首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nontarget injury from glyphosate drift is a concern among growers using non-glyphosate-resistant (non-GR) cultivars. The effects of glyphosate drift on nitrate assimilation and nitrogen fixation potential, nodule mass, and yield of non-GR soybean were assessed in a field trial at Stoneville, MS. A non-GR soybean cultivar 'Delta Pine 4748S' was treated with glyphosate at 12.5% of use rate of 0.84 kg of active ingredient/ha at 3 (V2), 6 (V7), and 8 (R2, full bloom) weeks after planting (WAP) soybean to simulate glyphosate drift. Untreated soybean was used as a control. Soybeans were sampled weekly for 2 weeks after each glyphosate treatment to assess nitrate assimilation and N2 fixation potential. Nitrate assimilation was assessed using in vivo nitrate reductase assay in leaves, stems, roots, and nodules. Nitrogen fixation potential was assessed by measuring nitrogenase activity using the acetylene reduction assay (ARA). Nitrogen content of leaves, shoots, and seed and soybean yield were also determined. In the first sampling date (4 WAP), glyphosate drift caused a significant decrease in NRA in leaves (60%), stems (77%), and nodules (50%), with no decrease in roots. At later growth stages, NRA in leaves was more sensitive to glyphosate drift than stems and roots. Nitrogenase activity was reduced 36-58% by glyphosate treatment at 3 or 6 WAP. However, glyphosate treatment at 8 WAP had no effect on nitrogenase activity. Nitrogen content was affected by glyphosate application only in shoots after the first application. No yield, seed nitrogen, protein, or oil concentration differences were detected. These results suggest that nitrate assimilation and nitrogen fixation potential were significantly reduced by glyphosate drift, with the greatest sensitivity early in vegetative growth. Soybean has the ability to recover from the physiological stress caused by glyphosate drift.  相似文献   

2.
Experiments were conducted to determine (1) dose response of glyphosate-resistant (GR) and -susceptible (non-GR) soybean [Glycine max (L.) Merr.] and canola (Brassica napus L.) to glyphosate, (2) if differential metabolism of glyphosate to aminomethyl phosphonic acid (AMPA) is the underlying mechanism for differential resistance to glyphosate among GR soybean varieties, and (3) the extent of metabolism of glyphosate to AMPA in GR canola and to correlate metabolism to injury from AMPA. GR50 (glyphosate dose required to cause a 50% reduction in plant dry weight) values for GR (Asgrow 4603RR) and non-GR (HBKC 5025) soybean were 22.8 kg ae ha-1 and 0.47 kg ha-1, respectively, with GR soybean exhibiting a 49-fold level of resistance to glyphosate as compared to non-GR soybean. Differential reduction in chlorophyll by glyphosate was observed between GR soybean varieties, but there were no differences in shoot fresh weight reduction. No significant differences were found between GR varieties in metabolism of glyphosate to AMPA, and in shikimate levels. These results indicate that GR soybean varieties were able to outgrow the initial injury from glyphosate, which was previously caused at least in part by AMPA. GR50 values for GR (Hyola 514RR) and non-GR (Hyola 440) canola were 14.1 and 0.30 kg ha-1, respectively, with GR canola exhibiting a 47-fold level of resistance to glyphosate when compared to non-GR canola. Glyphosate did not cause reduction in chlorophyll content and shoot fresh weight in GR canola, unlike GR soybean. Less glyphosate (per unit leaf weight) was recovered in glyphosate-treated GR canola as compared to glyphosate-treated GR soybean. External application of AMPA caused similar injury in both GR and non-GR canola. The presence of a bacterial glyphosate oxidoreductase gene in GR canola contributes to breakdown of glyphosate to AMPA. However, the AMPA from glyphosate breakdown could have been metabolized to nonphytotoxic metabolites before causing injury to GR canola. Injury in GR and non-GR canola from exogenous application of AMPA was similar.  相似文献   

