首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Hormonal asynchronies during oestrus, related to the presence of suprabasal plasma-progesterone (P4) concentrations and a delayed ovulation, interfere with the fertility of repeat-breeder heifers (RBH). Since tubal dysfunction can occur in connection with hormonal asynchronies and constrained availability of fertile spermatozoa at the time of ovulation, the present study tested the hypothesis that frequent sperm deposition from onset of oestrus to ovulation may improve pregnancy rates in RBH. Five RBH and five virgin heifers (VH; controls) were repeatedly artificially inseminated (AI) at 6 h intervals from onset of oestrus to spontaneous ovulation. Hormone analyses revealed suprabasal P4 concentrations and a delay in the occurrence of the luteinising hormone (LH) surge, but a normal cortisol profile in RBH. Compared with controls, RBH presented longer interval from onset of oestrus to ovulation, and therefore, received more AIs. Pregnancy rates in RBH reached control levels (60%; NS), indicating that the hypothesis might be correct. Pregnancy rates in VH were below the expected range, presumably attributed to a deleterious influence of the frequent handling. The study suggests that pregnancy rates can be improved in RBH by frequent AI in relation to spontaneous ovulation. However, this practice of repeated manipulations, while seeming not to show adverse effects, lacks practicality for routine use.  相似文献   

2.
A detailed clinical-endocrine investigation was performed in 6 repeat breeder heifers (RBH) with the aim being to ascertain whether endocrine asynchronism exists at luteal regression and during early pregnancy. The heifers were first studied during an open cycle and then after insemination when 3 heifers became pregnant. Circulating plasma levels of PGF2 alpha metabolite were measured every 2nd h, while progesterone (P4) levels were measured every 6th h. The oestrous period and intervals between the onset of oestrus and ovulation were relatively longer, compared with what is normally seen in heifers. Plasma levels of P4 at the onset of oestrus were higher than normal, but it was concluded that the plasma levels of PGF2 alpha metabolite and P4 in RBH at luteal regression and early pregnancy were normal.  相似文献   

3.
Blood samples were collected from 211 dairy heifers at the time of field insemination [artificial insemination (AI)]. Heifers were defined as either first‐service heifers (n = 91) or third to eigth‐service heifers [presumed (third AI, n = 60)] or well‐defined repeat breeders (greater than the fourth AI, n = 60). Plasma progesterone concentrations at AI were evaluated in relation to oestrous behaviour at AI and conception rates post‐AI. Conception rates after third AI were good, but conception rates decreased markedly after fourth AI and onwards. Those heifers that did not become pregnant after AI had significantly higher basal progesterone concentrations (>0.5 nmol/l) at AI, so‐called suprabasal concentrations, compared with those which conceived after AI (irrespective of the number of AI practised). Relative risk for repeat breeding was 58% after AI performed at suprabasal progesterone concentrations, while it was 42% at basal (0.5) progesterone concentrations. Results from this field study confirm results obtained in earlier controlled studies of repeat‐breeder heifers (RBH), indicating that the current definition of repeat breeding should be retained. Analysis of suprabasal progesterone concentrations could be considered as a tool for identification of RBH, provided that heat detection and AI timing are optimal. Besides considering the direct costs involved in repeat breeding, it remains to be determined whether it would be economically beneficial to identify and exclude RBH from the breeding population.  相似文献   

