, free carbon dioxide (CO2) and dissolved oxygen (DO) of both tank water were analyzed to assess the performance of recirculating aquaculture system in maintaining the water quality. Gonadal development of the fishes was assessed and the spawning performance was recorded and finally, economic performance of the system was also evaluated. During the entire experimental period, mean monthly total ammonia nitrogen was less than 0.07 and 0.06 mg L−1 and mean monthly nitrite was less than 0.02 and 0.01 mg L−1 in orange spotted grouper and Indian pompano RAS tanks respectively. The pH (7.8–8.2), DO (>4 mg/L) and alkalinity (100–120 mg/L) were found to be in optimum range in both recirculating aquaculture systems. Carbon dioxide was found to be nil during the entire experimental period in both the systems. In fact these levels were comparable or less than that is reported as the permissible limits for broodstock development. Indian pompano and Orange spotted grouper matured and spawning was obtained with production of fertilized eggs round the year. Economic evaluation showed the price of 10,000 fertilized eggs of orange spotted grouper to be US $ 1.33. The design of RAS devised in the present study is efficient in controlling and maintaining optimum water quality for broodstock development of both demersal and pelagic finfishes. The fishes stocked in RAS attained final maturation and round the year spawning was obtained.  相似文献   

8.
In this study, the performance of a spiral aerator, a modified design of the paddlewheel aerator, was evaluated to determine its applicability in aquaculture ponds. The aeration characteristics of the spiral aerator were determined by conducting aeration experiments in a cement concrete tank of dimension 5 × 5 × 1.5 m. Nondimensional numbers related to oxygen transfer (E) and power consumption (Ne) were proposed and expressed as functions of geometric (number of handles per shaft, n) and dynamic (Froude and Reynolds number) parameters. Simulation equations for oxygen transfer and power consumption based on the Froude criterion were developed. The maximum brake power standard aeration efficiency was achieved at n = 13. Finally, an economic analysis was performed assuming a typical Indian major carp culture pond to determine the optimum rotational speed of the aerator at different pond volumes and dissolved oxygen concentration present in the pond at which the aeration cost is minimized. The results showed that the least aeration cost is achievable when rotational speed of the spiral aerator is only 70 rpm for pond volumes up to 700 m3 and from 120 to 220 rpm for pond volumes exceeding 700 m3.  相似文献   

9.
The integrated aquaculture of the tetrasporophyte of Asparagopsis armata Harvey (Falkenbergia rufolanosa) using fish farm effluents may be viable due to the species high capacity of removing nutrients and its content of halogenated organic compounds with applications on the pharmaceutical and chemical industries. In order to optimize the integrated aquaculture of F. rufolanosa, we followed the daily variation of the potential quantum yield (Fv/Fm) of PSII on plants cultivated at different biomass densities and different total ammonia nitrogen (TAN) fluxes to check if they are photoinhibited at any time of the day. Moreover, the photoinhibition under continuous exposure to highly saturating irradiance and its potential for subsequent recovery in the shade was assessed. The potential for year round cultivation was evaluated by measuring rates of O2 evolution of plants acclimated at temperatures ranging from 15 to 29 °C, the temperature range of a fish farm effluent in southern Portugal where an integrated aquaculture system of F. rufolanosa was constructed.Photoinhibition does not seem to be a major constrain for the integrated aquaculture of F. rufolanosa. Only when cultivated at a very low density of 1.5 g fresh weight (FW) l− 1 that there was a midday decrease in maximal quantum yield (Fv/Fm). At densities higher than 4 g FW l− 1, no photoinhibition was observed. When exposed to full solar irradiance for 1 h, F. rufolanosa showed a 33% decrease in Fv/Fm, recovering to 86% of the initial value after 2 h in the shade. A midday decline of the F. rufolanosa Fv/Fm was also observed under the lowest TAN flux tested (∼6 μM h− 1), suggesting that this fast and easy measurement of fluorescence may be used as a convenient diagnostic tool to detect nutrient-starved unbalance conditions of the cultures. Maximum net photosynthesis peaked at 15 °C with 9.7 mg O2 g dry weight (DW)− 1 h− 1 and remained high until 24 °C. At 29 °C, the net oxygen production was significantly reduced due to a dramatic increase of respiration, suggesting this to be the species' lethal temperature threshold.Results indicate that F. rufolanosa has a considerable photosynthetic plasticity and confirm it as a good candidate for integrated aquaculture at temperatures up to 24° C and cultivation densities of at least 5 g FW l− 1. When cultivated at these densities, light does not penetrate below the first few centimetres of the surface zone. Plants circulate within the tanks, spending around 10% of the time in the first few centimetres where they are able to use efficiently the saturating light levels without damaging their photosynthetic apparatus.  相似文献   

