首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 671 毫秒
1.
高浓度CO2 对蝴蝶兰CO2 吸收速率和生长的影响   总被引:1,自引:0,他引:1  
 研究了CO2 (700 ±50) μmol·mol-1、(1 000 ±50) μmol·mol-1、(360 ±30) μmol·mol-1(对照) 对蝴蝶兰CO2吸收速率和生长的影响。研究结果表明: 蝴蝶兰叶片净CO2吸收速率在02∶00 达到最大, 可滴定酸积累在04∶00 达到最高; CO2加富显著提高蝴蝶兰夜间的CO2吸收速率, 在处理30 d时, 所测得的CO2吸收速率的增幅分别为同期对照的134.11%和435.3% , 可滴定酸积累的分别比对照增加65.05%和119.42% , 随着处理时间的延长, CO2吸收速率增幅逐渐下降; CO2加富促进了叶片碳水化合物(可溶性糖和淀粉) 的积累, 在CO2 (1 000 ±50) μmol·mol-1处理组中碳水化合物积累的促进尤为明显;总生物量的测定表明, 处理60 d, 鲜样质量比同期对照增加了23%和49% , 干样质量增加了38%和57% ,处理150 d时, 鲜样质量比对照增加了50%和94% , 干样质量增加了19%和64%。以上结果表明CO2加富能显著促进蝴蝶兰的生长。  相似文献   

2.
CO2 浓度升高对红掌光合速率与生长发育的影响   总被引:10,自引:1,他引:10  
 本试验以开顶式塑料薄膜温室为设施, 研究了高CO2 浓度对红掌叶片光合速率、植株生长、光合酶活性和花期的影响。结果表明: 处理90 d时, 对照组〔大气CO2 浓度( 360 ±30) μmol·mol- 1 〕红掌的株高、叶面积、株干样质量、株鲜样质量与处理前相比分别增加了16.4%、36.1%、101.2%和84.2% , 而高CO2 浓度组〔( 1 000 ±100 ) μmol·mol- 1 〕则分别增加了72.9%、65.6%、217.6%和199.1%。高CO2 浓度组的净光合速率比对照增加46.27%, 气孔导度下降, 促进了叶片中可溶性糖和淀粉积累, 叶绿素含量比对照下降, 而对Rubisco活性影响较小, 乙醇酸氧化酶活性则明显下降。高CO2 浓度处理50 d时, 开花率为25%, 处理90 d时已达到80%以上, 而在整个试验期间对照组未见开花。因此, 高浓度CO2 处理提高了红掌叶片的光合速率和碳水化合物的积累, 促进了营养生长, 提前了花期。  相似文献   

3.
冷凉气候区‘寒富’苹果及其亲本光合特性的研究   总被引:7,自引:0,他引:7  
 以‘寒富’苹果及其亲本‘东光’和‘富士’为试材,应用CIRAS-1型便携式光合系统,研究了天气、季节和叶位对其光合特性的影响。结果表明:‘寒富’苹果及其亲本叶片净光合速率(Pn)的日变化晴天呈典型的双峰曲线,最高峰均出现在10:00左右(13.47μmol·m-2·s-1,12.46 μmol·m-2·s-1和11.21 μmol·m-2·s-1),次高峰出现在14:00左右(11.92 μmol·m-2·s-1,9.84 μmol·m-2·s-1和10.94 μmol·m-2·s-1,中午有明显的“午休”现象,阴天Pn日变化为单峰曲线,峰值出现在12:00左右(11.0 μmol·m-2·s-1,10.2 μmol·m-2·s-1和10.3 μmol·m-2·s-1),日平均Pn分别比晴天低2.28 μmol·m-2·s-1,2.73 μmol·m-2·s-1和2.86 μmol·m-2·s-1;Pn的季节变化呈不对称双峰曲线,主峰出现在7月上旬,次峰出现在9月上旬;新梢不同节位叶片的Pn呈抛物线型变化,枝条中上部的叶片Pn较大。‘寒富’苹果及其亲本的光补偿点(LCP)分别为5.9±1.8 μmol·m-2·s-1,21.1±1.4 μmol·m-2·s-1和9.05±2.1μmol·m-2·s-1;饱和光强(SL)分别为1 665±20 μmol·m-2·s-1,1 418±131 μmol·m-2·s-1和1300±56.6 μmol·m-2·s-1;CO2补偿点(CCP)分别为87.5±1.4 μmol·mol-1,84.2±5.9 μmol·mol-1和59.5±7.5 μmol·mol-1;饱和CO2(SC)分别为2 961±41 μmol·mol-1,1 572±166 μmol·mol-1和1 381±23 μmol·mol-1。‘寒富’苹果利用强光和弱光的能力均强于其亲本,表现出喜光耐荫的特性。  相似文献   

