首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
本文用积分作近似计算,导出了均匀坡条件下微灌毛管中孔水头比解析式,提出了由水头比表达的流量(和水头)相对偏差关系式,以及用中孔水头比公式进行微灌毛管水力计算的步骤,文中通过算例以演示计算过程,并验证本文方法的精度。  相似文献   

2.
为了探明安装插入式灌水器的毛管局部水头损失计算方法及其在沿程水头损失中所占的比例,从水力学基本原理出发,分析了毛管局部水头损失与其影响因素之间的关系,推导出毛管局部水头损失及占沿程水头损失比例的计算公式,并进行了讨论分析。结果表明:毛管局部水头损失随着毛管内径的增大而减小,随着灌水器插头断面面积、灌水器流量和灌水器个数...  相似文献   

3.
滴头插入对滴灌毛管水头损失影响试验研究   总被引:1,自引:0,他引:1  
为了提高滴灌毛管水力设计精度,通过试验研究了因滴头插入引起的毛管局部水头损失,根据试验现象分析了毛管局部水头损失占沿程水头损失比例hj/hf、毛管局部水头损失系数ξ,与滴头类型、滴头间距以及雷诺数之间的关系.结果表明:对于不同的滴头和滴头间距,毛管局部水头损失占沿程水头损失比例hj/hf差别较大.在相同间距下,迷宫流道滴头插入导致的hj/hf要大于压力补偿式滴头;对于同一类型滴头,滴头间距越小,局部水头损失越明显,hj/hf越大,且均大于微灌工程技术规范规定;若按规范取沿程水头损失的0.1~0.2计算局部水头损失,将导致滴灌工程设计中水头损失计算偏小.不同类型的滴头,毛管局部水头损失系数差异较大,其中迷宫流道滴头ξ基本在0.6以上,而压力补偿式滴头ξ为0.3~0.5,且ξ随滴头间距减小而增大、随雷诺数增大而减小,雷诺数越大,ξ变化越趋于平稳.通过对试验数据进行回归与统计分析,提出了毛管局部水头损失系数计算公式,相关系数R2为0.953.  相似文献   

4.
本文提出了在滴灌毛管设计中在计算毛管沿程水头损失时应考虑流态的影响,根据作者的计算,在利用哈—威公式计算滴灌中毛管水头损失时有一定出入,误差可达25%以上。作者还认为,毛管局部水头损失仅为沿程水头损失的3%,故计算时局部水头损失可忽略不计。  相似文献   

5.
本文研究了田间管网优化设计中支、毛管允许压力偏差水头分配的问题。在平地上布置微灌系统时,得出了支、毛管的最优分配比不是一个定值,而是随支管上毛管的根数和支、毛管长度的变化而变化,改进了美国J·凯勒和D·喀麦林提出的只给一个固定常数的方法,对节约管网投资有一定的实际意义。  相似文献   

6.
地下滴灌中毛管水力计算的数学模型与试验   总被引:2,自引:0,他引:2  
李刚  王晓愚  白丹 《排灌机械》2011,29(1):87-92
为了研究地下滴灌毛管水力特性与水力计算方法,用较短毛管并通过毛管末端泄流的方式,在室内利用地下滴灌毛管水力要素试验测试系统,分别测试了2种滴灌管在轻黏土中毛管上每个滴头的流量和毛管首末两端的压力水头.结果表明:在灌水持续2min之后,地下滴灌毛管上各滴头流量均趋于恒定值;在稳定的压力水头差下,滴头流量沿程依次减少.根据毛管沿程压力变化规律,结合考虑土壤质地、土壤体积质量和初始含水率的地下滴灌滴头流量计算公式,提出了毛管水力计算数学模型.利用该模型计算的滴头流量值与其实测值之间的相对误差在1.0%左右;并计算出考虑毛管局部水头损失的加大系数约为1.20.将该模型推广应用于一般情况下的地下滴灌毛管水力计算,可求解均匀坡、均质土、均匀管径与滴头等间距时的地下滴灌毛管水力特征值.  相似文献   

7.
对DN32×20T型三通管(多孔出流支管局部水头损失主要发生位置)进行了局部水头损失试验研究,结果表明光滑紊流区内主管至侧管流向局部水头损失系数1随雷诺数的增大而变化很小,随分流比的增大而增大;而主管至直管流向局部水头损失系数2随雷诺数的增大而减小,随分流比的增大先减小而后增大;并给出了局部水头损失系数1与2的经验公式。与实测值对比得出:提出的沿支管方向毛管进口压强水头经验计算公式具有较高的计算精度;最后,利用本文提出的局部水头损失系数经验公式分析了等距、等流量多孔出流支管局部水头损失与沿程水头损失的比值hj/hf的变化规律,并给出了扩大系数K的经验公式。  相似文献   

