首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
AIM: To determine the amount of ergovaline and lysergic acid retained or excreted by geldings fed endophyte-infected seed containing known concentrations of these alkaloids, and the effects of exposure time on clinical expression of toxicosis. METHODS: Mature geldings (n=10) received diets containing either endophyte-free (E-) or endophyte-infected (E+) tall fescue seed during three experimental phases. The first phase (Days -14 to -1) was an adaptation phase, to allow all horses to adapt to a diet containing E- tall fescue seed. The second (Days 0 to 3) was the initial exposure phase to E+ tall fescue seed, used for the delivery of ergovaline and lysergic acid at 0.5 and 0.3 mg/kg of diet, respectively, to test the initial effects of exposure on routes and amounts of elimination of alkaloid. During this phase, half the geldings were exposed to an E+ diet while the rest served as controls by remaining on the E- diet. Once assigned to treatments, geldings remained on the same diet through the third phase (Days 4 to 21), which served as the extended exposure phase. Total outputs of faeces and urine were collected within each phase, to determine retention of ergovaline and lysergic acid and nutrient digestibility. Serum was collected weekly and analysed for activities of enzymes and concentrations of prolactin. Bodyweights (BW) and rectal temperatures were recorded weekly. RESULTS: BW, rectal temperature, enzyme activities and concentrations of prolactin in serum, and nutrient digestibility were not affected by treatment. Total intake of ergovaline by geldings on the E+ diet was 3.5 and 3.6 (SE 0.20) mg/day, and 2.1 and 2.3 (SE 0.11) mg/day were not accounted for in initial and extended phases, respectively. Lysergic acid was excreted in the urine (4.0 and 4.9 (SE 0.97) mg/day) and faeces (2.5 and 2.7 (SE 0.35) mg/day) at greater amounts than that consumed (2.0 and 1.9 (SE 0.09) mg/day) during the initial and extended exposure phases, respectively. Animals exposed to E+ seed for a period of 20 days appeared to excrete more (1.5 vs 1.2 mg/day; SE 0.08; p=0.03) ergovaline in the faeces than those exposed for only 4 days. CONCLUSIONS: Exposure time to the ergot alkaloids had a limited effect on the route of elimination or the amounts of ergovaline or lysergic acid excreted by horses. The primary alkaloid excreted was lysergic acid, and urine was the major route of elimination. These data will aid future research to improve animals' tolerance to toxic endophyte-infected tall fescue.  相似文献   

2.
The digestive responses and degradation of ergovaline and production of lysergic acid in the rumen of sheep offered Neotyphodium coenophialum-infected tall fescue straw at 2 ergovaline levels were investigated. Six crossbred wethers (56 +/- 3.0 kg of BW) were used in a randomized crossover design involving 2 treatments, for a total of 6 observations per treatment. The experiment consisted of two 28-d feeding periods with a 14-d washout period between them. The treatments were 1) tall fescue straw containing <0.010 mg of ergovaline/kg (E-), and 2) tall fescue straw containing 0.610 mg of ergovaline/kg (E+). Feed, orts, and feces were measured and analyzed for DM, ADF, and CP, and used to determine digestibilities. Feed and water intake were monitored throughout the feeding periods. Body weight and serum prolactin levels were measured at the beginning and end of each feeding period. Ruminal fluid was sampled 3 times (d 0, 3, and 28) during each 28-d feeding period for determination of ergovaline, lysergic acid, ammonia, and pH. Samples were collected before feeding (0 h) and at 6 and 12 h after feeding. Total fecal and urine collection commenced on d 21 and continued until d 25 of each feeding period. Ruminal ammonia, ruminal pH, and rectal temperature were not influenced by ergovaline concentration (P > 0.10). Digestion of DM, ADF, and CP was not different between treatments (P > 0.10). Daily water intake was less for the E+ diet (2.95 vs. 2.77 L/d; P < 0.05) as was serum prolactin (22.9 vs. 6.4 ng/mL; P < 0.05). Ergovaline concentration in ruminal fluid increased over sampling days at each sampling time (P < 0.05). Lysergic acid concentration in ruminal fluid increased over time from d 0 to 3 (P < 0.05) but was not different between d 3 and 28 (P > 0.10). In the E+ treatment, ergovaline was not detectable in the urine, whereas the concentration in the feces was 0.480 mg/kg. Lysergic acid was detected in the diet of the E+ treatment at 0.041 g/kg, lysergic acid in the urine was 0.067 mg/kg and in the feces was 0.102 mg/kg. The apparent digestibility of the alkaloids was 64.2% for ergovaline and -12.5% for lysergic acid. Approximately 35% of dietary ergovaline and 248% of dietary lysergic acid were recovered in the feces and urine. The appearance of lysergic acid in the feces, urine, and ruminal fluid is likely due to microbial degradation of ergovaline in the rumen and further breakdown in the lower digestive tract.  相似文献   