4.
Synchronization of oestrus and/or ovulation can reduce workload in heifer reproductive management. The objective of this study was to compare two protocols to synchronize oestrus and/or ovulation using GnRH and prostaglandin F2α (PGF2α) in dairy heifers concerning their effect on follicular dynamics and reproductive performance. Four trials were carried out. In trial 1, 282 heifers were treated with GnRH and PGF2α 7 days apart (GP protocol). One group was inseminated on detection of oestrus (IDO 1), and the other group received two timed artificial inseminations (AI) 48 and 72 h after PGF2α administration (TAI 1). In trial 2, 98 heifers were synchronized with the same GP protocol. Heifers in IDO 2 were treated as in IDO 1, heifers in TAI 2 received two TAI 48 and 78 h after PGF2α administration. In trial 3, heifers in IDO 3 (n = 71) were again treated as in IDO 1. Heifers in TAI 3 (n = 166) received a second dose of GnRH 48 h after PGF2α (GPG protocol) and TAI together with this treatment and 24 h later. Trial 4 compared the timing of ovulation after the GP and the GPG protocol, using a subgroup of the heifers from trials 1 to 3. The ovaries of the heifers were scanned via ultrasound at 48, 56, 72, 80, 96 and 104 h after PGF2α administration. Timing of ovulation and size of the ovulatory follicles were compared between the two groups. In trials 1 to 3, conception rates to first service were between 49 and 66%. They did not differ significantly between IDO and TAI groups within or between trials. Pregnancy rates per synchronization were numerically higher in the TAI groups, but the difference was not significant. Conception rates to breeding on spontaneous oestrus in heifers returning to oestrus were higher than that after synchronized oestrus. In trial 4, more heifers ovulated before the end of the observation period in GPG than in GP (96.5% vs 74.7%; p < 0.001). Overall, ovulatory follicles were smaller in GPG (13.1 ± 1.9 mm vs 14.3 ± 1.9 mm; p < 0.001).  相似文献   

5.
Forty-two repeat breeder heifers (RBH) and 27 virgin heifers (VH) were used in the study. The breeding history and the occurrence of chromosomal aberrations were investigated in the RBH. The genital tracts of the RBH and the VH were investigated at slaughter 3 to 35 days after artificial insemination and/or embryo transfer for the presence of morphological and histological changes. According to AI data the mean number of inseminations per RBH in the herd of origin was 4.9 and 110 interservice intervals out of 141 calculated were normal (17–24 days) or twice normal (34–48 days). Two RBH out of 28 investigated demonstrated the 1/29 translocation. The post mortem examination revealed corpus lutea and follicles normal for the stage of the cycle in all animals. In three RBH abnormalities of the uterus or cervix were found. A higher incidence of cystic glands and of focal accumulation of erythrocytes and lymphocytes in the endometrium was found in the RBH than in the VH (P ≤ 0.05). The relation between the embryonic survival and the histological alterations of the uterus was not significant.It is suggested that errors in heat detection, abnormal karyotypes and morphological defects of the genital tract play a minor role in the repeat breeding complex in heifers.  相似文献   

6.
Two experiments were designed to investigate the administration of intravaginal progesterone in protocols for oestrus and ovulation synchronization in beef heifers. In Experiment 1, cyclic Black Angus heifers (n = 20) received an Ovsynch protocol and were randomly assigned to receive (CIDR‐Ovsynch) or not (Ovsynch) a progesterone device between Days 0 and 7. Treatment with a controlled internal drug release (CIDR) device significantly increased the size of the dominant follicle prior to ovulation (12.8 ± 0.4 CIDR‐Ovsynch vs 11.4 ± 0.4 Ovsynch) (p < 0.02). Plasma progesterone concentrations throughout the experiment were affected by the interaction between group and day effects (p < 0.004). In Experiment 2, cyclic Polled Hereford heifers (n = 382) were randomly assigned to one of the six treatment groups (3 × 2 factorial design) to receive a CIDR, a used bovine intravaginal device (DIB), or a medroxiprogesterone acetate (MAP) sponge and GnRH analogues (lecirelin or buserelin). All heifers received oestradiol benzoate plus one of the devices on Day 0 and PGF on Day 7 pm (device withdrawal). Heifers were detected in oestrus 36 h after PGF and inseminated 8–12 h later, while the remainder received GnRH 48 h after PGF and were inseminated on Day 10 (60 h). The number of heifers detected in oestrus on Day 8 and conception rate to AI on Day 9 were higher (p < 0.01) in the used‐DIB than in the CIDR or MAP groups, while the opposite occurred with the pregnancy rate to FTAI on Day 10 (p < 0.01). There was no effect of progesterone source, GnRH analogue or their interaction on overall pregnancy rates (64.9%). Progesterone treatment of heifers during an Ovsynch protocol resulted in a larger pre‐ovulatory follicle in beef heifers. Progesterone content of intravaginal devices in synchronization protocols is important for the timing of AI, as the use of low‐progesterone devices can shorten the interval to oestrus.  相似文献   