3.
Glyphosate-resistant (GR) soybean [Glycine max (L.) Merr.] was developed by stable integration of a foreign gene that codes insensitive enzyme 5-enolpyruvylshikimate-3-phosphate synthase, an enzyme in the shikimate pathway, the target pathway of glyphosate. Application of glyphosate to GR soybean results in injury under certain conditions. It was hypothesized that if GR soybean is completely resistant to the glyphosate, injury could be caused by a metabolite of glyphosate, aminomethylphosphonic acid (AMPA), a known phytotoxin. Glyphosate and AMPA effects on one- to two-trifoliolate leaf stage (16-18-days old) GR and non-GR soybean were examined in the greenhouse. In GR soybean, a single application of glyphosate-isopropylammonium (1.12-13.44 kg/ha) with 0.5% Tween 20 did not significantly reduce the chlorophyll content of the second trifoliolate leaf at 7 days after treatment (DAT) or the shoot dry weight at 14 DAT compared with Tween 20 alone. A single application of AMPA (0.12-8.0 kg/ha) with 0.5% Tween 20 reduced the chlorophyll content of the second trifoliolate leaf by 0-52% at 4 DAT and reduced shoot fresh weight by 0-42% at 14 DAT in both GR and non-GR soybeans compared with Tween 20 alone. AMPA at 0.12 and 0.50 kg/ha produced injury in GR and non-GR soybean, respectively, similar to that caused by glyphosate-isopropylammonium at 13.44 kg/ha in GR soybean. AMPA levels found in AMPA-treated soybean of both types and in glyphosate-treated GR soybean correlated similarly with phytotoxicity. These results suggest that soybean injury to GR soybean from glyphosate is due to AMPA formed from glyphosate degradation.  相似文献   

4.
硫磺与水杨酸配施对韭菜硝酸盐累积及氮代谢的影响   总被引:1,自引:0,他引:1  
以3年生韭菜为试验材料,研究了不同浓度的硫磺(S,土施)和3 mmol/L水杨酸(SA,叶面喷施)配施对韭菜硝酸盐含量、氮代谢关键酶活性和叶绿素荧光参数的影响。结果表明,韭菜鲜重、硝酸盐含量、硝酸还原酶活性(NRA)、PSII 最大光化学量子产量(Fv/Fm)、电子传递速率(ETR)和可溶性蛋白含量均与硫磺和水杨酸的配施浓度有密切关系,与对照相比,7.2 kg/hm2的硫和 3 mmol/L 的水杨酸配施处理韭菜叶片的硝酸盐含量明显降低,降幅为16.6%;鲜重、NRA、Fv/Fm、ETR和可溶性蛋白含量分别提高了10.7%、12.3%、10.1%、21.2% 和 4.2%;谷氨酸丙酮酸转氨酶(GOT)和谷氨酸草酰乙酸转氨酶(GPT)活性却随着硫浓度的增加呈现出逐渐增加的趋势,当硫浓度为 54 kg/hm2 时,GOT和GPT的活性达到最高,分别比对照增加了13.6% 和 9.4%。由此可以看出,适宜浓度的硫磺和水杨酸配施可促进韭菜叶片氮代谢中硝酸盐的还原与同化,同时调动转氨作用的积极协同配合,促进了硝态氮转化为游离氨基酸和可溶性蛋白,这可能是硫磺和水杨酸配施降低韭菜硝酸盐累积的一个重要原因。  相似文献   

5.
The pattern of nitrogen assimilation in soybean plants treated with a herbicide that inhibits branched-chain amino acid biosynthesis was evaluated by (15)N isotopic analysis. The herbicide imazethapyr caused a strong decrease in nitrate uptake by roots, partly due to a reduced stomatal conductance. The inhibition of (15)N uptake was accompanied by a decrease in the (15)N content in the plant and, concomitantly, an inhibition of translocation to the shoot. Imazethapyr inhibited nitrate reductase activity in leaves and roots. Among all parameters studied, "de novo" synthesis of proteins was the first parameter of the N assimilation metabolism affected by the herbicide. These results show that this class of herbicides totally damages N metabolism and indicates a regulatory effect on N uptake and translocation that would be mediated by the increase in free amino acid pool provoked by the inhibition of branched-chain amino acid biosynthesis.  相似文献   

