首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ultuna long-term soil organic matter experiment in Sweden (59′82° N, 17′65° E) was started in 1956 to study the effects of different N fertilisers and organic amendments on soil properties. In this study, samples were taken from 11 of the treatments, including unfertilised bare fallow and cropped fallow, straw with and without N addition, green manure, peat, farmyard manure, sawdust, sewage sludge, calcium nitrate and ammonium sulphate, with n = 4 for each treatment. Samples were taken from topsoil (0–20 cm) and subsoil (27–40 cm depth) and analysed for concentrations of phospholipid fatty acids (PLFAs), organic C, total N and pH. The results showed that the subsoil samples reflected the total PLFA content of the topsoil, but not the microbial community structure. Total PLFA content was well correlated with total organic C and total N in both topsoil and subsoil. Total PLFA content in topsoil samples was highest in the sewage sludge treatment (89 ± 22 nmol PLFA g dw−1). This contradicts earlier findings on microbial biomass in this sewage sludge-treated soil, which indicated inhibition of microorganisms, probably by heavy metals added with sludge. A switch towards microbial growth and faster decomposition of organic matter occurred around 2000, coinciding with lowered heavy metal content in the sludge. According to the PLFA data, the microbial community in the sewage sludge treatment is now dominated by Gram-positive bacteria. A lack of Gram-negative bacteria was also observed for the ammonium sulphate treatment, obviously caused by a drop in pH to 4.2.  相似文献   

2.
Despite an increase in the understanding of the soybean isoflavones involved in root-colonizing symbioses, relatively little is known about their levels in the rhizosphere and their interactions with the soil microbial community. Based on a 13-year experiment of continuous soybean monocultures, in the present study we quantified isoflavones in the soybean rhizosphere and analyzed the soil microbial community structure by examining its phospholipid fatty acid (PLFA) profile. Two isoflavones, daidzein (7, 4′-dihydroxyisoflavone) and genistein (5,7,4′- trihydroxyisoflavone), were detected in the rhizosphere soil of soybean plants, with the concentrations in the field varying with duration of mono-cropping. Genistein concentrations ranged from 0.4 to 1.2 μg g−1 dry soil over different years, while daidzein concentrations rarely exceeded 0.6 μg g−1 dry soil. PLFA profiling showed that the signature lipid biomarkers of bacteria and fungi varied throughout the years of the study, particularly in mono-cropping year 2, and mono-cropping years 6-8. Principal component analysis clearly identified differences in the composition of PLFA during different years under mono-cropping. There was a positive correlation between the daidzein concentrations and soil fungi, whereas the genistein concentration showed a correlation with the total PLFA, fungi, bacteria, Gram (+) bacteria and aerobic bacteria in the soil microbial community. Both isoflavones were easily degraded in soil, resulting in short half-lives. Concentrations as small as 1 μg g−1 dry soil were sufficient to elicit changes in microbial community structure. A discriminant analysis of PLFA patterns showed that changes in microbial community structures were induced by both the addition of daidzein or genistein and incubation time. We conclude that daidzein and genistein released into the soybean rhizosphere may act as allelochemicals in the interactions between root and soil microbial community in a long-term mono-cropped soybean field.  相似文献   