4.
日光温室草莓光合特性及对CO2浓度升高的响应   总被引:48,自引:2,他引:48  
 运用美国LI-COR 公司制造的LI-6400 便携式光合作用测定系统, 研究了日光温室草莓盛果期的光合特性及对CO2 浓度升高的响应。结果表明, 叶片净光合速率(Pn) 日变化呈双峰型, 有明显的“光合午休”现象, 第1 个峰值出现在10 时左右, Pn 达到CO2 13. 1μmol·m-2·s-1; 第2个峰值出现在16 时,Pn 为CO2 9. 5μmol·m-2·s-1。造成光合午休的主要原因为气孔因素, 中午光照强度最大, 叶片与空气之间的水蒸气压差、气孔限制值达到最大值, 空气相对湿度、气孔导度、胞间CO2浓度达到最小值, 出现光合午休。在CO2浓度低于600μmol·mol-1, 光照强度为1 000μmol·m-2·s-1时, 草莓CO2饱和点为943. 3μmol·mol-1, CO2补偿点为91. 7μmol·mol-1, Pn 高于光强更高者。  相似文献   

5.
CO2 和温度对网纹甜瓜群体光合作用的影响   总被引:4,自引:0,他引:4  
 采用人工气候室和建立的作物群体光合作用测定分析体系, 研究了CO2、温度等环境因子对网纹甜瓜群体总光合速率( Pgc ) 的影响。结果表明, CO2 浓度升高显著提高了群体的初始光合效率(αc )和最大光合速率, 提高了甜瓜群体总光合速率, 当CO2 浓度由400 μmol·mol- 1增至700和1 000 μmol·mol- 1时, Pgc分别提高了30.1%和44.6% , 且强光照条件下, CO2 的促进效果更为明显; 温度对甜瓜群体光合作用影响明显, 高温降低了初始光化学效率, 在低CO2 浓度下提高了甜瓜群体的最大光合速率, 但高CO2 下受CO2 —温度互作的影响, 最大光合速率反而下降。初步确定了不同CO2 浓度和光照条件下获得最大群体光合速率的适宜温度。  相似文献   

6.
高浓度CO2对番茄生长发育及光合作用的影响   总被引:1,自引:0,他引:1  
以番茄品种月光、合作903为试材,在CO2浓度为1 000 μmol·mol-1的条件下,研究了高浓度CO2对番茄生长量、干物质分配、产量、品质及光合作用的影响。结果表明,高浓度CO2显著抑制番茄株高、茎粗、节间长度的增长;有利于干物质向果实分配,减少了向茎、叶的分配;显著提高了产量和品质。净光合速率在处理前期显著提高,中期适应,后期再次提高。  相似文献   

7.
设施栽培条件下葡萄盛花期的光合特性   总被引:21,自引:0,他引:21  
刘廷松  李桂芬 《园艺学报》2003,30(5):568-570
 对设施栽培条件下‘红双味’葡萄花期净光合速率(Pn) 日变化规律, 设施内各生态因子,尤其是光照强度和CO2 浓度对葡萄光合作用的影响进行了研究。晴天栽培设施内葡萄叶片的Pn 日变化呈明显的双峰曲线, 阴天时葡萄叶片Pn 的日变化趋势主要决定于光照强度的日变化。晴天的Pn 明显高于阴天。研究葡萄叶片Pn 对光照强度和CO2 浓度的响应曲线得出, 葡萄叶片的光饱和点为1000μmol·m-2·s -1 , 光补偿点为21.3μmol·m-2·s -1 , CO2 饱和点为700μL·L -1 , CO2 补偿点为54.6μL·L -1 。  相似文献   