6.
Glyphosate-resistant (GR) soybeans have continuously increased; however, this expansion significantly increased the use of glyphosate and therefore, in some cases, has resulted in injury symptoms observed in GR soybean, known as “yellow flashing”. Previous reports of interference of glyphosate with nutrient availability and utilization by GR soybean may be linked to this injury symptom. Also, because glyphosate interferes with amino acid synthesis, supplementation with exogenous amino acids may help GR soybean recover from adverse effects of glyphosate. Therefore, an experiment was designed to evaluate different amino acid concentrations. Near-isogenic and GR soybean varieties were grown in the greenhouse in two soils with and without glyphosate at different rates and amino acids were foliarly applied with and without glyphosate. In general, the photosynthetic variables, nutrient contents, and shoot and root dry biomass parameters were affected by glyphosate, however, use of amino acid formulations suppressed harmful effects of glyphosate on these parameters.  相似文献   

7.
Decreased biological nitrogen fixation in glyphosate-resistant (GR) soybeans has been attributed directly to toxicity of glyphosate or its metabolites, to N2-fixing microorganisms. As a strong metal chelator, glyphosate could influence symbiotic N2 fixation by lowering the concentration of nickel (Ni) that is essential for the symbiotic microorganisms. Evaluation of different cultivars grown on different soil types at the State University of Maringá, PR, Brazil during the summer 2008 revealed, significant decreases in photosynthetic parameters (chlorophyll, photosynthetic rate, transpiration and stomatal conductance) and nickel content with glyphosate use (single or sequential application). This work demonstrated that glyphosate can influence the symbiotic N2 fixation by lowering nickel content available to the symbiotic microorganisms.  相似文献   

8.
Aminomethylphosphonic acid (AMPA) is the most frequently detected metabolite of glyphosate in plants. The objective of this study was to determine if there is any correlation of metabolism of glyphosate to AMPA in different plant species and their natural level of resistance to glyphosate. Greenhouse studies were conducted to determine the glyphosate I 50 values (rate required to cause a 50% reduction in plant growth) and to quantify AMPA and shikimate concentrations in selected leguminous and nonleguminous species treated with glyphosate at respective I 50 rates. Coffee senna [ Cassia occidentalis (L.) Link] was the most sensitive ( I 50 = 75 g/ha) and hemp sesbania [ Sesbania herbacea (P.Mill.) McVaugh] was the most resistant ( I 50 = 456 g/ha) to glyphosate. Hemp sesbania was 6-fold and Illinois bundleflower [ Desmanthus illinoensis (Michx.) MacM. ex B.L.Robins. & Fern.] was 4-fold more resistant to glyphosate than coffee senna. Glyphosate was present in all plant species, and its concentration ranged from 0.308 to 38.7 microg/g of tissue. AMPA was present in all leguminous species studied except hemp sesbania. AMPA concentration ranged from 0.119 to 4.77 microg/g of tissue. Shikimate was present in all plant species treated with glyphosate, and levels ranged from 0.053 to 16.5 mg/g of tissue. Non-glyphosate-resistant (non-GR) soybean accumulated much higher shikimate than glyphosate-resistant (GR) soybean. Although some leguminous species were found to be more resistant to glyphosate than others, and there was considerable variation between species in the glyphosate to AMPA levels found, metabolism of glyphosate to AMPA did not appear to be a common factor in explaining natural resistance levels.  相似文献   