3.
2,4-Dichlorophenoxyacetic acid butyl ester (2,4-D butyl ester) is extensively applied for weed control in cultivation fields in China, but its effect on soil microbial community remains obscure. This study investigated the microbial response to 2,4-D butyl ester application at different concentrations (CK, 10, 100 and 1000 μg g?1) in the soils with two fertility levels, using soil dilution plate method and phospholipid fatty acid (PLFA) analysis. Culturable microorganisms were affected by the herbicide in both soils, particularly at the higher concentration. After treating soil with 100 μg g?1 herbicide, culturable bacteria and actinomycetes were significantly higher, compared to other treatments. Treatment of soil with 1000 μg g?1 2,4-D butyl ester caused a decline in culturable microbial counts, with the exception of fungal numbers, which increased over the incubation time. PLFA profiles showed that fatty acids for Gram-negative (GN) bacteria, Gram-positive (GP) bacteria, total bacteria and total fungi, as well as total PLFAs, varied with herbicide concentration for both soil samples. As herbicide concentration increased, the GN/GP ratio decreased dramatically in the two soils. The higher stress level was in the treatments with high concentrations of herbicide (1000 μg g?1) for both soils. Principal component analysis of PLFAs showed that the addition of 2,4-D butyl ester significantly shifted the microbial community structure in the two soils. These results showed that the herbicide 2,4-D butyl ester might have substantial effects on microbial population and microbial community structure in agricultural soils. In particular, the effects of 2,4-D butyl ester were greater in soil with low organic matter and fertility level than in soil with high organic matter and fertility level.  相似文献   

4.
The present study compares the community structures of microbiota at different habitats in Japanese rice fields by comparing their phospholipid fatty acid (PLFA) compositions to understand the contribution of different habitats to microbiological diversity. The data were collected from four neighboring rice fields. Comparison was made for the PLFA compositions extracted from the floodwater, percolating water, rice soils under flooded and drained conditions, rice straw (RS) placed in flooded and drained rice soils, RS in the composting process, and RS compost placed in a flooded rice field. Average amounts of PLFAs were 33 μg L−1 in the floodwater, 17.1 μg L−1 in the percolating water from plow layers, 34.6 μg L−1 in the percolating water from subsoil layers, 108 μg g−1 dry weight basis (dw) in flooded rice soils, 382 μg g−1 dw in RS materials, 2,510 μg g−1 dw in RS composts, 2,850 μg g−1 dw in RS composts after application to a flooded rice soil, 222 μg g−1 wet weight basis (ww) in RS in drained rice soils, and 284 μg g−1 ww in RS in flooded rice soils. The total amount of PLFAs to the soil depth of 10 cm was estimated to be about 12 g m−2. The PLFA compositions were different from each other depending on the habitats. Rice soils were characterized by the predominance of actinomycetes and Gram-positive bacteria in comparison with the other habitats. In contrast, the microbial communities in the floodwater and percolating water were characterized by the predominance of Gram-negative bacteria and eukaryotes (presumably algae), and Gram-negative bacteria, respectively. The microbial community of RS materials was dominated by fungi. Gram-positive bacteria became predominant in RS after application to flooded rice soils, while RS placed in a drained rice field after harvesting rice was characterized by the predominance of Gram-negative bacteria and fungi. The community structures at respective habitats were stable and specific, irrespective of the season of sampling and the duration of decomposition of RS.  相似文献   

5.
A 42-day incubation was conducted to study the effect of glucose and ammonium addition adjusted to a C/N ratio of 12.5 on sugarcane filter cake decomposition and on the release of inorganic N from microbial residues formed initially. The CO2 evolved increased in comparison with the non-amended control from 35% of the added C with pure +5 mg g−1 soil filter cake amendment to 41% with +5 mg g−1 soil filter cake +2.5 mg g−1 soil glucose amendment to 48% with 5 mg g−1 soil filter cake +5 mg g−1 soil glucose amendment. The different amendments increased microbial biomass C and microbial biomass N within 6 h and such an increase persisted. The fungal cell-membrane component ergosterol initially showed a disproportionate increase in relation to microbial biomass C, which completely disappeared by the end of the incubation. The cellulase activity showed a 5-fold increase after filter cake addition, which was not further increased by the additional glucose amendment. The cellulase activity showed an exponential decline to values around 4% of the initial value in all treatments. The amount of inorganic N immobilized from day 0 to day 14 increased with increasing amount of C added, in contrast to the control treatment. After day 14, the immobilized N was re-mineralized at rates between 1.3 and 1.5 μg N g−1 soil d−1 in the treatments being more than twice as high as in the control treatment. This means that the re-mineralization rate is independent of the actual size of the microbial residues pool and also independent of the size of the soil microbial biomass.  相似文献   