7.
OBJECTIVE: To compare the timing of onset of oestrus and ovulation, characteristics of oestrus, and fertility in Bos indicus heifers synchronised with a progesterone releasing intravaginal insert (IVP4) and administration of oestradiol benzoate (ODB) either at the time of removal of the insert or 24 h later. Design: Cohort study. PROCEDURE: Bos indicus and Bos indicus cross heifers were treated on two farms (Farm A, n = 273; Farm B, n = 47) with an IVP4 for 8 days with 1.0 mg of ODB administered at the time of device insertion and 250 mg of cloprostenol at the time of device removal. Heifers in the ODB-0 group were administered 0.75 mg of ODB at the time of device removal while heifers in the ODB-24 group were administered the same dose of ODB 24 h after device removal. Heifers were inseminated once daily after detection of oestrus. Heifers not detected in oestrus by 72 h after removal of inserts were inseminated at that time. Oestrus was detected in heifers on Farm A using heatmount detectors while on Farm B oestrus in heifers was monitored using radiotelemetry of mounting pressure. Ovarian follicular development was monitored daily in 30 heifers on Farm B from the time of administration of inserts until ovulation to a maximum of 96 h after removal of inserts, and again 11 days after removal of inserts (Day 19). A blood sample was collected from all heifers on Farm B on Day 19 and analysed for plasma concentration of progesterone. Pregnancy was diagnosed 6 to 8 weeks after insemination. RESULTS: Administration of ODB at the time of removal of inserts shortened the time interval to oestrus and ovulation (P < 0.001), increased the number of mounts recorded during oestrus (P = 0.04) and reduced the odds of pregnancy (P = 0.03). The proportion of heifers ovulating on Farm B was 67% and was not affected by treatment group (P = 0.61). The mean diameter of the largest follicle measured in ovaries was greater at the time of removal of inserts (9.1 +/- 0.6 vs 10.7 +/- 0.4; P = 0.03) and at the expected time of the LH surge (8.1 +/- 0.4 vs 11.5 +/- 0.3 mm; P < 0.001) in heifers that ovulated compared to heifers that failed to ovulate, respectively. Emergence of a new follicular wave was not detected during the synchronisation treatment in heifers that failed to ovulate. Concentrations of progesterone in plasma on Day 19 were less in non-pregnant heifers (P = 0.05) compared to heifers subsequently diagnosed as pregnant to insemination and were affected by the diameter of the ovulatory follicle (P = 0.01). CONCLUSION: Administration of ODB at the time of removal of inserts can shorten the time interval to oestrus and ovulation and can reduce fertility when insemination is carried out once daily. Further work is needed to determine if prolonged suppression of follicular development, anovulatory oestrus and premature ovulation occuring in some heifers is associated with administration of ODB.  相似文献   

8.
The objective of the study was to evaluate the interval from onset of oestrus to time of artificial insemination (AI) to obtain the optimum pregnancy rate with sex-sorted semen in Holstein heifers. Heifers in oestrus were detected and inseminated only by using heat–rumination neck collar comprised electronic identification tag at the age of 13–14 months. Heifers (n = 283) were randomly assigned to one of three groups according to the timing of insemination at 12–16 hr (G1, n = 97), at 16.1–20 hr (G2, n = 94) and at 20.1–24 hr (G3, n = 92) after reaching the activity threshold. The mean duration of oestrus was 18.6 ± 0.1 hr, and mean peak activity was found at 7.5 ± 0.1 hr after activity threshold. The mean interval from activity threshold to ovulation was 29.4 ± 0.4 hr. The overall pregnancy per AI (P/AI) was 53.0% at 29–35 days and 50.9% at 60–66 days after AI. There was a significant reduction between G1 (13.8 ± 1.4 hr) and G3 (7.9 ± 1.4 hr) related to the intervals from AI to ovulation time. Sex-sorted semen resulted in significantly higher P/AI at 29–35 days when heifers inseminated in G3 (60.9%) after oestrus than those inseminated in G1 (49.5%) and G2 (48.9%). In terms of fertility, when the temperature–humidity index (THI) was below the threshold value (THI ≤65) at the time of AI, there was a tendency (≤65; 57.2% vs. > 65; 47.1%) for high pregnancy rate. There was no effect of sire on P/AI. In addition, the interaction of the technician with the time of AI was found significant, and three-way interaction of technician, sire and time of AI was tended to be significant on pregnancy rate. Thus, in addition to delaying the time of insemination (between 20.1 and 24 hr) after oestrous detection, THI and experienced technician were also found to be critical factors in increasing fertility with the use of sex-sorted semen in Holstein heifers.  相似文献   