10.
为了评估全封闭循环水养殖系统中养殖密度对钝吻黄盖鲽生长的影响及水质变化情况,将体质量为(250.00±50.83)g的钝吻黄盖鲽分成8个试验组(放养密度分别为18、22、26、30、34、38、42、46 kg/m3),进行了3个月的饲养试验,检测不同养殖密度下鱼的成活率、体质量增长率及饲料系数,同时对试验期间氨氮、亚硝酸盐和溶解氧等各项水质指标的动态变化进行监测。试验结果显示,各试验组鱼的成活率均达到96%以上,但随着养殖密度的增加,钝吻黄盖鲽的成活率总体呈现降低的趋势;低密度组(18 kg/m3)的体质量增长率最高,为36.1%,高密度组(46 kg/m3)的体质量增长率最低,为24.8%,且体质量增长率随着养殖密度的增加而逐渐降低;随着养殖密度的增加,饲料系数呈逐渐升高的趋势;养殖期间各项水质指标均保持在适宜钝吻黄盖鲽生长的范围内。结果表明,在本试验的循环水养殖系统中,综合考量养殖生长指标及单位面积产量,钝吻黄盖鲽规模化生产的最适养殖密度为42~46 kg/m3。  相似文献   

11.
Six experimental tanks were used to examine the effect of artificial aeration on the primary productivity of phytoplankton under four different treatments: 5 and 2.5 h aeration day−1 each with a carp fingerling stocking density of 60 000 ha−1; 5 h aeration day−1 with a stocking density of 100 000 ha−1 and the control system (no aeration) with a stocking density of 60 000 ha−1. All the four treatments were duplicated during three experiments carried out during the period from June 1982 to April 1984. The results of this study revealed that aeration induced the net photosynthetic activity of the phytoplankton by substantially reducing their demand for oxygen for respiration. Since the rates of net primary productivity (NPP) and the abundance of phytoplankton were markedly reduced under high density culture compared with normal density culture with the same aeration, it suggests that the high density of fish caused intense grazing on the phytoplankton and was, thus, responsible for the lower rates of NPP.  相似文献   

12.
《Aquacultural Engineering》2011,44(3):114-119
A dynamic stock model was used for quantification of shrimp production and analysis of alternative management schemes of stocking density, pond size, starting time of aeration, and duration of cultivation for intensive commercial production of the shrimp Litopenaeus vannamei. Databases from Mexican farms were used to calibrate the model. Multiple linear regression models were employed to establish relationships between parameters of the stock model and the management variables. Water quality variables (dissolved oxygen, temperature, and salinity) were complementarily analyzed. The final weight of shrimp was directly related to duration of cultivation and dissolved oxygen, and inversely related to stocking density, pond size, and salinity. There were inverse relationships between the growth coefficient and temperature and dissolved oxygen and between mortality rate and temperature. Dissolved oxygen was significantly related to starting time of aeration. Simple linear regression and an equivalence test indicated that biomass at harvest (after 13 weeks in winter, and 20 weeks in summer) was adequately predicted by using the stock model and the multiple regression models. The highest production (winter, 6900 kg ha−1; summer, 12,600 kg ha−1) were predicted using 60 postlarvae m−2, small ponds (2 ha), and starting aeration at the first week of cultivation; while the lowest yields (winter, 2600 kg ha−1; summer, 6000 kg ha−1) were obtained using 40 postlarvae m−2, large ponds (8 ha), and delaying the start of aeration until the fifth week of cultivation. The lowest production was 38% (winter) and 48% (summer) of the highest yield. Using small ponds could be particularly important during winter cycles to increase production, while stocking density and starting time of aeration contributed less. In contrast, pond size played a minor role during summer cycles and stocking density was the most sensitive variable.  相似文献   