6.
Water quantity and quality were monitored for 3 years in a 360-m-long wetland with riparian fences and plants in a pastoral dairy farming catchment. Concentrations of total nitrogen (TN), total phosphorus (TP) and Escherichia coli were 210–75,200 g N m−3, 12–58,200 g P m−3 and 2–20,000 most probable number (MPN)/100 ml, respectively. Average retentions (±standard error) for the wetland over 3 years were 5 ± 1%, 93 ± 13% and 65 ± 9% for TN, TP and E. coli, respectively. Retentions for nitrate–N, ammonium–N, filterable reactive P and particulate C were respectively −29 ± 5%, 32 ± 10%, −53 ± 24% and 96 ± 19%. Aerobic conditions within the wetland supported nitrification but not denitrification and it is likely that there was a high conversion rate from dissolved inputs of N and P in groundwater, to particulate N and P and refractory dissolved forms in the wetland. The wetland was notable for its capacity to promote the formation of particulate forms and retain them or to provide conditions suitable for retention (e.g. binding of phosphate to cations). Nitrogen retention was generally low because about 60% was in dissolved forms (DON and NOX–N) that were not readily trapped or removed. Specific yields for N, P and E. coli were c. 10–11 kg N ha−1 year−1, 0.2 kg P ha−1 year−1 and ≤109 MPN ha−1 year−1, respectively, and generally much less than ranges for typical dairy pasture catchments in New Zealand. Further mitigation of catchment runoff losses might be achieved if the upland wetland was coupled with a downslope wetland in which anoxic conditions would promote denitrification.  相似文献   

7.
Salt-tolerant isolates Bacillus pumilus, Pseudomonas mendocina, Arthrobacter sp., Halomonas sp., and Nitrinicola lacisaponensis isolated from high saline habitats exhibited plant growth-promoting traits like P solubilization and indole acetic acid (IAA), siderophore, and ammonia production. These isolates were inoculated in wheat to assess microbe-mediated responses and plant growth promotion in salt affected soil. Maximum shoot and root length (33.8 and 13.6 cm) and shoot and root biomass (2.73 and 4.48 g dry weight) was recorded in plants inoculated with B. pumilus after 30 days. Total chlorophyll content was maximum in the leaves of the plants treated with Halomonas sp. (24.22 mg g−1 dry weight) followed by B. pumilus (23.41 mg g−1 dry weight) as compared to control (18.21 mg g−1 dry weight) after 30 days. Total protein content was maximum in Arthrobacter sp. inoculated plant leaves (3.19 mg g−1 dry weight) followed by B. pumilus (2.47 mg g−1 dry weight) as compared to control (2.15 mg g−1 dry weight) after 30 days. Total carotenoid content was maximum in plants inoculated with Halomonas sp. (1,075.45 and 1,113.29 μg g−1 dry weight) in comparison to control (837.32 and 885.85 μg g−1 dry weight) after 15 and 30 days. Inoculation of bacterial isolates increased presence of individual phenolics (gallic, caffeic, syringic, vanillic, ferulic, and cinnamic acids) and flavonoid quercetin in the rhizosphere soil. The concentration of IAA in rhizosphere soil and root exudates was also higher in all treatments than in control. Accumulation of phenolics and quercetin in the plants played a cumulative synergistic role that supported enhanced plant growth promotion of wheat in the stressed soil.  相似文献   