8.
[例4]表2.9中列出的是一条非均匀坡度上的单向毛管的有关条件,由连接件造成的局部压力水头损失不明显,沿毛管的坡度条件与表2.4中的坡度5相同,该毛管的内径应该为多少?毛管的操作压力水头是多少?表29例4的有关条件解:根据MIDESIGNERVZ.0的要求,选择的最小毛管内径值和最大内径值分别为12rum和21nun,当毛管的人口安置在坡度的左边时,在一台微机上运行了MIDESIGNERVZ.0后没有得到计算结果,当毛管的入口安置在坡度的右边时,MIDESIGNERVZ.0计算出的毛管内径为196rum,毛管操作压力水头为684m,图2.22所示的是毛…  相似文献   

9.
坡地上灌水器流量均等微灌双向毛管设计方法   总被引:1,自引:0,他引:1  
根据最佳支管位置位于左右两侧毛管最小压力水头相等处的定义,结合能量廓线法推导出确定最佳支管位置的简易计算方法,并提出一种满足允许的最大压力水头和最小压力水头的微灌系统双向毛管设计方法.通过对多种存在条件的模拟计算,确定了最佳支管位置计算公式的最终形式、适用条件及其优化试算方式.利用该方法,能简便快速地设计各种坡地条件下微灌系统(灌水器流量均等)双向毛管.  相似文献   

10.
滴灌中水阻管的作用是消除支管传给各毛管首端的多余压力,即由支管末端起到第i排毛管进口之间支管的水头损失与地形变差(支管返坡布置为正,顺坡布置为负)的代数和。毛管进口处安装水阻管以后,它所增加的水头损失应等于毛管首端的多余压力H,即  相似文献   

11.
我国温室产业近年来发展迅猛,由于面积、种植结构与密度等与大田差异较大,沿用大田滴灌系统的设计方法已不适宜,需要根据温室的具体条件确定设计方法。根据我国普通单栋温室情况,通过室内试验研究分析了入口压力、支管长度、毛管间距3个因素对滴灌系统中支管沿程压力分布的影响。结果表明:支管沿程压力分布的均匀性随支管长度的增加、毛管间距和首部压力的减小而降低。结合滴头的水力特性参数得出支管上的最大允许压力偏差为30.85%。毛管间距0.6、0.9和1.2m条件下,满足水力偏差要求的单栋温室支管最大铺设长度分别为20、40和60m。运用量纲分析方法将影响支管水头损失的基本量导出为3个无量纲量υd/ν、υ2/(g d)和L d/s2,通过多元回归建立支管水头损失的经验预测模型(R2=92.4%)。分析了支管能坡曲线的函数形式,回归得到了支管水头损失比和沿程压力分布模型。以上模型预测值与实测数据拟合效果良好,可用于温室滴灌系统水力计算及规划设计。  相似文献   

12.
配水管网水力计算新方法探讨   总被引:1,自引:0,他引:1  
提出一种对两类配水管网基础方程分别处理,管段流量和节点水压同步校正的管网平差方法.该方法无需初始分配流量,不计闭合环信息,求解过程简单,收敛性好.计算初始假定流向,使得利用计算机进行管网水力计算更加方便易行.据此编写了电算程序,并通过多水源供水管网水力计算实例验证其可行性及精确性.  相似文献   

13.
微灌用网式过滤器局部水头损失的   总被引:6,自引:0,他引:6  
在对网式过滤器进行了系统的水力性能试验基础上,分析了堵塞对过滤器局部水头损失的影响,指出过滤器的局部水头损失变化与过滤流量、过滤时间、水源含沙量有关,这些因素主要决定了过滤元件堵塞程度和变化快慢,即有效过水面积减小的频率,从而决定了额外局部水头损失增加的快慢程度。并提出了在含沙水条件下计算局部水头损失的经验关系式,指出过滤器在实际运用中,应保证压降曲线不发生急剧上升,并可以根据不同水质条件,确定其冲洗时的压差允许值和冲洗间隔时间。  相似文献   