3.
Ergovaline has been extensively used to study vasoactive effects of endophyte- (Neotyphodium coenophialum) infected tall fescue (Lolium arundinaceum). However, initial results indicated that an extract of toxic tall fescue seed (E+EXT) is more potent than ergovaline alone in a right ruminal artery and vein bioassay. The E+EXT induced a greater contractile response than an equal concentration of ergovaline alone in the ruminal artery of heifers (P = 0.018). This led to a hypothesis that other compounds in the seed extract contribute to vasoconstriction. Thus, experiments were conducted to determine if vasoactivity of an E+EXT is different from a mixture of ergot alkaloids (ALK; ergovaline, ergotamine, ergocristine, ergocryptine, ergocornine, ergonovine, and lysergic acid) of similar concentrations and to determine if the vasoactivity of an E+EXT differs from an endophyte-free tall fescue seed extract (E-EXT). Segments of lateral saphenous vein and right ruminal artery and vein were collected from Holstein steers (n = 6) shortly after slaughter. Vessels were cleaned of excess connective tissue and fat and sliced into segments that were suspended in a multimyograph chamber with 5 mL of continually oxygenated Krebs-Henseleit buffer, equilibrated for 90 min, and exposed to a reference compound (120 mM KCl for ruminal vessels and 0.1 mM norepinephrine for saphenous vein). Increasing concentrations of each treatment (E+EXT, E-EXT, ALK, and ergovaline) were added to the respective chamber every 15 min after buffer replacement. Data were normalized as a percentage of maximal contractile response of the reference compound and fit to a sigmoidal concentration response curve. Ergovaline, ALK, and E+EXT induced similar responses in the saphenous vein, ruminal artery, and ruminal vein. The E+EXT displayed a smaller EC(50) (half maximal effective concentration) than ergovaline or ALK in the saphenous vein and ruminal vein (P < 0.008), but not the ruminal artery (P = 0.31). Extrapolated maximum response was greatest in the saphenous vein for ergovaline, least for E+EXT, and intermediate for ALK (P < 0.0001). The E-EXT did not induce a contractile response in any vessel tested (P > 0.1). Data from this study indicate that ergovaline is largely responsible for the locally induced vasoconstriction of bovine vasculature observed with endophyte-infected tall fescue.  相似文献   

4.
Two varieties of chopped grass seed straw, tall fescue (Festuca arundinaces L.) and perennial ryegrass (Lolium perenne L.), were identified as alternative sources to wood sawdust or shavings as bedding for use by Pacific Northwest broiler producers. However, some broiler growers expressed concern that straw may be contaminated with endophytes, symbiotic fungi that are known to be toxic to livestock. The primary toxic compound of concern for livestock in endophyte infected grass straw is ergovaline.Two experiments were conducted to determine if broiler performance was affected by either the feeding of endophyte infected grass seed containing ergovaline, or rearing broilers on endophyte infected grass seed straw. The exposure of broilers to either endophyte-infected chopped straw as bedding and/or feeding endophyte infected ground grass seed in the diet with ergovaline levels as high as 423 ppb, did not significantly affect performance or the micro anatomy of kidney or liver tissues.  相似文献   

5.
Tall fescue (Lolium arundinaceum) toxicosis research is often complicated by a reduction in intake of infected forage or seed, making treatment comparisons difficult. This study was conducted to develop a fescue toxicosis model that would allow for variations in DMI without altering the quantity of alkaloids consumed over the course of the experiment. Ground tall fescue seed and a tall fescue seed extract were used in two 2-period crossover experiments to determine the effectiveness of ruminal dosing of a tall fescue seed extract to induce fescue toxicosis. This experiment used 4 growing Holstein steers (BW = 337 ± 24 kg) surgically fitted with ruminal cannulas. Steers were maintained on a diet of endophyte-free fescue hay fed ad libitum throughout the experiment. Endophyte-infected (E+; 4.1 mg/kg of ergovaline) and uninfected (E-; 0.0 mg/kg of ergovaline) KY-31 tall fescue seed was ground and dosed or extracted with ethanol, concentrated, and lyophilized before ruminal dosing. Ergovaline concentration of the final extract was 102 mg/kg. Animals were given a minimum of a 3-wk washout period between treatments. Physiological indicators were measured over 7 d at 22°C (d 1 to 3) and 32°C (d 4 to 7) during both seed and extract dosing. Seed and extract E+ dosing reduced serum prolactin concentrations such that they were not different from zero (P < 0.10). Treatment with E+ reduced feed intake (P < 0.05) and heart rate (P < 0.001), and increased respiration rate (P < 0.01) and core temperature (P < 0.05) during both seed and extract dosing. Increasing environmental temperature from 22 to 32°C reduced total intake (P < 0.05) and increased core temperature (P < 0.001) and respiration rate (P < 0.001) during both seed and extract dosing. Diastolic blood pressure tended (P < 0.09) to be increased during E+ extract dosing and reduced during heat stress. These physiological alterations are consistent with those reported for cattle grazing or consuming seed from endophyte-infected tall fescue. These data indicate that a ruminally dosed ethanol extract of tall fescue seed is efficacious in inducing fescue toxicosis in cattle.  相似文献   