9.
Previous greenhouse studies have demonstrated that photosynthesis in some cultivars of first‐ (GR1) and second‐generation (GR2) glyphosate‐resistant soybean was reduced by glyphosate. The reduction in photosynthesis that resulted from glyphosate might affect nutrient uptake and lead to lower plant biomass production and ultimately reduced grain yield. Therefore, a field study was conducted to determine if glyphosate‐induced damage to soybean (Glycine max L. Merr. cv. Asgrow AG3539) plants observed under controlled greenhouse conditions might occur in the field environment. The present study evaluated photosynthetic rate, nutrient accumulation, nodulation, and biomass production of GR2 soybean receiving different rates of glyphosate (0, 800, 1200, 2400 g a.e. ha–1) applied at V2, V4, and V6 growth stages. In general, plant damage observed in the field study was similar to that in previous greenhouse studies. Increasing glyphosate rates and applications at later growth stages decreased nutrient accumulation, nodulation, leaf area, and shoot biomass production. Thus, to reduce potential undesirable effects of glyphosate on plant growth, application of the lowest glyphosate rate for weed‐control efficacy at early growth stages (V2 to V4) is suggested as an advantageous practice within current weed control in GR soybean for optimal crop productivity.  相似文献   

10.
With the advent of glyphosate [N-(phosphonomethyl)glycine] tolerant crops, soils have now been receiving repeated applications of the herbicide for over 10 years in the Midwestern USA. There is evidence that long-term use of glyphosate can cause micronutrient deficiency but little is known about plant potassium (K) uptake interactions with glyphosate. The repeated use of glyphosate may create a selection pressure in soil microbial communities that could affect soil K dynamics and ultimately K availability for crops. Therefore, the objectives of this study were to characterize the effect of foliar glyphosate applied to GR (glyphosate resistant) soybeans on: (1) rhizosphere microbial community profiles using ester linked fatty acid methyl ester (EL-FAME) biomarkers, (2) exchangeable, non-exchangeable, and microbial K in the rhizosphere soil, and (3) concentrations of soybean leaf K. A greenhouse study was conducted in a 2 × 2 × 3 factorial design with two soil treatments (with or without long-term field applications of glyphosate), two plant treatments (presence and absence of soybean plants), and three rates of glyphosate treatments (0×, 1× at 0.87, and 2× at 1.74 kg ae ha?1, the recommended field rate). After each glyphosate application, rhizosphere soils were sampled and analyzed for microbial community structure using ester linked fatty acid methyl ester biomarkers (EL-FAME), and exchangeable, plant tissue and microbial biomass K. Glyphosate application caused a significant decrease in the total microbial biomass in soybean rhizosphere soil that had no previous exposure to glyphosate, at 7 days after glyphosate application. However, no significant changes were observed in the overall microbial community structure. In conclusion, the glyphosate application lowered the total microbial biomass in the GR soybean rhizosphere soil that had no previous exposure to glyphosate, at 7 days after glyphosate application; caused no changes in the microbial community structure; and did not reduce the plant available K (soil exchangeable or plant tissue K).  相似文献   

11.
Global production of glyphosate-resistant (GR) soybean [Glycine max (L.) Merr.] continues to increase annually; however, there are no particular specific fertilizer recommendations for the transgenic varieties used in this system largely because reports of glyphosate effects on mineral nutrition of GR soybeans are lacking. Several metabolites or degradation products of glyphosate have been identified or postulated to cause undesirable effects on GR soybeans. In this work we used increasing glyphosate rates in different application on cv. ‘BRS 242 GR’ in order to evaluate photosynthetic parameters, macro- and micronutrient uptake and accumulation and shoot and root dry biomass production. Increasing glyphosate rates revealed a significant decrease in photosynthesis, macro and micronutrients accumulation in leaf tissues and also decreases in nutrient uptake. The reduced biomass in GR soybeans represents additive effects from the decreased photosynthetic parameters as well as lower availability of nutrients in tissues of the glyphosate treated plants.  相似文献   