8.
More than 30 epiphytic lichens, collected in Agadir (Morroco) and along a 150-km transect from the Atlantic Ocean eastward, were analyzed for their metal content and lead isotopic composition. This dataset was used to evaluate atmospheric metal contamination and the impact of the city on the surrounding area. The concentrations of Cu, Pb, and Zn (average ± 1 SD) were 20.9 ± 15.2 μg g−1, 13.8 ± 9.0 μg g−1, and 56.6 ± 26.6 μg g−1, respectively, with the highest values observed in lichens collected within the urban area. The 206Pb/207Pb and 208Pb/207Pb ratios in the lichens varied from 1.146 to 1.186 and from 2.423 to 2.460, respectively. Alkyllead-gasoline sold in Morocco by the major petrol companies gave isotopic ratios of 206Pb/207Pb = 1.076–1.081 and 208Pb/207Pb = 2.348–2.360. These new, homogeneous values for gasoline-derived lead improve and update the scarce isotopic database of potential lead sources in Morocco, and may be of great value to future environmental surveys on the presence of lead in natural reservoirs, where it persists over time (e.g., soils and sediments). The interest of normalizing metal concentrations in lichens to concentrations of a lithogenic element is demonstrated by the consistency of the results thus obtained with lead isotopic ratios. Leaded gasoline contributed less than 50% of the total amount of lead accumulated in lichens, even in areas subject to high vehicular traffic. This strongly suggests that the recent banishment of leaded gasoline in Morocco will not trigger a drastic improvement in air quality, at least in Agadir.  相似文献   

9.
The changes in size, activity and structure of soil microbial community caused by N fertilization were studied in a laboratory incubation experiment. The rates of N fertiliser applied (KNO3) were 0 (control), 100 and 2,000 μg N g−1 soil. Despite no extra C sources added, a high percentage of N was immobilized. Whereas no significant increase of microbial C was revealed during incubation period, microbial growth kinetics as determined by the substrate-induced growth-response method demonstrated a significant decrease in the specific growth rate of microbial community in soil treated with 2,000 μg N g−1 soil. Additionally, a shift in microbial community structure resulting in an increase in fungal biomarkers, mainly in the treatment with 2,000 μg N g−1 soil was visible.  相似文献   

10.
Surface sediments (0–5 cm) were analysed to provide information on levels, spatial trends and sources of the 16 USEPA polycyclic aromatic hydrocarbons (PAH), 15 polychlorinated biphenyls (PCBs) and trace metals (copper, chromium, mercury, nickel and zinc) in channel and wetland habitats of Pialassa Baiona lagoon (Italy). The highest levels of PAHs, PCBs and Hg (3,032–87,150, n.d.–3,908 and 1.3–191 mg kg−1) were mainly found at channel habitats close to industrial sources. Pyrogenic PAH inputs were significant, with a predominance of four-ring PAHs and combustion-related PAHs in both channel and wetland habitats. Among PCB congeners, chlorination class profiles show that penta- and hexachlorinated PCBs are the most prevalent homologues accounting for approximately 33% and 47% of the total PCB concentrations in channel sediments. Total toxicity equivalent factors (TEQs) of potentially carcinogenic PAHs varied from 348 to 7,879 μg kg−1 and from 4.3 to 235 μg kg−1 in channel and wetland sediments; calculated TEQs for dioxin-like PCB congeners at channel habitats ranged from n.d. to 86.7 μg kg−1. Comparison of PAHs, PCBs and metal levels with Sediment Quality Guidelines suggests that more concern should be given to the southern area of the lagoon for potential risks of carcinogenic PAHs, dioxin-like PCBs and mercury.  相似文献   