13.
A low‐head recirculating aquaculture system (RAS) for the production of Florida pompano, Trachinotus carolinus, from juvenile to market size was evaluated. The 32.4‐m3 RAS consisted of three dual‐drain, 3‐m diameter culture tanks of 7.8‐m3 volume each, two 0.71‐m3 moving bed bioreactors filled with media (67% fill with K1 Kaldness media) for biofiltration, two degassing towers for CO2 removal and aeration, a drum filter with a 40‐µm screen for solids removal, and a 1‐hp low‐head propeller pump for water circulation. Supplemental oxygenation was provided in each tank by ultrafine ceramic diffusers and system salinity was maintained at 7.0 g/L. Juvenile pompano (0.043 kg mean weight) were stocked into each of the three tanks at an initial density of 1.7 kg/m3 (300 fish/tank). After 306 d of culture, the mean weight of the fish harvested from each tank ranged from 0.589 to 0.655 kg with survival ranging from 57.7 to 81.7%. During the culture period, the average water use per kilogram of fish was 3.26 or 1.82 m3 per fish harvested. Energy consumption per kilogram of fish was 47.2 or 22.4 kwh per fish harvested. The mean volumetric total ammonia nitrogen (TAN) removal rate of the bioreactors was 127.6 ± 58.3 g TAN removed/m3 media‐d with an average of 33.0% removal per pass. Results of this evaluation suggest that system modifications are warranted to enhance production to commercial levels (>60 kg/m3).  相似文献   

14.
Commercial abalone culture is carried out using flow‐through systems with a high water volume exchange in Baja California, Mexico. The objective of this work was to compare the growth rate and survival of red abalone cultured in two systems. Flow through (daily water exchange rate of 800%) and recirculating systems consisted of a 250 L fibreglass tank and constant aeration, but biofiltration in the recirculating system was provided with a 28 L (1 ft3) bubble‐washed bead filter. Water variables were measured either daily (dissolved oxygen, temperature, pH and salinity) or three times a week (total ammonia nitrogen, nitrate‐nitrogen, nitrite‐nitrogen and alkalinity). Shell length was measured every 2 weeks for 18 weeks. Only the alkalinity and pH were significantly different due to the addition of sodium bicarbonate to the recirculating system. Abalone growth rate was 26.1 ± 15.96 μm day?1 in the recirculating systems and 22.21 ± 18.69 μm day–1 in the flow‐through systems. The final survival was 78.74% in the recirculating systems and 71.82% in the flow‐through systems. Significant differences in the final size and survival of the abalones were found between systems (P<0.05). Therefore, recirculating aquaculture systems is a feasible alternative for juvenile red abalone culture.  相似文献   

15.
水产养殖过程中,池塘生态系统可分为自成熟期和人工维持期。在养殖容量提高的情况下,养殖生物呼吸需氧量在不断增加,缺氧条件下有机物分解成有害物质,影响养殖生产。维持池塘生态系统稳定的主要工程机制为:通过上下水层交换、平衡营养元素等方法,强化光合作用,提高营养物质转化规模,提升初级生产力;形成生态增氧为主、机械增氧为辅的高效增氧机制。以中国养殖池塘生态系统为研究对象,分析探讨养殖池塘生态机制、水体溶氧理论、增氧机作用机理、不同类型增氧机的机械性能等,提出了大宗淡水鱼混养池塘及几种典型单养池塘增氧机配置方式,从而为池塘养殖系统增氧机的配置提供技术参考。  相似文献   

16.
Impact of aeration on growth of silver barb, Puntius gonionotus during fingerling rearing was studied through a 100‐d rearing experiment conducted in 18 concrete tanks of 50 m2 (10 × 5 × 1.2 m) size. Fry (0.74 ± 0.27 g, 35 ± 6 mm) were stocked in the experimental tanks at three stocking densities (25, 50, and 75 fry/m2) and were evaluated with and without provision of 6 h (2400–0600 h) of night time aeration. Aeration resulted in higher pH and dissolved oxygen regime and increased fingerling length and weight. The results suggest a rearing density of 75/m2 to be ideal for rearing fry to fingerling of this species when aeration is provided, whereas, under non‐aerated condition, rearing the fry to fingerling stage at 50/m2 was found advantageous over those at 25 and 75/m2.  相似文献   

17.
A mathematical model is framed for a goldfish recirculating aquaculture system based on unsteady-state mass balance for prediction of the concentration of total ammonia nitrogen (TAN), nitrite-nitrogen (NO2-N), nitrate-nitrogen (NO3-N), dissolved oxygen (DO) and total suspended solids (TSS). The goldfish were stocked at 100 numbers per m3 of rearing water volume of 5 m3 tank capacity in the years 2009 and 2010 and the model was calibrated and validated. The recirculation flow rate was fixed at 29,000 L/day. The model parameters were estimated as kTAN (mg of TAN generated per kg of feed): 20,000, M (mortality rate): 0.002 day−1, α (percentage of feed conversion to suspended solids): 23.8, koxy (mg of oxygen required for fish respiration per kg of feed applied in unit time): 300,000, kb (partial nitrification in the culture tank): 0.86 and the reaction rate constants, k1 and k2: 84.65 day−1 and 42.03 day−1 respectively and temperature growth coefficient (TGC): 5.00 × 10-5. The model efficacy was adjudged by estimation of the coefficient of determination (R2), root mean square error (RMSE), Nash-Sutcliffe modelling efficiency (ENS) and graphical plots between predicted and observed values.  相似文献   