9.
Previous research indicated that the size of the ovulatory follicle at the time of insemination significantly influenced pregnancy rates and embryonic/fetal mortality after fixed-timed AI in postpartum cows, but no effect on pregnancy rates was detected when cows ovulated spontaneously. Our objective was to evaluate relationships of fertility and embryonic/fetal mortality with preovulatory follicle size and circulating concentrations of estradiol after induced or spontaneous ovulation in beef heifers. Heifers were inseminated in 1 of 2 breeding groups: (1) timed insemination after an estrous synchronization and induced ovulation protocol (TAI n = 98); or (2) AI approximately 12 h after detection in standing estrus by electronic mount detectors during a 23-d breeding season (spontaneous ovulation; n = 110). Ovulatory follicle size at time of AI and pregnancy status 27, 41, 55, and 68 d after timed AI (d 0) were determined by transrectal ultrasonography. Only 6 heifers experienced late embryonic or early fetal mortality. Interactions between breeding groups and follicle size did not affect pregnancy rate (P = 0.13). Pooled across breeding groups, logistic regression of pregnancy rate on follicle size was curvilinear (P < 0.01) and indicated a predicted maximum pregnancy rate of 68.0 +/- 4.9% at a follicle size of 12.8 mm. Ovulation of follicles < 10.7 mm or > 15.7 mm was less likely (P < 0.05) to support pregnancy than follicles that were 12.8 mm. Ovulatory follicles < 10.7 mm were more prevalent (28% of heifers) than ovulatory follicles > 15.7 mm (4%). Heifers exhibiting standing estrus within 24 h of timed AI had greater (P < 0.01) follicle diameter (12.2 +/- 0.2 mm vs. 11.1 +/- 0.3 mm) and concentrations of estradiol (9.9 +/- 0.6 vs. 6.6 +/- 0.7) and pregnancy rates (63% vs. 20%) than contemporaries that did not exhibit behavioral estrus. However, when differences in ovulatory follicle size were accounted for, pregnancy rates were independent of expression of behavioral estrus or circulating concentration of estradiol. Therefore, the effects of serum concentrations of estradiol and behavioral estrus on pregnancy rate appear to be mediated through ovulatory follicle size, and management practices that optimize ovulatory follicle size may improve fertility.  相似文献   

10.
This study evaluated the association between plasma anti-Mullerian hormone (AMH) concentration and fertility in Nelore (Bos indicus) heifers submitted to timed artificial insemination (TAI). At the onset of the synchronization protocol, heifers (n = 289) received a subcutaneous P4 ear implant (3 mg) and 2 mg of oestradiol benzoate. Eight days later, the P4 implant was removed and 0.5 mg of oestradiol cypionate, prostaglandin (0.265 mg, i.m.) and equine chorionic gonadotropin (300 UI, i.m.) was administered, and TAI was performed 48 hr after ear implant removal. Ovarian ultrasound evaluations were performed to measure number of ovarian follicles, dominant follicle size and ovulation response. Pregnancy diagnosis was performed by ultrasound 30 days after AI. Heifers with greater circulating AMH had more antral follicles, a smaller dominant follicle near timed ovulation and lower ovulation response to the timed AI protocol compared to heifers with lower circulating AMH. Although AMH and pregnancy outcome had a quadratic-shaped pattern, AMH was not significantly associated with fertility. In conclusion, heifers with lower AMH had larger follicles towards the end of the synchronization protocol and greater ovulation responses, whereas greater circulating AMH was unrelated to conception success.  相似文献   