11.
 The critical S concentration and S requirement of the soil microbial biomass of a granitic regosol was examined. S was applied at the rate of 0, 5, 10, 20, 30 and 50 μg S as MgSO4·7H2O, together with either 3000 μg glucose-C or 3333 μg cellulose-C, 400 μg N, and 200 μg P g –1 soil and 200 μg K g–1 soil. Microbial biomass, inorganic SO4 2–-S, and CO2 emission were monitored over 30 days during incubation at 25  °C. Both glucose and cellulose decomposition rates responded positively to the S made available for microbial cell synthesis. The amounts of microbial biomass C and S increased with the level of applied S up to 10 μg S g–1 soil and 30 μg S g–1 soil in the glucose- and cellulose-amended soil, respectively, and then declined. Incorporated S was found to be concentrated within the microbial biomass or partially transformed into soil organic matter. The concentration of S in the microbial biomass was higher in the cellulose- (4.8–14.2 mg g–1) than in the glucose-amended soil (3.7–10.9 mg g–1). The microbial biomass C:S ratio was higher in the glucose- (46–142 : 1) than in the cellulose-amended soil (36–115 : 1). The critical S concentration in the microbial biomass (defined as that required to achieve 80% of the maximum synthesis of microbial biomass C) was estimated to be 5.1 mg g–1 in the glucose- and 10.9 mg g–1 in the cellulose-amended soil. The minimum requirement of SO4 2–-S for microbial biomass formation was estimated to be 11 μg S g–1 soil and 21 μg S g–1 soil for glucose- and cellulose-amended soil, respectively. The highest levels of activity of the microbial biomass were observed at the SO4 2–-S concentrations of 14 μg S g–1 soil and 17 μg S g–1 soil, for the glucose and cellulose amendments, respectively, and were approximately 31–54% higher during glucose than cellulose decomposition. Received: 20 October 1999  相似文献   

12.
The present study was conducted to determine the spatial heterogeneity of bulk density, soil moisture, inorganic N, microbial biomass C, and microbial biomass N in the ridge tillage system of Turiel compared to conventional mouldboard ploughing on three sampling dates in May, July, and August. The soil sampling was carried out under vegetation representing the ridge in a high spatial resolution down the soil profile. Bulk density increased with depth and ranged from 1.3 g cm−3 at 10 cm depth to 1.6 g cm−3 at 35 cm in ploughed plots and from 1.0 g m−3 at 5 cm to 1.4 g m−3 at 35 cm in the ridges. In the ploughed plots, the contents of microbial biomass C and microbial biomass N remained roughly constant at 215 and 33 μg g−1 soil, respectively, throughout the experimental period. The microbial biomass C/N ratio varied in a small range around 6.4. In the ridged plots, the contents of microbial biomass C and microbial biomass N were 5% and 6% higher compared to the ploughed plots. Highest microbial biomass C contents of roughly 300 μg g−1 soil were always measured in the crowns in July. The lowest contents of microbial biomass C of 85–137 μg g−1 soil were measured in the furrows. The ridges showed strong spatial heterogeneity in bulk density, soil water content, inorganic nitrogen and microbial biomass.  相似文献   

13.
In this study, the effects of 1 h aeration, nitrogen gas N2(g) sparging (15 and 30 min) and increasing ferric ions (Fe+3) as FeSO4 (10, 20 and 50 mg L−1) and Fe3O4 nanoparticles (1, 2 and 4 g L−1) concentrations on three less hydrophobic and three more hydrophobic polycyclic aromatic hydrocarbons (PAHs) and toxicity removals from a petrochemical industry in Izmir (Turkey) were investigated in a sonicator with a power of 650 W and an ultrasound frequency of 35 kHz; 1 h aeration increased the yields in benzo[b]fluoranthene, benzo[k]fluoranthene and benzo[a]pyrene PAHs (less hydrophobic) from 62% to 67% to around 95–97% after 150 min sonication at 60°C. However, 1 h aeration did not contribute to the yields of more hydrophobic PAHs (indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene). The maximum yields were obtained at acidic and alkaline pH for more and less hydrophobic PAHs, respectively, after 60 and 120 min sonication at 30°C; 30 min N2(g) sparging, 50 mg L−1 Fe+3 increased the yields of less hydropobic PAHs after 150 min sonication at 60°C. Two milligrams per liter of Fe3O4 nanoparticles increased both less (87–88%) and more (96–98%) hydrophobic PAH yields. The Daphnia magna acute toxicity test showed that the toxicity decreased significantly with an hour aeration, 30 min N2(g) sparging, 50 mg L−1 Fe+3 and 2 g L−1 Fe3O4 nanoparticles at 60°C after 120 and 150 min sonications. Vibrio fischeri was found to be more resistant to the sonicated samples than D. magna. Significant correlations were found between the physicochemical properties of sonicated PAHs and acute toxicities both organisms.  相似文献   