18.
The effects of artificial substrate and night‐time aeration on the culture of Macrobrachium amazonicum were evaluated in 12 ponds stocked with 45 prawns m?2. A completely randomized design in 2 × 2 factorial scheme with three replicates was used. The combination of factors resulted in four treatments: with substrate and aeration (SA), with substrate and without aeration (SWA), without substrate and with aeration (WSA) and without substrate and aeration (WSWA). The presence of substrate in SA and SWA treatments reduced suspended particles (seston) by ~17.3% and P‐orthophosphate by ~50%. The use of aerator (WSA and SA treatments) significantly (< 0.05) increased the concentration of dissolved oxygen, suspended particles and nutrients in the pond water. These results indicate that the effect of substrate on turbidity and total suspended solids (TSS) values is opposite to the effect of the aerator. The aerators in semi‐intensive grow‐out M. amazonicum farming lower water quality because they increased the amount of detritus and nutrients in the pond water. On the other hand, the use of artificial substrate reduces turbidity values, chlorophyll a, TSS and P‐orthophosphate concentrations. Therefore, the combination of substrate addition and night‐time aeration is not interesting because they have opposite effects.  相似文献   

19.
This study was performed to establish valorization technology for solid wastes from a seawater recirculating aquaculture system (RAS) by using beneficial microorganisms. An efficient microbial agent (KBM-1) was selected based on the degradation activity of the RAS solid wastes (20% slurry) in a lab-scale reactor system considering the removal rates of chemical oxygen demand, solid material, total nitrogen, ammonium-N, and nitrate-N and the production of organic acids as electron donors for denitrification. The microbial consortium KBM-1 was particularly efficient in the removal of ammonium-N and nitrate-N with removal efficiencies of 42% and 50%, respectively, in eight days and in the rapid production of organic acids (230 mg L−1, 3.5 mM, 0.018 kg m−3 d−1) after two days. There was a concomitant removal of NO3--N (41%, 0.005 kg N m−3 d−1) after two days when a significant production of organic acids occurred. Comamonas sp. was a dominant genus after eight days in all treatments. The level of nitrate-N in the treatments with KBM-1 decreased by 50.4% after eight days, as opposed to that of the control sample (27.7%), indicating the potential denitrification activity of Citrobacter freundii and Comamonas sp. The bioaugmented species (Sporolactobacillus inulinus, Lactobacillus mali, Lactobacillus casei, and Clostridium tyrobutyricum), constituting 41% of the total communities, appeared to facilitate the growth of indigenous microbial communities that were involved in the degradation (hence valorization) of solid wastes (mostly remaining fish feed and fish feces) into simple metabolites (organic acids and inorganic materials such as ammonium, nitrite, nitrate, and CO2). The simultaneous generation of organic acids through the valorization of solid wastes and their subsequent reuse in the denitrification of an RAS biofilter system can provide a significant contribution to the eco-friendly management of RASs and provide meaningful economic merit to the solid wastes of RASs.  相似文献   

20.
Performance of sediment microbial fuel cell (SMFC) with external resistance (SMFC-1) as well as short-circuited mode (SMFC-2) was evaluated at different operating temperatures (28–30 °C and 21–25 °C) and in presence and absence of aeration at the cathode. The performance was evaluated in terms of chemical oxygen demand (COD) removal and total kjeldahl nitrogen (TKN) removal for offering in situ treatment of aquaculture pond water. SMFC-2 demonstrated maximum COD and TKN removal efficiencies both in the absence and presence of aeration near cathode as compared to SMFC-1. With aeration at cathode, the COD and TKN removal efficiencies were 79.4% and 92.6% in SMFC-1 and 84.4% and 95.3% in SMFC-2, respectively. Without aeration and at lower operating temperature, the COD and TKN removals were slightly lower, yet satisfying aquaculture quality norms. SMFCs demonstrated effective in situ remediation of aquaculture water and can drastically save the operating cost of aquaculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号