12.
The effect of nitrogen (N) source (nitrogen fixation or nitrate assimilation) and progressive water stress on pigment content, carbon assimilation and changes in the activity of certain photosynthetic (Rubisco and phosphoenol pyruvate carboxilase) and photorespiratory enzymes (glutamate synthetase and glycolate oxidase) during vegetative development of soybean plants was studied. Glycolate oxidase declined by 13% in nitrogen-fixing plants under water deficit, and increased in nitrate-fed ones. Nodulated plants were less sensitive to drought than nitrate-fed individuals; although as general growth was inhibited under drought stress in both experimental models. Results support the importance of nitrogen source in soybean responses to water stress. Difference in sensitivity of nitrate-fed and nitrogen-fixing plants towards water stress seems to be related not to nitrogen assimilation process itself, but to complex interactions with photorespiratory flux and stomatal conductance.  相似文献   

13.
High levels of aminomethylphosphonic acid (AMPA), the main glyphosate metabolite, have been found in glyphosate-treated, glyphosate-resistant (GR) soybean, apparently due to plant glyphosate oxidoreductase (GOX)-like activity. AMPA is mildly phytotoxic, and under some conditions the AMPA accumulating in GR soybean correlates with glyphosate-caused phytotoxicity. A bacterial GOX is used in GR canola, and an altered bacterial glyphosate N-acetyltransferase is planned for a new generation of GR crops. In some weed species, glyphosate degradation could contribute to natural resistance. Neither an isolated plant GOX enzyme nor a gene for it has yet been reported in plants. Gene mutation or amplification of plant genes for GOX-like enzyme activity or horizontal transfer of microbial genes from glyphosate-degrading enzymes could produce GR weeds. Yet, there is no evidence that metabolic degradation plays a significant role in evolved resistance to glyphosate. This is unexpected, considering the extreme selection pressure for evolution of glyphosate resistance in weeds and the difficulty in plants of evolving glyphosate resistance via other mechanisms.  相似文献   

14.
钼对冬小麦硝态氮代谢的影响   总被引:8,自引:2,他引:8  
采用全硝态氮霍格兰营养液为培养基质,在供应0(缺钼)、0.78(适钼)、2.74mol/L(高钼)3种钼浓度下培养小麦.,分期测定其体内NO3--N、NH4+-N、全N、吸氮量及硝酸还原酶活性.(NRA).,研究钼对小麦NO3--N代谢的影响。结果表明.,NRA受硝酸盐代谢库和贮存库之间的调节而不断变化.,但任何情况下钼对NRA都有明显影响。培养初期适钼处理NRA最高.,高钼次之.,缺钼最低.;培养后期由于缺钼处理的NO3--N浓度高于施钼处理.,NRA随之增至最高。植株内NH4+-N、NO3--N浓度之和在不同测定时间大致稳定.,NO3--N浓度高时则NH4+-N浓度低.,反之亦然.,两者之间存在一定的负相关关系。稳定情况与钼供应有关.,适钼条件下培养开始时高的NH4+-N与低的NO3--N浓度明显对应.,之后两者浓度接近.;缺钼条件下与此类似.,但NO3--N浓度变化不大.,NH4+-N、NO3--N浓度之和最高.;高钼条件下NH4+-N浓度一直高于NO3--N。作物由溶液吸收的NO3--N与作物的吸氮量一致.,适钼时最多.,高钼次之.,缺钼最少。从适钼时作物体内NH4+-N、NO3--N浓度之和最低.,而吸氮量又最高可以看出.,合适的钼供应不但有利于NO3--N的吸收和向NH4+-N转化.,也有利NH4+-N向有机氮转  相似文献   