8.
高浓度CO2对不同水分条件下枇杷生理的影响   总被引:10,自引:0,他引:10  
张放  陈丹  张士良  吴荣兰 《园艺学报》2003,30(6):647-652
 在近似大气的低CO2浓度(400 μmol·mol-1 )和高CO2浓度(700 μmol·mol-1)的两个自制的开顶式生长室内,研究分析了水分胁迫对2年生‘大红袍’枇杷(Eriobotrya japonica Lindl.)叶片的光合作用、叶绿素荧光及抗氧化酶活性等生理变化。结果表明,高CO2浓度对不同水分状态下的枇杷叶片光合速率(Pn)均有明显的促进作用,使枇杷叶片荧光参数Fv/Fm和Fv/Fo值及PSII明显提高;而在水分胁迫时,高CO2浓度使枇杷叶片荧光参数Fv/Fm和Fv/Fo值及 II下降幅度明显减少;高CO2浓度也使SOD、POD及CAT酶活性显著提高,但在水分胁迫时,高CO2浓度下的SOD、POD及CA T酶活性上升幅度明显较小,膜脂过氧化水平的上升幅度也较小,可见CO2浓度升高对于水分胁迫所造成的氧化损伤有一定的缓解作用。  相似文献   

9.
5种国兰( Cymbidium ) 的光合特性   总被引:12,自引:1,他引:12  
李鹏民  高辉远  邹琦  王滔  刘永 《园艺学报》2005,32(1):151-154
 通过气体交换和叶绿素荧光分析等方法研究了5种国兰(Cymbidium ) 的光合特性。其光饱和点、光补偿点、CO2 补偿点和CO2 饱和点表明它们具有C3 植物特征; 光合速率在3.0 ~5.9 μmol·m- 2 ·s- 1之间, 在低于2 000 μmol·mol- 1 CO2 浓度下, 光合速率受CO2 浓度影响较大; 5种国兰的光合能力、表观量子效率、羧化效率等都有所差异; 光饱和点在350~650μmol·m- 2 ·s- 1之间, 属于喜阴植物,其中春兰、建兰耐阴性相对较低, 墨兰、春剑耐阴性相对较高, 蕙兰居中。从暗处暴露到强光下, 5种国兰的光化学反应启动差异较大, 启动后的光化学效率差异也较大, 这可能与国兰不同种起源地的生态环境,适应性及进化有关。  相似文献   

10.
 通过汽雾栽培方式对马铃薯根际连续35 d 的CO2 处理表明: 温室大气处理(CO2 380~920μL·L - 1 + O2 21 %) 和室外大气处理(CO2 380μL·L - 1 + O2 21 %) 马铃薯植株的形态特征非常接近, 其株高、叶面积、根系质量、匍匐茎数量、块茎产量以及生物量均比根际高CO2 处理(CO2 3600μL·L - 1 + O2 21 %) 明显提高, 叶片的气孔导度和胞间CO2 浓度增加, 光呼吸速率与CO2 补偿点降低, 叶片光系统Ⅱ功能改善,光合速率提高, 植株生长发育旺盛, 块茎产量增加, 说明合适的根际CO2 浓度(CO2 380~920μL·L - 1 + O2 21 %) 可能是汽雾栽培马铃薯植株生长旺盛的重要原因。  相似文献   

11.
3个樱桃品种光合特性比较研究   总被引:32,自引:2,他引:32  
 以3个原产地不同的甜樱桃栽培品种佐藤锦、斯坦勒和那翁为试材, 利用CIRAS-2便携式光合测定仪, 对其光合特性进行了比较研究。结果表明: 樱桃净光合速率( Pn) 日变化为典型的双峰曲线,气孔限制是光合“午休”的主要调节因素。樱桃光合作用对光照强度( PAR) 、CO2 浓度和温度等单一生态因子水平变化的响应均可以用二次方程来描述。樱桃光补偿点(LCP) 为10~82μmol·m- 2 ·s- 1 , 光饱和点(LSP) 为970~1 040μmol·m- 2 ·s- 1 , 斯坦勒较低, 佐藤锦较高。樱桃CO2 补偿点(CCP) 为90~116μmol·mol- 1 , CO2 饱和点(CSP) 为1 030~1 233μmol·mol- 1 , 佐藤锦CCP较低而CSP较高, 且羧化效率和CO2 饱和点时光合能力( Pm) 均显著高于其它两个品种。樱桃光合作用对温度的适应范围较窄,在11~36℃之间, 最适温度在23~25℃之间, 适温下佐藤锦Pn显著高于斯坦勒和那翁。  相似文献   