11.
We hypothesized that heifers in diestrus at the beginning of a Syncro-Mate-B (SMB) regimen would have higher pregnancy rates to AI than heifers not in diestrus and that administration of a PGF2alpha analogue 11 d before a SMB regimen would increase pregnancy rates to AI. In both replicate years of Exp. 1, heifers (n = 150) were classified by stage of the estrous cycle at the beginning of a SMB regimen (d 0). Following implant removal (d 9), heifers were artificially inseminated 12 h after the onset of estrus (95.5% in estrus by 72 h). Blood samples were collected for progesterone (P4) analysis on d 0, 9, and 20. Pregnancy rates did not differ between yr 1 and 2. Pregnancy rate for heifers classified in diestrus (53.6%; n = 69) was higher (P = 0.06) than for heifers in metestrus (43.7%; n = 48). Pregnancy rate for proestrus (44.4%; n = 18) heifers was not different from that for heifers in the metestrus or diestrus groups. Mean plasma P4 concentration was affected by both treatment and day. Pregnancy rate was higher (P < 0.01) for heifers with P4 > 1 ng/mL plasma (51.6%; n = 120) than for heifers with P4 < or = 1 ng/mL plasma (23.3%; n = 30) on d 0. In Exp. 2, beef heifers (Santa Cruz; n = 195) were allotted to two treatments. Heifers (n = 98) in the control group were administered a conventional SMB treatment. Heifers (n = 97) in the PGF group were injected with PGF2alpha 11 d (d -11) before a SMB regimen. Progesterone concentration was determined from blood samples collected on d -11, -2, 0, and 9. All heifers were artificially inseminated 48 to 50 h after implant removal. At the beginning of the SMB regimen (d 0), a greater (P < 0.05) percentage of PGF (74.2%) than of control heifers (59.2%) were in diestrus (P4 > 1 ng/mL). Mean P4 concentration was not affected by treatment or day x treatment but differed (P < 0.05) among days. Pregnancy rate of cycling heifers was similar for PGF (36%) and control heifers (35.9%). Pregnancy rate was higher (P < 0.01) for heifers with P4 > 1 ng/mL plasma (37.6%) than for heifers with P4 < or = 1 ng/mL plasma (18.5%) on d 0. These results support the hypothesis that fertility is enhanced when a progestin synchrony regimen is initiated during diestrus, but methods to program estrous cycles to increase fertility warrant investigation.  相似文献   

12.
The present study was performed to test fertility in single‐ovulating and superovulated dairy heifers after insemination with low dose sex‐sorted sperm under field conditions. Some parameters, including the dosage, deposition site and timing, were assessed with the pregnancy rates after artificial insemination (AI). Moreover, the use of oestrus synchronization in combination with sorted sperm was evaluated. Besides that, we also improved the embryo production efficiency in superovulated dairy heifers by optimizing the timing of inseminations and repartitioning the sexed sperm dosage among multiple inseminations. The conception rate (52.8%) in heifers after low dose (2 × 106) insemination with sorted sperm deep into the uterine horn did not differ (p > 0.05) from that (59.6%) of conventional AI (1 × 107 non‐sorted sperm) and that of deep insemination with low dose non‐sorted sperm (57.7%). There was also no difference (p > 0.05) between conception rates after single (51.7%) and double (53.8%) deep insemination with sorted semen. Heifers inseminated with sorted sperm at synchronous oestrus had a lower pregnancy rate (48.1%) than heifers at spontaneous oestrus (53.6%), but this did not reach statistical difference (p > 0.05). The average number of transferable embryos collected in vivo from heifers inseminated with sorted sperm (4.81 ± 2.04) did not differ (p > 0.05) from that obtained from heifers after insemination with non‐sorted sperm (5.36 ± 2.74). Thus, we concluded that the pregnancy rate after deep intra‐uterine insemination with low dose sorted sperm was similar to that of non‐sorted sperm, which was either also deposited at a low dose deep intra‐uterine or into the uterine body. Sychronization of oestrus can be beneficial in combination with sorted sperm to optimize the organization and management of dairy herds. The results from superovulated heifers demonstrated that our insemination regime can be used to obtain a comparable embryo production efficiency with sorted sperm than with non‐sorted sperm.  相似文献   