6.
Vasoconstriction is a response associated with consumption of toxic endophyte-infected tall fescue. It is not known if endophyte-produced alkaloids act alone or collectively in mediating the response. Therefore, the objective of this study was to examine the vasoconstrictive potentials of selected ergot alkaloids, individually or in paired combinations, using bovine lateral saphenous veins biopsied from fescue-na?ve cattle. Segments (2 to 3 cm) of vein were surgically biopsied from healthy crossbred yearling heifers (n = 22; 330 +/- 8 kg of BW). Veins were trimmed of excess fat and connective tissue, sliced into 2- to 3-mm sections, and suspended in a myograph chamber containing 5 mL of oxygenated Krebs-Henseleit buffer (95% O(2)/5% CO(2); pH = 7.4; 37 degrees C). Increasing doses of ergovaline, lysergic acid, and N-acetylloline individually or in combination were evaluated. Contractile data were normalized as a percentage of the contractile response induced by a reference dose of norepinephrine (1 x 10(- 4) M). Increasing concentrations of lysergic acid did not result in an appreciable contractile response until the addition of 1 x 10(- 4) M lysergic acid. In contrast, the vascular response to increasing concentrations of ergovaline was apparent at 1 x 10(- 8) M and increased to a maximum of 104.2 +/- 6.0% with the addition of 1 x 10(- 4) M ergovaline. The presence of N-acetylloline did not alter the onset or magnitude of vascular response to either lysergic acid or ergovaline. The presence of 1 x 10(- 5) M lysergic acid with increasing concentrations of N-acetylloline and ergovaline generated an increased contractile response during the initial additions compared with the responses of N-acetylloline and ergovaline alone. In the presence of 1 x 10(- 7) M ergovaline, the contractile response increased with increasing concentrations of N-acetylloline and lysergic acid. Neither N-acetylloline nor lysergic acid elicited an intense contractile response individually (maximum contractile responses of 1.9 +/- 0.3% and 22.6 +/- 4.1%, respectively), suggesting that this was the result of the repetitive addition of 1 x 10(- 7) M ergovaline. These data indicate that ergovaline is a more potent vascular toxicant than lysergic acid or N-acetylloline. The contractile responses of the ergovaline and lysergic acid combinations appeared to differ from the individual dose responses. These data support the possibility that an additive alkaloid exposure effect may exist and should be considered during evaluations of ergot alkaloids.  相似文献   

7.
This experiment was conducted to evaluate if consumption of endophyte-infected fescue alters digital circulation in the distal thoracic limb of the horse and to assess if soundness of the hooves of horses is affected by consumption of endophyte-infected fescue. Twelve American Quarter Horses (mean initial BW 459 ± 31 kg), 6 mares and 6 geldings, were used in this 90-d study that comprised high-endophyte (E+) and low-endophyte (E-) treatment groups. Fescue seed was integrated into the E+ diet at a rate sufficient to bring total ergovaline to 200 μg/kg, and endophyte-free fescue seed was incorporated into the E- diet from d 0 to 90. From d 30 to 60, native prairie hay was replaced with high- or low-endophyte fescue hay, bringing total dietary ergovaline to 280 μg/kg (E+) and 18 μg/kg (E-). From d 61 to 90, fescue seed was ground to decrease particle size. On d 0, 30, 60, and 90, Doppler ultrasonography and thermographic imaging were used to measure the diam. of the medial palmar artery, velocity of blood flow, and surface temperature of the hoof as indicators of digital circulation. Lameness examinations were conducted on the same days. There were no consistent treatment differences observed when evaluating measurements of digital circulation. On d 60, horses in the E+ treatment group showed increased hoof sensitivity in the left limb (P = 0.02). These horses tended to have increased hoof sensitivity when both thoracic limbs were averaged (P = 0.06), and they demonstrated increased lameness during longeing (P = 0.08). Data indicated that mares may have increased digital circulation, regardless of treatment, compared with geldings (P ≤ 0.05). Heavier horses also had greater arterial diam., velocity of blood flow, and hoof temperature than lighter BW horses (P ≤ 0.05) on d 30, 60, and 90 at time points that ranged from 90 to 180 min after feeding. Although horses consuming the E+ diet demonstrated increased lameness, especially on d 60, compared with horses consuming the E- diet, the measures of digital circulation did not support the hypothesis that digital circulation was reduced. Because of observed lameness issues, limiting the access of horses to endophyte-infected fescue may be prudent.  相似文献   