12.
幼年梨树品种光合作用的研究   总被引:16,自引:2,他引:16  
 利用CIRAS-1光合仪, 分别于5月下旬和10上旬田间测定了19个梨品种幼树叶片净光合速率( Pn) , 结果表明, 新梢中部叶片Pn值较高且稳定, 不同品种功能叶片平均Pn值以‘中梨1号’最高,达13.13μmol·m- 2 ·s- 1 , 秋月最低, 仅8.08μmol·m- 2 ·s- 1 , 其余大多数品种Pn值介于二者之间。分析影响梨树光合作用因素的结果表明, 叶片Pn值并不与枝条长短有直接关系, 而是与其生长状态有关, 未封顶的长梢叶片Pn明显高于已封顶的中梢和短梢。叶片背面受光时的Pn明显低于正面受光, 叶龄长的春梢叶片(约150 d) Pn明显低于健壮的秋梢叶片(约50 d) , 叶片上午Pn值明显高于下午。利用相关分析计算出梨树叶片光合作用的理论光补偿点为59.40 μmol·m- 2 · s- 1 , 表观量子效率0.038, 暗呼吸速率2.25μmol·m- 2 ·s- 1 , 最低叶温为13.77℃, 最适叶温为26.86℃, 最高叶温为39.96℃, 最适大气相对湿度为26.50% , 最高为84.23% , CO2 补偿点为42.17μmol·mol- 1。  相似文献   

13.
河北核桃( Juglans hopeiensis Hu)光合特性的研究   总被引:3,自引:0,他引:3  
 以河北核桃‘艺核1号’等为试材, 利用CI-301PS便携式光合作用测定仪, 在田间条件下,研究了河北核桃的光合特性。结果表明: ‘艺核1号’光饱合点为1643 μmol·m- 2 ·s- 1左右, 光补偿点为50 μmol·m - 2 ·s- 1左右, 最适温度为29℃; 光合速率日变化为“中午降低型”的双峰曲线; 净光合速率的季节变化为双峰曲线, 第1峰出现在5月中旬, 第2峰出现在8月上旬; 影响光合速率日变化的主要因子依次是气孔导度、光合有效辐射、叶温、胞间CO2 浓度和蒸腾速率。河北核桃净光合速率低于普通核桃, 接近于核桃楸。  相似文献   

14.
扁桃与桃光合作用特征的比较研究   总被引:39,自引:0,他引:39  
 在田间条件下对扁桃和桃的光合生理生态特点进行了比较研究。结果表明: (1) 扁桃和桃的叶片的净光合速率(Pn) 日变化均呈双峰曲线型, 峰值在11 时, 次峰值在15 时, 11~14 时有“午休”现象; 在10~15 时扁桃叶片的Pn 显著高于桃, 14 时差值最大。(2) 扁桃和桃的光合生理生态参数有显著差异: 光合作用的最适温度分别为27 ℃、23 ℃, 适宜温度范围分别为20~35 ℃、15~30 ℃; 光合作用的光补偿点和饱和点分别为54mol·m-2·s-1和1 714μmol··m-2·s-1、23μmol··m-2·s-1和1 479μmol·m-2·s-1; CO2补偿点和饱和点分别为68μL·L-1和838μL·L-1、55μL·L-1和717μL·L-1; 光合作用适宜空气湿度分别为≤0. 89 kPa、≤1. 31 kPa (相当于20 ℃下相对湿度38 %和56 %) 。(3) 叶绿素荧光参数的日变化显示: 扁桃叶片的Fv’/ Fm’、qP 和ΦPS Ⅱ均大于桃; 而扁桃叶片的qN 小于桃。说明在当地条件下, 扁桃叶片PS Ⅱ光化学效率、PS Ⅱ电子传递量子效率以及通过光化学猝灭转换光能的作用均显著高于桃; 而以非光化学猝灭方式耗散光能的作用小于桃。  相似文献   

15.
美丽异木棉光合特性的研究   总被引:23,自引:1,他引:23  
吴吉林  李永华  叶庆生 《园艺学报》2005,32(6):1061-1065
 对美丽异木棉光合特性进行了研究。结果表明: 美丽异木棉的光饱和点和补偿点分别约为1 600和35μmol·m- 2 ·s- 1 , 表观量子效率为0.0263; CO2 饱和点和补偿点分别约为1 000和59μmol·mol- 1 , 羧化效率为0.0622; 光合适温为24~28℃; 晴天的净光合速率日变化为双峰曲线, 次峰明显低于首峰; Pn季节变化也为双峰曲线; Pn与气孔导度呈显著正相关, 与蒸腾速率、光照强度呈正相关, 与胞间CO2 浓度呈显著负相关, 但与温度的相关性不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号