15.
以大豆品种“中黄35”为材料,利用人工气候室,设置对照CK(CO2浓度和气温与外界测定值相同)、EC(CO2浓度为外界测定值+200μmol·mol–1,气温与外界测定值相同)、ET(CO2浓度与外界测定值相同,气温为外界测定值+2℃)、ECT(CO2浓度为外界测定值+200μmol·mol–1,气温为外界大气测定值+2℃)共4个处理。大豆整个生育期均种植在人工气候室内,在大豆鼓粒期(8月12日)利用相对叶绿素仪测定大豆叶片相对叶绿素含量,利用便携式气体交换系统测定光合参数,利用便携式光合测量系统测定光响应曲线和CO2响应曲线,并测定叶片氮代谢相关指标,以研究CO2浓度升高200μmol·mol–1和气温升高2℃对鼓粒期大豆叶片的光合特性和氮代谢关键指标的影响。结果表明:(1)ET处理鼓粒期大豆叶片相对叶绿素含量(SPAD)显著增加,EC和ECT处理对其影响不明显。(2)各处理鼓粒期大豆叶片气孔导度(Gs)均显著下降。ET处理中,叶片净光合速率(Pn)、水分利用效率(WUE)显著下降,EC处理对其影响不大,但是可以提高叶片水分利用效率(WUE),改善气温升高对叶片的负面影响。(3)EC和ET处理鼓粒期大豆叶片最大净光合速率(Pnmax)均显著下降,ECT处理对其影响不显著。(4)EC处理中,鼓粒期大豆叶片CO2补偿点(Γ)、饱和胞间CO2浓度(Cisat)、光呼吸速率(Rp)均显著增加,ET和ECT对其影响不大。各处理均使鼓粒期大豆叶片最大净光合能力(Amax)下降。(5)EC处理鼓粒期大豆叶片硝酸还原酶(NR)活性和可溶性蛋白含量均显著下降,但是ET和ECT处理叶片可溶性蛋白含量显著增加,硝酸还原酶(NR)活性变化不显著,各处理均降低了谷氨酰胺合成酶(GS)的活性。总之,CO2浓度升高200μmol·mol–1可以改善气温升高2℃对鼓粒期大豆叶片光合作用的负面影响,但对氮代谢有抑制作用,而气温升高2℃可以一定程度上缓解CO2浓度升高200μmol·mol–1对鼓粒期大豆叶片氮代谢的抑制作用。  相似文献   

16.
The compositional analyses and safety assessment of glyphosate-tolerant soybeans (GTS) were previously described. These analyses were extensive and included addressing the potential effects on seed composition from the genetic modification. Detailed compositional analyses established that GTS, which had not been treated with glyphosate, were comparable to the parental soybean line and to other conventional soybeans. In this study, two GTS lines, 40-3-2 and 61-67-1, were treated with commercial levels of glyphosate, the active ingredient in Roundup herbicide. The composition of the seed from soybeans sprayed with glyphosate was compared to that of a nonsprayed parental control cultivar, A5403. The nutrients measured in the seed included protein, oil, ash, fiber, carbohydrates, and amino acids. The concentration of isoflavones (also referred to as phytoestrogens) was also measured as these compounds are derived from the same biochemical pathway that was engineered for glyphosate tolerance. The analytical results from these studies demonstrate that the GTS soybeans treated with glyphosate were comparable to the parental soybean cultivar, A5403, and other conventional soybean varieties.  相似文献   

17.
以当前甜菜(Beta Vulgaris L.)生产主栽品种KWS0143为试材,设立4个氮素水平(N 0、60、120、180 kg/hm2),研究硝态氮肥对甜菜硝酸还原酶(nitrate reductase, NR)和亚硝酸还原酶(nitrite reductase, NiR)活性以及光合速率与叶绿素总含量的影响,探讨了氮素水平与NR及NiRA之间的关系。结果表明:在甜菜生育期间,光合速率呈单峰曲线变化,NR、NiR活性及叶绿素总含量基本呈双峰曲线变化,叶绿素变化曲线的高峰期早于NR活性,NR活性早于NiR活性。氮肥用量在N 120 kg/hm2时显著提高了甜菜光合速率、叶绿素总含量、NR活性和NiR活性。相比于N 120 kg/hm2,N 180 kg/hm2时光合速率及叶绿素总含量没有明显变化,NR与NiR活性则有一定的提高。本试验中,甜菜产量随氮水平的增加而提高;含糖率则相反,随氮水平的增加而降低,N 120 kg/hm2水平下产糖量最高。  相似文献   