8.
Ergot alkaloids present in endophyte-infected tall fescue induce fescue toxicosis in livestock consuming the plant. The lysergic acid (LA) ring structure is a common moiety among the ergot alkaloids. Little is known about the bioavailability of LA because of limitations in available analytical protocols. Thus, a high-performance liquid chromatography procedure was developed to analyze biological matrices for LA. The biological matrices of interest were tall fescue straw and seed, and ruminant feces, urine, and ruminal fluid. Lysergic acid was added to each matrix at a high (150 ng/ml) or low (30 ng/ml) level. Using the high-level addition, the greatest recovery of LA was obtained from ruminal fluid, feces, and urine (P < 0.05), with an average 85.1% recovered. At the low level, a greater recovery of added LA was observed in the ruminal fluid, urine, and feces (82.1%; P < 0.05) than that in the other 2 matrices (62.6%). The limit of quantitation (LOQ) in ruminal fluid and urine was 5.5 and 18.4 ng/ml, respectively. Seed, straw, and feces had higher LOQ (24.2, 14.5, and 36.0 ng/g, respectively). Limit of detection (LOD) was 1.64, 10.80, 4.35, 5.52, and 7.26 ng/g for ruminal fluid, feces, urine, seed, and straw, respectively. To test the assay in vivo, samples of ruminal fluid and urine were collected from steers consuming a diet containing 400 ng of ergovaline/g and 30 ng of LA/g. All matrices sampled resulted in levels above the LOD and LOQ for the assay, indicating that this assay is sufficiently sensitive for use in assessing the bioavailability of LA.  相似文献   

9.
Four wethers and 14 steers (environmentally heat stressed, 32 degrees C, 60% relative humidity) were evaluated for changes in blood flow induced by endophyte-infected tall fescue. Concentration of the ergopeptide ergovaline was used as an indicator of diet toxicity due to the endophytic fungus Acremonium coenophialum. Blood flow to specific tissues was measured using radiolabeled microspheres. Wethers received one of two dietary treatments for 30 d before determination of tissue blood flow: 1) a low-endophyte diet (less than .05 ppm ergovaline) or 2) a high-endophyte (1.18 ppm ergovaline) diet. Blood flows to the adrenal glands and skin covering the inner hind leg were less (P less than .10) in wethers consuming the high-endophyte diet than in those consuming the low-endophyte diet. Tissue blood flows in steers were determined on two occasions: 1) after steers had received a low- (less than .01 ppm ergovaline) or high-endophyte (.52 ppm ergovaline) fescue diet for 14 d and 2) 8 d after steers had been switched to a common, fescue-free diet. Blood flows to skin covering the ribs, cerebellum of the brain, duodenum, and colon were less (P less than .10) in steers consuming the high-endophyte diet. However, 8 d after consuming fescue-free diets, steers that had previously consumed the high-endophyte diet had greater (P = .08) blood flow to the coronary bands of the front hooves than steers that had consumed the low-endophyte diet. Blood flows to all other tissues were similar between treatments. We inferred from these experiments that the toxin(s) associated with endophyte-infected tall fescue caused decreased blood flow to peripheral and core body tissues and that this effect was abated within 8 d of removing the toxin(s).  相似文献   