14.
The types and amounts of carbon (C) and nitrogen (N) inputs, as well as irrigation management are likely to influence gaseous emissions and microbial ecology of agricultural soil. Carbon dioxide (CO2) and nitrous oxide (N2O) efflux, with and without acetylene inhibition, inorganic N, and microbial biomass C were measured after irrigation or simulated rainfall in two agricultural fields under tomatoes (Lycopersicon esculentum). The two fields, located in the California Central Valley, had either a history of high organic matter (OM) inputs (“organic” management) or one of low OM and inorganic fertilizer inputs (“conventional” management). In microcosms, where short-term microbial responses to wetting and drying were studied, the highest CO2 efflux took place at about 60% water-filled pore space (WFPS). At this moisture level, phospholipid fatty acids (PLFA) indicative of microbial nutrient availability were elevated and a PLFA stress indicator was depressed, suggesting peak microbial activity. The highest N2O efflux in the organically managed soil (0.94 mg N2O-N m−2 h−1) occurred after manure and legume cover crop incorporation, and in the conventionally managed soil (2.12 mg N2O-N m−2 h−1) after inorganic N fertilizer inputs. Elevated N2O emissions occurred at a WFPS >60% and lasted <2 days after wetting, probably because the top layer (0–150 mm) of this silt loam soil dried quickly. Therefore, in these cropping systems, irrigation management might control the duration of elevated N2O efflux, even when C and inorganic N availability are high, whereas inorganic N concentrations should be kept low during times when soil moisture cannot be controlled.  相似文献   

15.
This study investigated the possible effects of tree species diversity and identity on the soil microbial community in a species-rich temperate broad-leaved forest. For the first time, we separated the effects of tree identity and tree species diversity on the link between above and belowground communities in a near-natural forest. We established 100 tree clusters consisting of each three tree individuals represented by beech (Fagus sylvatica L.), ash (Fraxinus excelsior L.), hornbeam (Carpinus betulus L.), maple (Acer pseudoplatanus L.), or lime (Tilia spec.) at two different sites in the Hainich National Park (Thuringia, Germany). The tree clusters included one, two or three species forming a diversity gradient. We investigated the microbial community structure, using phospholipid fatty acid (PLFA) profiles, in mineral soil samples (0–10 cm) collected in the centre of each cluster.The lowest total PLFA amounts were found in the pure beech clusters (79.0 ± 23.5 nmol g−1 soil dw), the highest PLFA amounts existed in the pure ash clusters (287.3 ± 211.3 nmol g−1 soil dw). Using principle components analyses (PCA) and redundancy analyses (RDA), we found only for the variables ‘relative proportion of beech trees’ and ‘living lime fine root tips associated with ectomycorrhiza’ a significant effect on the PLFA composition. The microbial community structure was mainly determined by abiotic environmental parameters such as soil pH or clay content. The different species richness levels in the clusters did not significantly differ in their total PLFA amounts and their PLFA composition. We observed a tendency that the PLFA profiles of the microbial communities in more tree species-rich clusters were less influenced by individual PLFAs (more homogenous) than those from species-poor clusters.We concluded that tree species identity and site conditions were more important factors determining the soil microbial community structure than tree species diversity per se.  相似文献   