18.
不同玉米品种氮素营养效率差异的生态生理机制   总被引:57,自引:17,他引:57  
采用大田与盆栽试验相结合的方法 ,对 7个氮素营养效率不同的玉米杂交种在不同氮肥水平下的子粒日产量、吸氮效率、根系形态、叶片硝酸还原酶活力 (NRA)及冠层光合生理生态特性等进行了研究。结果表明 ,DK743、DK656、豫玉 2 2、中单 2号、户单 1号等 5个品种N素营养效率较高 ;酒单 2号和石玉 90 5是低N素营养效率的品种。N素营养效率的高低与品种根重、根长、根表面积、叶片NRA、净光合速率、气孔导度等都有一定的相关性。适当供氮能提高净光合速率、气孔导度、叶片NRA含量、干物质积累量和子粒产量 ,提高幅度因品种而异。  相似文献   

19.
Measurement of shikimic acid accumulation in response to glyphosate inhibition of 5-enolpyruvylshikimate-3-phosphate synthase is a rapid and accurate assay to quantify glyphosate-induced damage in sensitive plants. Two methods of assaying shikimic acid, a spectrophotometric and a high-performance liquid chromatography (HPLC) method, were compared for their accuracy of recovering known amounts of shikimic acid spiked into plant samples. The HPLC method recovered essentially 100% of shikimic acid as compared with only 73% using the spectrophotometric method. Relative sensitivity to glyphosate was measured in glyphosate-resistant (GR) and non-GR cotton leaves, fruiting branches, and squares (floral buds) by assaying shikimic acid. Accumulation of shikimic acid was not observed in any tissue, either GR or non-GR, at rates of 5 mM glyphosate or less applied to leaves. All tissues of non-GR plants accumulated shikimic acid in response to glyphosate treatment; however, only fruiting branches and squares of GR plants accumulated a slight amount of shikimic acid. In non-GR cotton, fruiting branches and squares accumulated 18 and 11 times, respectively, more shikimic acid per micromolar of translocated glyphosate than leaf tissue, suggesting increased sensitivity to glyphosate of reproductive tissue over vegetative tissue. GR cotton leaves treated with 80 mM of glyphosate accumulated 57 times less shikimic acid per micromolar of translocated glyphosate than non-GR cotton but only 12.4- and 4-fold less in fruiting branches and squares, respectively. The increased sensitivity of reproductive structures to glyphosate inhibition may be due to a higher demand for shikimate pathway products and may provide an explanation for reports of fruit abortion from glyphosate-treated GR cotton.  相似文献   

20.
The influences of seed molybdenum (Mo) and application of Mo on nitrate reductase activity(NRA) in seedling stage, shoot dry matter in stem elongation stage, and grain yields in harvesting stage were compared among 35 winter wheat cultivars grown on acid yellow brown earths. Seedling NRA was significantly and positively correlated with seed Mo content regardless of further molybdenum application. The correlation of both shoot dry matter in stem elongation stage and grain yields to seed Mo content were also significant in a much less degree under Mo deficiency, but not after molybdenum application. Molybdenum application significantly increased seedling NRA, shoot dry matter in stem elongation stage and grain yields for most cultivars. There were no obvious relationships between molybdenum efficiency ratios and seed molybdenum content. These showed that seed Mo was very important for plant growth, but it was not sufficient to complete the whole life of plant. Therefore, Mo must be applied in order to get satisfactory grain yields from most cultivars. However, a high Mo efficiency genotype (97003) was promising to adapt to Mo deficient soils without added Mo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号