10.
Ergot alkaloids can interact with several serotonin (5-hydroxytryptamine [5-HT]) receptors provoking many physiological responses. However, it is unknown whether ergot alkaloid consumption influences 5-HT or its metabolites. Thus, two experiments were performed to evaluate the effect of ergot alkaloid feeding on 5-HT metabolism. In exp. 1, 12 Holstein steers (260 ± 3 kg body weight [BW]) were used in a completely randomized design. The treatments were the dietary concentration of ergovaline: 0, 0.862, and 1.282 mg/kg of diet. The steers were fed ad libitum, kept in light and temperature cycles mimicking the summer, and had blood sampled before and 15 d after receiving the treatments. The consumption of ergot alkaloids provoked a linear decrease (P = 0.004) in serum 5-HT. However, serum 5-hydroxytryptophan and 5-hydroxyindoleacetic acid did not change (P > 0.05) between treatments. In exp. 2, four ruminally cannulated Holstein steers (318 ± 3 kg BW) were used in a 4 × 4 Latin square design to examine the difference between seed sources on 5-HT metabolism. Treatments were: control—tall fescue seeds free of ergovaline, KY 32 seeds (L42-16-2K32); 5Way—endophyte-infected seeds, 5 way (L152-11-1739); KY31—endophyte-infected seeds, KY 31 (M164-16-SOS); and Millennium—endophyte-infected seeds, 3rd Millennium (L108-11-76). The endophyte-infected seed treatments were all adjusted to provide an ergovaline dosage of 15 μg/kg BW. The basal diet provided 1.5-fold the net energy requirement for maintenance. The seed treatments were dosed directly into the rumen before feeding. The experiment lasted 84 d and was divided into four periods. In each period, the steers received seeds for 7 d followed by a 14-d washout. Blood samples were collected on day 0 (baseline) and day 7 for evaluating the treatment response in each period. A 24 h urine collection was performed on day 7. Similar to exp. 1, serum 5-HT decreased (P = 0.008) with the consumption of all endophyte-infected seed treatments. However, there was no difference (P > 0.05) between the infected seeds. The urinary excretion of 5-hydroxyindoleacetic acid in the urine was not affected (P > 0.05) by the presence of ergot alkaloids. In conclusion, the consumption of ergot alkaloids decreases serum 5-HT with no difference between the source of endophyte-infected seeds in the bovine.  相似文献   

11.
Ergot alkaloids cause fescue toxicosis when livestock graze endophyte-infected tall fescue. It is generally accepted that ergovaline is the toxic component of endophyte-infected tall fescue, but there is no direct evidence to support this hypothesis. The objective of this study was to examine relative and potential transport of ergoline and ergopeptine alkaloids across isolated gastric tissues in vitro. Sheep ruminal and omasal tissues were surgically removed and placed in parabiotic chambers. Equimolar concentrations of lysergic acid, lysergol, ergonovine, ergotamine, and ergocryptine were added to a Kreb's Ringer phosphate (KRP) solution on the mucosal side of the tissue. Tissue was incubated in near-physiological conditions for 240 min. Samples were taken from KRP on the serosal side of the chambers at times 0, 30, 60, 120, 180, and 240 min and analyzed for ergot alkaloids by competitive ELISA. The serosal KRP remaining after incubation was freeze-dried and the alkaloid species quantified by HPLC. The area of ruminal and omasal tissues was measured and the potential transportable alkaloids calculated by multiplying the moles of transported alkaloids per square centimeter of each tissue type by the surface area of the tissue. Studies were conducted to compare alkaloid transport in reticular, ruminal, and omasal tissues and to determine whether transport was active or passive. Ruminal tissue had greater ergot alkaloid transport potential than omasal tissue (85 vs 60 mmol) because of a larger surface area. The ruminal posterior dorsal sac had the greatest potential for alkaloid transport, but the other ruminal tissues were not different from one another. Alkaloid transport was less among reticular tissues than among ruminal tissues. Transport of alkaloids seemed to be an active process. The alkaloids with greatest transport potential were lysergic acid and lysergol. Ergopeptine alkaloids tended to pass across omasal tissues in greater quantities than across ruminal tissues, but their transport was minimal compared to lysergic acid and lysergol.  相似文献   

12.
The objective of this study was to determine whether consumption of tall fescue seed which contained high levels of ergovaline would affect post-exercise recovery of horses subjected to an anaerobic exercise test. Ten Quarter horses were separated into two groups and fed alfalfa hay, commercial sweet feed, and either endophyte-infected (E+) or endophyte-free (E−) ground tall fescue seed. Diets contained 11.8% seed, which resulted in 459 ppb of ergovaline for the E+ diet. During the first 28 days, horses in group A received E+ and group B received E−. Diets were reversed during the next 28 days (crossover design). Horses were ridden for 5 days per week. On day 14, 28 (period 1), 42, and 56 (period 2), they were subjected to a standardized exercise test (SET) that consisted of 41 turns in 4 minutes and was designed to raise the horse’s heart rate (HR) beyond the anaerobic threshold (150 bpm). There was a horse effect (P < .05) on post-SET respiration rate, HR, and post-exercise whole blood lactate level, but not rectal temperature (RT). For these variables or period effects, there was no horse × treatment, period × treatment, or period × horse interactions (P < .05). Treatment had no effect on whole blood lactate level, RT, or HR at any time measured. Respiration rate did not vary by treatment at rest or 1 minute after SET but was higher for the E+ treatment at 5 and 10 minutes after SET (P < .005). Consumption of diets that averaged 450 ppb of ergovaline caused the horses expend more respiratory effort in an attempt to recover to resting RT.  相似文献   