13.
The objective of this study was to determine whether administration of hCG approximately 5 d after AI would increase plasma progesterone concentrations and conception rates in beef heifers. Heifers from two locations (Location 1: n = 347, BW = 367 +/- 1.72 kg; Location 2: n = 246, BW = 408 +/- 2.35 kg) received melengestrol acetate (0.5 mg.heifer(-1).d(-1)) for 14 d and an injection of PGF2alpha (25 mg i.m.) 19 d later. Heifers were observed for estrus continuously during daylight from d 0 to 4.5 after PGF2alpha and artificially inseminated approximately 12 h after the onset of estrus. Half of the heifers inseminated at Location 1 were assigned randomly to receive an injection of hCG (3,333 IU i.m.) 8 d after PGF2alpha, and a blood sample was collected from all heifers 14 d after PGF2alpha for progesterone analysis. Half of the heifers inseminated at Location 2 were administered hCG on d 9 after PGF2alpha, and a blood sample was collected from all heifers 17 d after PGF2alpha. Heifers at Location 1 had a 94% synchronization rate, exhibited estrus 2.45 +/- 0.03 d after PGF2alpha, and received hCG 5.55 +/- 0.03 d after AI. Heifers at Location 2 had an 85% synchronization rate, exhibited estrus 2.69 +/- 0.03 d after PGF2alpha, and received hCG 6.31 +/- 0.03 d after AI. Progesterone concentrations were greater (P < 0.01) for hCG-treated heifers than for controls at both locations (8.6 vs. 4.6 ng/mL for treatment vs. control at Location 1, and 11.2 vs. 5.6 ng/mL for treatment vs. control at Location 2). Pregnancy status was determined by ultrasound approximately 50 d after AI. Conception rates (65 vs. 70% for treatment vs. control, respectively) did not differ at Location 1. Conception rates tended (P = 0.10) to be increased with hCG treatment at Location 2 (61 vs. 50% for treatment vs. control, respectively). A second experiment was conducted with 180 heifers at a third location to determine the effects of hCG administration 6 d after timed insemination at approximately 60 h after PGF2alpha in heifers synchronized as in Exp. 1. Pregnancy rate to timed AI did not differ between hCG-treated (62%) and control heifers (59%). Final pregnancy rate after timed AI and bull exposure (92%) was not affected by treatment. In summary, administration of hCG 5 to 6 d after AI did not improve conception or pregnancy rates at two out of three locations evaluated, suggesting insufficient progesterone is not a major factor contributing to early pregnancy failure in beef heifers.  相似文献   

14.
In this study, semen samples from 25 bulls that had passed a breeding soundness evaluation were analyzed for the presence or absence of a 31-kDa protein, known as fertility-associated antigen (FAA), on spermatozoal membranes. Eighteen bulls had FAA on sperm (FAA-positive) and seven were devoid of FAA on sperm (FAA-negative). A single ejaculate from each bull was extended and frozen with 25 to 30 x 10(6) sperm in .5-mL straws. Crossbred replacement heifers (n = 865) were estrus-synchronized and artificially inseminated either at timed AI or 12 h after they were detected in estrus. Mature cows (n = 285) were inseminated 12 h after they were detected in estrus during a 45-d AI period. Pregnancy rates (pooled) to first AI service for females (n = 764) inseminated with FAA-positive sperm were 65.6% and were 49.7% for females (n = 386) inseminated with FAA-negative sperm (P < .005). Among the estrus-synchronized replacement heifers, pregnancy rates to synchronized AI service for heifers (n = 550) inseminated with FAA-positive sperm were 62% and were 45.7% for heifers (n = 315) inseminated with FAA-negative sperm (P < .005). These data indicate that pregnancy rates to first AI service at spontaneous and synchronized estrus are higher when using semen from bulls with detectable FAA on spermatozoal membranes compared to semen from bulls devoid of FAA on membranes. Fertility-associated antigen is an important determinant for fertility potential of sperm from bulls to be used in AI breeding programs.  相似文献   

15.
OBJECTIVE: To compare the reproductive performance and pattern of onset of oestrus in dairy heifers in which oestrous cycles were synchronised with two doses of prostaglandin (PG) F2alpha and oestrus was synchronised with oestradiol benzoate (ODB). PROCEDURE: Dairy heifers in two herds (herd A, n = 192; herd B, n = 267) were treated with two doses of an analogue of PGF2alpha (cloprostenol, 375 microg, IM) 12 days apart. Heifers not detected in oestrus 48 h after the last dose of PGF2alpha were either left untreated (No ODB, n = 147) or treated with ODB (0.75 mg IM, n = 126). Onset of oestrus was monitored at 0, 24, 48, 80, 96 and 120 h after the last dose of PGF2alpha Heifers were inseminated on detection of oestrus. RESULTS: After the last dose of PGF2alpha, oestrous detection rates at 80 h (43.5 vs 72.6%, P < 0.001), 96 h (74.1 vs 84.9%, P =0.025) and 120 h (78.2 vs 86.3%, P = 0.082) were less in the No ODB compared to the ODB heifers, respectively. Conception rates (percentage pregnant that were inseminated) were greater in the No ODB compared to the ODB heifers (64.3% vs 47.6%, respectively; P = 0.006), while pregnancy rates (percentage pregnant that were treated) were also greater in the No ODB compared to the ODB heifers, but differences were not significant (50.3% vs 41.1%, respectively; P = 0.068). CONCLUSION: Administration of ODB to heifers not in oestrus 48 h after a two-dose PGF2alpha treatment increases the percentage of heifers detected in oestrus by 80 h, 96 h and 120 h after treatment, by an estimated 29%, 11% and 8%, respectively. However, administration of ODB decreases conception rates by an estimated 17%, and may decrease pregnancy rates (estimated 9% difference). Results are consistent with the hypothesis that ODB can increase submission rates but reduce conception rates following a two dose treatment with PGF2alpha.  相似文献   