16.
A field experiment was conducted during 2003–2005 and 2004–2006 at the Indian Institute of Sugarcane Research, Lucknow, India to study the effect of Trichoderma viride inoculation in ratoon sugarcane with three trash management practices, i.e. trash mulching, trash burning and trash removal. Trichoderma inoculation with trash mulch increased soil organic carbon and phosphorus (P) content by 5.08 Mg ha−1 and 11.7 kg ha−1 over their initial contents of 15.75 Mg ha−1 and 12.5 kg ha−1, respectively. Soil compaction evaluated as bulk density in 0- to 15-cm soil layer, increased from 1.48 Mg m−3 at ratoon initiation (in April) to 1.53 Mg m−3 at harvest (in December) due to trash burning and from 1.42 Mg m−3 at ratoon initiation (in April) to 1.48 Mg m−3 at harvest (in December) due to trash mulching. The soil basal respiration was the highest during tillering phase and then decreased gradually, thereafter with the advancement of crop growth. On an average, at all the stages of crop growth, Trichoderma inoculation increased the soil basal respiration over no inoculation. Soil microbial biomass increased in all plots except in the plots of trash burning/removal without Trichoderma inoculation. The maximum increase (40 mg C kg−1 soil) in soil microbial biomass C, however, was observed in the plots of trash mulch with Trichoderma inoculation treatment which also recorded the highest uptake of nutrient and cane yield. On an average, Trichoderma inoculation with trash mulch increased N, P and K uptake by 15.9, 4.68 and 23.6 kg ha−1, respectively, over uninoculated condition. The cane yield was increased by 12.8 Mg ha−1 with trash mulch + Trichoderma over trash removal without Trichoderma. Upon degradation, trash mulch served as a source of energy for enhanced multiplication of soil bacteria and fungi and provided suitable niche for plant–microbe interaction.  相似文献   

17.
Different theories have been brought forward to explain the commonly observed δ15N enrichment with depth in soil profiles, including the discrimination against 15N during N decomposition and the buildup of 15N-enriched microbial residues. A combination of soil organic matter (SOM) size and density fractionations, 15N determinations, and phospholipid fatty acid (PLFA) analyses was conducted on soils from a pristine N-limited Nothofagus forest in southern Chile. The purpose of this study was to investigate which SOM fractions mostly reflect the 15N-enrichment pattern and to link 15N SOM enrichment with microbial community composition. Nitrogen-15 enrichments were greater for the microaggregate (<150 μm) than for the macroaggregate (>150 μm) size fraction, with Rayleigh isotope enrichment factors averaging −8.5‰ and −3.7‰, respectively. The macro-organic matter density fractions (>150 μm) showed intermediate enrichment factors of −5.1‰ and −7.3‰ for the light (<1.37 g cm−3) and heavy (>1.37 g cm−3) fraction, respectively. The abundance of fungal and bacterial PLFAs was significantly higher in the microaggregate compared to the macroaggregate size fraction, but their relative abundance did not change between aggregate size fractions. Our data link differential 15N enrichment of SOM fractions to “total” microbial abundance and, as such, corroborates existing theories of microbial-induced 15N enrichment. Isotopic fractionation during microbial N decomposition processes alone could not explain the large 15N enrichment in the microaggregate size fraction (−8.5‰) and the heavy density fraction (−7.3‰). We therefore suggest that microbial turnover and accretion of 15N-enriched microbial (especially fungal) compounds was an additional driver for 15N enrichment of this soil profile.  相似文献   