13.
Ergot alkaloids produced by the endophyte (Neotyphodium coenophialum) associated with tall fescue (Lolium arundinaceum) are implicated in the clinical signs of fescue toxicosis. These compounds were hypothesized to correspondingly affect foregut vasculature. The objective of this study was to determine vasoconstrictive potentials of ergovaline, ergotamine, ergocryptine, ergocristine, ergonovine, ergocornine, and lysergic acid on right ruminal artery and vein. Segments of right ruminal artery and vein were collected from the ventral coronary groove of predominantly Angus heifers (n = 10) shortly after slaughter and placed in a modified Krebs-Henseleit buffer on ice. Vessels were cleaned of excess connective tissue and fat, sliced into 2- to 3-mm segments, and suspended in a multi-myograph chamber with 5 mL of continuously oxygenated Krebs-Henseleit buffer (95%O(2)/5% CO(2); pH 7.4; 37°C). Arteries and veins were equilibrated to 1.0 and 0.5 g, respectively, for 90 min followed by the reference addition of 120 mM KCl. Increasing concentrations of each alkaloid were added to the respective chamber every 15 min after buffer replacement. Data were normalized as a percentage of the contractile response induced by KCl. Alkaloid (P < 0.0001), concentration (P < 0.0001), and vessel type (artery or vein; P = 0.004) affected contractility. No arterial response was observed until 10(-6) M for ergovaline and ergotamine; 10(-5) M for ergocryptine, ergocornine, and ergonovine; and 10(-4) M for ergocristine. Lysergic acid did not induce a contractile response in the ruminal artery. No venous contractile response was observed until concentrations of 10(-6) M for ergovaline, 10(-5) M for ergotamine, and 10(-4) M for ergocryptine and ergocristine were achieved. Lysergic acid, ergonovine, and ergocornine did not induce a contractile response in the ruminal vein. A greater arterial maximal response was observed for ergovaline (P < 0.0001), whereas the arterial and venous responses were not different for ergotamine (P = 0.16), ergocryptine (P = 0.218), and ergocristine (P = 0.425). These results indicate that ergot alkaloids associated with toxic endophyte-infected tall fescue are vasoactive and can potentially alter arterial blood supply and venous drainage from the bovine foregut.  相似文献   

14.
Livestock grazing endophyte (Acremonium coenophialum Morgan-Jones and Gams)-infected tall fescue (Festuca arundinacea Schreb.) perform poorly due to tall fescue toxicosis, especially when animals are under heat stress. In order to determine whether thiamin promotes recovery from tall fescue toxicosis, 1 or 0 g of thiamin per day, as mononitrate, was fed orally to adult Angus (Bos taurus) cows (380 +/- 8 kg) grazing either tall fescue pasture with and without endophyte or alfalfa (Medicago sativa L.). A tethered grazing system employing a split-plot design was used to estimate intake and components of ingestive behavior. No significant differences attributable to thiamin supplements were seen in rates of intake and biting, grazing time and intake per bite when cows grazed endophyte-infected tall fescue during the first 4 d of exposure. When cows grazed endophyte-infected (greater than 95%) tall fescue with 2,091 micrograms/g loline alkaloids after 4 d of exposure, the untreated animals ingested herbage dry matter (DM) at 1.19 kg/h, whereas the cows receiving thiamin ate 1.57 kg/h (P less than .05). Cattle achieved these rates of DM intake by forming bites of 1.0 and 1.2 g DM at 24 and 26 bites/min when treated with 0 and 1 g of thiamin per day, respectively. Thiamin supplements had no effect on ingestive behavior of cows grazing endophyte-free tall fescue or alfalfa after exposure to these forages for 4 d. Responses to thiamin generally were greater when cattle grazing endophyte-infected tall fescue were exposed to heat stress. Oral thiamin supplementation may alleviate tall fescue toxicosis of beef cattle during warm weather.  相似文献   