16.
We evaluated whether a fixed-time AI (TAI) protocol could yield pregnancy rates similar to a protocol requiring detection of estrus, or detection of estrus and AI plus a clean-up TAI for heifers not detected in estrus, and whether adding an injection of GnRH at controlled internal drug release (CIDR) insertion would enhance fertility in CIDR-based protocols. Estrus in 2,075 replacement beef heifers at 12 locations was synchronized, and AI was preceded by 1 of 4 treatments arranged as a 2 x 2 factorial design: 1) Estrus detection + TAI (ETAI) (n = 516): CIDR for 7 d plus 25 mg of prostaglandin F2alpha (PG) at CIDR insert removal, followed by detection of estrus for 72 h and AI for 84 h after PG (heifers not detected in estrus by 84 h received 100 microg of GnRH and TAI); 2) G+ETAI (n = 503): ETAI plus 100 microg GnRH at CIDR insertion; 3) Fixed-time AI (FTAI) (n = 525): CIDR for 7 d plus 25 mg of PG at CIDR removal, followed in 60 h by a second injection of GnRH and TAI; 4) G+FTAI (n = 531): FTAI plus 100 microg of GnRH at CIDR insertion. Blood samples were collected (d -17 and -7, relative to PG) to determine ovarian status. For heifers in ETAI and G+ETAI treatments, a minimum of twice daily observations for estrus began on d 0 and continued for at least 72 h. Inseminations were performed according to the a.m.-p.m. rule. Pregnancy was diagnosed by transrectal ultrasonography. The percentage of heifers exhibiting ovarian cyclic activity at the initiation of treatments was 89%. Pregnancy rates among locations across treatments ranged from 38 to 74%. Pregnancy rates were 54.7, 57.5, 49.3, and 53.1% for ETAI, G+ETAI, FTAI, and G+FTAI treatments, respectively. Although pregnancy rates were similar among treatments, a tendency (P = 0.065) occurred for pregnancy rates in the G+ETAI treatment to be greater than in the FTAI treatment. We concluded that the G+FTAI protocol yielded pregnancy rates similar to protocols that combine estrus detection and TAI. Further, the G+FTAI protocol produced the most consistent pregnancy rates among locations and eliminated the necessity for detection of estrus when inseminating replacement beef heifers.  相似文献   

17.
The duration of oestrus and the interval from onset of oestrus to ovulation has been studied in heifers of Brahman x Shorthorn, Hereford, Shorthorn and mixed dairy breeds following treatment with synthetic progesterone (CAP) and during a subsequent cycle. The animals were under observation for 24 hr a day. No significant differences were observed between breeds in either the length of oestrus or the interval to ovulation; nor could a difference be shown within breeds due to treatment with CAP. The mean duration of oestrus was 13.9 ± 0.5 (SE) hr, and the mean interval from onset of oestrus to ovulation was 26.9 ± 0.6 (SE) hr.  相似文献   