18.
In forest soils where a large fraction of total phosphorus (P) is in organic forms, soil micro-organisms play a major role in the P cycle and plant availability since they mediate organic P transformations. However, the correct assessment of organic P mineralization is usually a challenging task because mineralized P is rapidly sorbed and most mineralization fluxes are very weak. The objectives of the present work were to quantify in five forest Spodosols at soil depths of 0-15 cm net mineralization of total organic P and the resulting increase in plant available inorganic P and to verify whether net or gross P mineralization could be estimated using the C or N mineralization rates. Net mineralization of total organic P was derived from the net changes in microbial P and gross mineralization of P in dead soil organic matter. We studied very low P-sorbing soils enabling us to use lower extractants to assess the change in total inorganic P as a result of gross mineralization of P in dead soil organic matter. In addition, to enable detection of gross mineralization of P in dead soil organic matter, a long-term incubation (517 days) experiment was carried out. At the beginning of the experiment, total P contents of the soils were very low (19-51 μg g−1) and were essentially present as organic P (17-44 μg g−1, 85-91%) or microbial P (6-14 μg g−1; 24-39%). Conversely, the initial contents of inorganic P were low (2-7 μg g−1; 9-15%). The net changes in the pool size of microbial P during the 517 days of incubation (4-8 μg g−1) and the amounts of P resulting from gross mineralization of dead soil organic matter (0.001-0.018 μg g−1 day−1; 0.4-9.5 μg g−1 for the entire incubation period) were considerable compared to the initial amounts of organic P and also when compared to the initial diffusive iP fraction (<0.3 μg g−1). Diffusive iP corresponds to the phosphate ions that can be transferred from the solid constituents to the soil solution under a gradient of concentration. Net mineralization of organic P induced an important increase in iP in soil solution (0.6-10 μg g−1; 600-5000% increase) and lower increases in diffusive iP fractions (0.3-5 μg g−1; 300-2000% increase), soil solid constituents having an extremely low reactivity relative to iP. Therefore, soil micro-organisms and organic P transformations play a major role in the bioavailability of P in these forest soils. In our study, the dead soil organic matter was defined as a recalcitrant organic fraction. Probably because gross mineralization of P from this recalcitrant organic fraction was mainly driven by the micro-organisms’ needs for energy, the rates of gross mineralization of C, N and P in the recalcitrant organic fraction were similar. Indirect estimation of gross mineralization of P in dead soil organic matter using the gross C mineralization rate seems thus an alternative method for the studied soils. However, additional studies are needed to verify this alternative method in other soils. No relationships were found between microbial P release and microbial C and N releases.  相似文献   

19.
Mercury bioaccumulation kinetics of two important macrobenthic species, the polychaete Hediste diversicolor and the bivalve Scrobicularia plana, were evaluated following a dietary pathway (i.e. contaminated algae), through a mesocosm laboratory experiment. Both studied species presented a similar model of Hg bioaccumulation kinetics, a linear pattern of accumulation through time being the mercury accumulation in the organisms proportional to the mercury concentration in the food. Mercury bioaccumulation rates were higher in the polychaete H. diversicolor (reaching approximately 0.15 μg g−1 at the end of the experiment) than in the bivalve S. plana (≈0.07 μg g−1), which could be related to their feeding strategies, ingestion rates and assimilation efficiencies. Moreover, the mercury bioaccumulation revealed to be quite a fast process especially for the polychaete, and despite the fact that this species is not an edible organism, it is an important prey item, which can greatly contribute to the transport of contaminants to higher trophic levels. Therefore, the bioaccumulation of mercury by these important macrobenthic species, especially the bivalves, represents a non-negligible risk for humans.  相似文献   

20.
Methane flux rates were measured on a loamy sand soil within perennial and annual energy crops in northeast Germany. The study was performed in closed chambers between 2003 and 2005 with four measurements per week. A mixed linear model including the fixed effects of year, rotation period, crop and fertilisation was applied to determine the influence of climatic factors and soil management on the CH4 flux. Soil water content and air temperature were added as co-variables. With the exception of air temperature, all fixed effects and the co-variable soil water content influenced the CH4 flux. The soil of annual crops consumed 6.1 μg CH4 m−2 h−1, significantly more than the soil of perennial crops with 4.3 μg CH4 m−2 h−1. It is suggested that soil water content plays the key role in CH4 flux between pedosphere and atmosphere. In the range of water contents between 5% and 15%, our model describes that a soil water content increase of 1% induces a net emission of 0.375 μg CH4 m−2 h−1. As the soil of the experimental field was well-drained and aerobic, it represented a net sink for CH4 throughout the study period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号