15.
Ergot and pyrrolizidine alkaloids, either extracted from endophyte-infected tall fescue, synthesized, or purchased commercially, were evaluated in cultured cells to estimate their binding to the D2 dopamine receptor and subsequent effects on cyclic AMP production in GH4ZR7 cells, transfected with a rat D2 dopamine receptor. Ergopeptide alkaloid (alpha-ergocryptine, bromocryptine, ergotamine tartrate, and ergovaline) inhibition of the binding of the D2-specific radioligand, [3H]YM-09151-2, exhibited inhibition constants (K(I)) in the nanomolar range, whereas dopamine was less potent (micromolar). The lysergic acid amides (ergine and ergonovine) were 1/100th as potent as the ergopeptide alkaloids. Ergovaline and ergotamine tartrate were equally effective in inhibiting vasoactive intestinal peptide (VIP)-stimulated cyclic AMP production, with consistent nanomolar effective concentration (EC50) values. The remaining ergopeptide alkaloids (alpha-ergocryptine and bromocryptine), lysergic acid amides (ergonovine and ergine), and dopamine were 1/100th as potent. Two representative pyrrolizidines, N-formylloline and N-acetylloline, exhibited no binding activity at the D2 dopamine receptor or effects on the cyclic AMP system within the concentration ranges of nanomolar to millimolar. Our results indicate that the commercially available ergot alkaloids ergotamine tartrate and ergonovine may be used interchangeably in the D2 dopamine receptor system to simulate the effects of extracted ergovaline and ergine and to examine responses in receptor binding and the inhibition of cyclic AMP.  相似文献   

16.
The varieties of perennial ryegrass (Lolium perenne) infected with the endophytic fungus Neotiphodium lolii contain several classes of toxic alkaloids, including ergopeptide alkaloids and lolitrem alkaloids. Lolitrem B, a potent tremorgen, is generally considered to be the predominant alkaloid in endophyte-infected perennial ryegrass. Ergovaline, a vasoconstrictor normally associated with endophyte-infected tall fescue (Festuca arudinacea), is also present in endophyte infected perennial ryegrass. Clinical signs of animals ingesting endophyte-infected perennial ryegrass are consistent with the presence of lolitrem B. However, clinical signs normally associated with ergovaline poisoning are not usually observed in animals ingesting endophyte-infected perennial ryegrass. A survey was conducted to quantitate both lolitrem B and ergovaline in 459 perennial ryegrass straw samples received at the Oregon State University College of Veterinary Medicine. Samples were analyzed for each alkaloid using separate high-performance liquid chromatography analyses. A strong positive correlation between the 2 alkaloids (r2 = 0.7335) was observed, especially in the samples containing <3,000 ppb (ng/g) lolitrem B. The threshold levels above which clinical signs typically occur are 2,000 ppb lolitrem B and 300-400 ppb ergovaline. All of the samples analyzed contained <425 ppb ergovaline.  相似文献   

17.
A relatively simple and inexpensive thin-layer chromatographic (TLC) method is described for the detection and semiquantitative measurement of ergovaline in leaf sheaths of tall fescue (Festuca arundinacea). Samples were finely ground and extracted with methanol. The extracts were filtered and the methanol was evaporated. The aqueous residue was extracted with hexane, followed by chloroform at pH 9. The chloroform extract was concentrated and further purified on a preparative silica gel TLC plate, developed with toluene/ethyl acetate/acetonitrile (50:10:40). The ergovaline band was scraped and eluted with methanol. The eluant was concentrated and an aliquot was applied to a silica gel TLC plate. The plate was developed successively with chloroform/acetone/acetic acid (90:10:5) and chloroform/ethanol (9:1). Ergovaline was visualized with p-dimethylaminobenzaldehyde and sulfuric acid. Semiquantitation of ergovaline was achieved by comparison with a known standard of ergotamine, which was shown to have the same Rf as ergovaline in this system. Spike recovery of ergotamine averaged 60%, with a limit of detection of 200 microg/kg of dry tall fescue leaf sheaths. The method was applied to 15 tall fescue samples with varying degrees of fungal infection, and ergovaline was identified in all contaminated samples with endophyte infection above 15%. Thin-layer chromatography may be also applicable for tall fescue seed, where the ergovaline content is usually higher and the amount of interfering pigments is much lower.  相似文献   

18.
Reduced pregnancy rates often occur in ruminants grazing endophyte-infected (EI) tall fescue. The objectives were to characterize basal and oxytocin-induced PGF concentrations in serum and reproductive function in ewes fed tall fescue seed and to determine whether addition of fish meal (FM) to a diet of EI fescue would alter PGF production. Ewes were fed a diet with novel or non-toxic endophyte-infected (NE) or EI tall fescue seed containing either corn gluten meal (CG) or FM. Serum concentrations of prolactin, a measure of severity of fescue toxins, were reduced in ewes fed EI compared with NE forage seed (forage × day, P < 0.02) and were greater in NEFM than NECG-fed ewes (P < 0.03). Size and number of corpora lutea (CL), determined by trans-rectal ultrasonography, were similar between diets (P > 0.10). Serum concentrations of progesterone were reduced in ewes with two CL fed EI compared with NE seed (forage × CL number × day, P < 0.001). Oxytocin-induced PGFM concentrations during the luteal phase were determined as a measure of uterine function. On the day of oxytocin administration, peak plasma concentrations of PGFM were reduced in EI compared with NE-fed ewes (forage × time, P < 0.003), but FM did not influence PGFM concentrations. Estrous cycle length was more variable in EI than NE-fed ewes. There appears to be some asynchrony between NE and EI-fed ewes leading to changes in uterine responsiveness to oxytocin. Inclusion of FM did not alter uterine responsiveness to oxytocin.  相似文献   