18.
One of the main sources of repeat breeding in dairy cattle, caused by fertilization failure or early embryonic death, is metabolic stress during lactation. Nutrition seems also to play a role when the condition is seen in heifers, where oocyte cytoplasmic maturation is impaired. To determine whether over conditioning affects oocyte morphology, immature oocytes were collected by ovum pick‐up (OPU) twice weekly during 5 weeks from three over‐conditioned repeat breeder dairy heifers (RBH) and two normal virgin heifers (VH, controls) of the Swedish Red breed, monitored by body weight and condition. Oocyte quality was assessed under stereomicroscope and further examined by transmission electron microscope for accumulation of cytoplasmic lipid deposits. After OPU, the RBH yielded more low quality oocytes (60% vs 52% for VH, p = 0.14). The relative occupancy of osmophilic lipid droplets in the cytoplasm was higher in oocytes of bad quality compared with good ones, especially in RBH (p = 0.08) but also in VH (p = 0.11). Moreover, the oocytes from over‐conditioned RBH showed higher amounts of cytoplasmic lipid deposits both in good (p = 0.14) and, even more prominent, in bad quality oocytes (p = 0.06). Such accumulation of lipid droplets may imply increased sensitivity to oxidative stress, hinder cytoplasmic maturation and lead to subfertility, as accounted in over‐conditioned repeat breeders of the Swedish Red breed.  相似文献   

19.
SUMMARY Oestrus was synchronised in 57 Bos indicus heifers using norgestometoestradiol and pregnant mare serum gonadotrophin. Oestrus was detected by observations made at six-hourly intervals, using oestrogen-treated and chin-ball harnessed steers, heatmount detectors, tail-paint and visual observation. Heifers were inseminated once at either a fixed time of 49.2 ± 0.4 h (mean ± SE; n = 29) after implant removal or 12.6 ± 1.5 h (n = 28) after oestrus was detected. The mean (± SE) time to the onset of oestrus was 47.1 ± 1.9 h, while 90% of heifers recorded in oestrus were detected within 66 h of implant removal. Heatmount detectors were significantly more efficient at detecting oestrus than chin-ball harnessed steers, tail paint or visual observation (P < 0.001). A higher pregnancy rate was obtained in heifers inseminated after oestrus detection compared with heifers inseminated at a fixed-time (57.1 vs 34.5%; P = 0.043) and a higher pregnancy rate was obtained in heifers classified as easy to inseminate compared with heifers classified as difficult to inseminate (57.8 vs 0%, P < 0.001). We conclude that heatmount detectors are an efficient means of detecting oestrus in synchronised B indicus heifers and that pregnancy rates can be increased when insemination follows oestrus detection compared with a fixed-time insemination regimen.  相似文献   

20.
The objective of this experiment was to compare two progestins and three treatments for synchronizing follicular wave emergence and ovulation in protocols for fixed-time AI in beef heifers. On d 0 (beginning of the experiment), Angus and Angus-Simmental cross beef heifers at random stages of the estrous cycle either received a CIDR-B device (n = 257) or were started on 0.5 mg x anima(-1) x d(-1) melengestrol acetate (MGA; n = 246) and were randomly assigned to receive i.m. injections of 100 microg GnRH, 12.5 mg porcine LH (pLH), or 2 mg estradiol benzoate (EB) and 50 mg progesterone (P4). The last feeding of MGA was given on d 6 and on d 7, CIDR-B devices were removed and all heifers received 500 microg cloprostenol (PG). Consistent with their treatment groups on d 0, heifers were given either 100 microg GnRH or 12.5 mg pLH 48 h after PG (and were concurrently inseminated) or 1 mg EB 24 h after PG and were inseminated 28 h later (52 h after PGF). Estrus rate (combined for both progestins) in heifers receiving EB (92.0%) was greater (P < 0.05) than that in heifers receiving GnRH and pLH (combined) and a CIDR-B device (62.9%) or MGA (34.3%). Although the mean interval from PG treatment to estrus did not differ among groups (overall, 47.8 h; P = 0.85), it was less variable (P < 0.01) in MGA-fed heifers (SD = 2.5 h) than in CIDR-B-treated heifers (SD = 8.1 h). Pregnancy rates (determined by ultrasonography approximately 30 d after AI) did not differ (P = 0.30) among the six treatment groups (average, 58.0%; range, 52.5 to 65.0%). Although fixed-time AI was done, pregnancy rates were greater in heifers detected in estrus than in those not detected in estrus (62.6 vs 51.9%; P < 0.05). In conclusion, GnRH, pLH, or EB treatment in combination with a CIDR-B device or MGA effectively synchronized ovulation-for fixed-time AI, resulting in acceptable pregnancy rates in beef heifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号