19.
Lambs exposed to a heat-stressed environment (33 degrees C, 50% relative humidity) were used in three experiments to determine whether ergovaline (EV) is the primary toxin involved in fescue toxicosis. The first study evaluated the effects of feeding diets containing increasing levels of endophyte-infected tall fescue seed (E+) and decreasing levels of endophyte-free tall fescue seed (E-). The second and third study evaluated the response to a diet that contained synthetic EV added to an E- diet and the response to a diet containing endophyte-infected ryegrass seed (R+) with an elevated concentration of EV. In Exp. 1, lambs were fed diets of: 1) 10% E- and 0% E+, 2) 5% E- and 5% E+, or 3) 0% E- and 10% E+. Increasing the percentage of E+ in the diet resulted in a linear decrease (P < 0.01) in feed intake (as-fed basis), skin temperature, thermocirculation index (TCI), and serum prolactin. Body weight gain also decreased (P < 0.06). Respiratory rate and core body temperature were not affected by the 5 or 10% E+ diets. In Exp. 2, lambs were fed diets that contained: 1) 10% E-, 2) 10% E- with synthetic EV added at a level equivalent to the 10% E+ diet, or 3) 10% E+. Feed intake (as-fed basis), body weight gain, and skin temperature did not differ for lambs fed the E- and EV diets. The EV diet elicited a decrease (P < 0.05) in TCI and prolactin compared with the E- diet. The TCI for lambs fed EV did not differ (P > 0.10) from the E+ lambs; however, serum prolactin was lower (P < 0.05) for lambs on the E+ diet than for those fed EV. Core body temperature was not affected (P > 0.10) by feeding EV or E+ fescue seed in Exp. 2. In Exp. 3, lambs were fed diets that contained: 1) 10% E-, 2) 3.24% R+ and 6.76% E-, which added an equivalent amount of EV to E+ diets but reduced concentrations of other ergot alkaloids, or 3) 10% E+. Lambs fed the E+ diet and maintained at 33 degrees C had lowered feed intake (as-fed basis), skin temperature, and TCI compared with lambs fed the E- or R+ diets (P < 0.05). Lambs fed the E+ diet had increased rectal temperatures and lowered serum prolactin compared with lambs on the R+ diet (P < 0.05). Lambs on the R+ diet had a greater rectal temperature and lower serum prolactin than lambs on the E- diet (P < 0.05). These results suggest that EV is a fescue toxin; however, other alkaloids might work synergistically with EV, causing the full expression of fescue toxicosis.  相似文献   

20.
Fescue toxicosis is caused by consumption of toxins produced by an endophytic fungus, Neotyphodium coenophialum, in tall fescue [Lolium arundinaceum (Schreb.) Darbysh]. Microarray analysis was used to identify shifts in genetic expression associated with the affected physiological processes to identify potential targets for future pharmacological/toxicological intervention. Male rats (n = 24) were implanted with temperature transmitters, which measure core temperature every 5 min. After an 8-d recovery, the rats were fed an endophyte-free diet for 5 d. During the following 5-d treatment period, rats were fed either an endophyte-free or an endophyte-infected (91.5 microg of ergovaline.kg of BW(-1).d(-1)) diet. At the end of treatment, rats were euthanized and a sample of the liver was obtained. Feed conversion efficiency was calculated for both treatment groups. Serum prolactin concentrations were measured using ELISA. Liver tissue RNA was reverse transcribed and hybridized to an oligonucleotide microarray chip. Microarray data were analyzed using a 2-step ANOVA model and validated by quantitative real-time PCR. Significant reductions in mean core temperature, feed intake, feed conversion efficiency, BW, liver weight per unit of BW, and serum prolactin concentrations were observed in endophyte-infected rats. There was downregulation (P < 0.05) of various genes associated with energy metabolism, growth and development, and antioxidant protection, as well as an upregulation of genes associated with gluconeogenesis, detoxification, and biotransformation. This study demonstrated that even short-term exposure of rats to tall fescue endophytic toxins under thermoneutral conditions can result in physiological responses associated with altered gene expression within the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号