14.
【目的】探究支管射流三通与毛管射流三通组合下灌水系统的水力性能。【方法】根据3种支管射流三通进口压力水头(10、12、14 m)和3种滴灌带单侧铺设长度(60、70、80 m)设置9组试验,建立了射流三通水头振幅、脉冲频率、进口流量与水头损失的非线性拟合关系式,并分析了不同射流三通组合对灌水系统灌水均匀度的影响。【结果】水头振幅与水头损失、脉冲频率与水头损失均呈对数函数关系,流量与水头损失呈线性函数关系,且相对误差均小于1%;当支管毛管均采用射流三通时,灌水系统的灌水均匀系数提高了0.43%~0.92%,流量偏差率降低了5.32%~6.68%。【结论】可选择能够提高灌水均匀度的支管射流三通与毛管射流三通的最佳组合,并精确地预测3个模型下灌水系统水头损失的变化规律。  相似文献   

15.
Numerical Analysis to Solve the Hydraulics of Trickle Irrigation Units   总被引:3,自引:0,他引:3  
A model to solve the hydraulics of trickleirrigation units is developed in thisstudy. This model is based on utilizingNewton Raphson technique. The modelconverts laterals into equivalent outletsthrough utilizing a simple power relationbetween inlet lateral discharge andhydraulic head. This relation is obtainedthrough least squares analysis betweeninlet lateral discharge and hydraulic head. This study showed that this relation withonly two coefficients is sufficient todescribe the relation between inlet lateraldischarge and hydraulic head. Based onthis relation, the model converts manifoldlines into equivalent laterals and solvestheir hydraulics by Newton Raphsontechnique. After that solution, the modelevaluates trickle irrigation units byestimating statistical uniformity andChristiansen uniformity coefficients andchecks the solution obtained throughforward step method for each lateral. Several numerical examples for utilizingthe model are presented in this paper.Palestine Authority  相似文献   

16.
【目的】优化灌溉系统中分水口轮灌分组的灌溉制度,在满足流量要求的条件下节约电能。【方法】提出了在考虑水头损失时不同分水口状态与管道进口压力的关系模型,该模型利用分水口开关0,1状态作为自变量,从管道末端起利用推导的递推公式求出管道进水口的等效水头损失系数。依据该模型,在定流量分组轮灌优化中得到为使分组轮灌功率最小的目标函数。利用遗传算法对上述问题进行了优化求解,并给出了编码方案。【结果】在分水口等间隔布置时,轮灌分组按轮灌分组数等间隔安排所需功率最小,优化后的水头损失系数可以减小到没有优化前的0.772倍。【结论】本研究模型不仅适用于恒定流量的组合优化,也可应用于不同分水口的所需水量不同的随机灌溉以及恒压供水的优化中。  相似文献   

17.
为了进一步探索低压微灌多孔软管的水力性能,采用室内试验方法,研究了低压(1~5m)条件下多孔软管的出流规律、沿程压力分布规律以及水头损失分布规律,结果表明,在低压条件下,多孔软管的水力特性受进口压力、出流孔孔距、铺设长度等因素影响,且受到管壁塑性变形的影响;沿程出流表现出单峰性,随管长及孔距增大,最大值点前移,随压力增大,沿程出流更为均匀;沿程压力一直减少,前半段减幅约为后半段的4倍,且随孔距增大,递减幅度变小;水头损失随孔距减小和压力增大而减小,且进口压力为1~3m时的减幅与4~5m时的比值在管长为40m时,其值约为管长为30m时的2倍。研究结果可为低压微灌技术的完善和发展提供理论依据。  相似文献   

18.
涌泉根灌灌水器螺纹流道水力特性研究   总被引:2,自引:0,他引:2  
针对涌泉根灌灌水原理,提出了一种新型的螺纹式涌泉根灌灌水器,并运用Pro/E三维造型、CFD数值模拟、快速成形及试验验证等方法对该新型灌水器的水力性能进行了研究,得到了不同长度流道的压力流量关系曲线和内部压力、速度分布图。结果表明,该流道水力性能良好,流态指数约为0.5,处于紊流状态,消能形式以局部水头损失为主,试验验...  相似文献   

19.
【目的】为了满足入机流量需求,圆形喷灌机在实际应用中常用多台井泵并联供水,在喷灌机入机处安置井泵汇流装置,以调节流量和稳定水压。【方法】通过设计两井泵汇流装置,开展了汇流装置水力性能试验及数值模拟,研究了雷诺数和两进口汇流比(较小流量与较大流量之比值)对装置水力性能的影响。【结果】汇流装置的总水力损失模拟值与试验值较吻合,相对误差范围为0.5%~3.3%,且随雷诺数和汇流比均呈二次函数关系,当汇流比为0.8左右时,装置的总水力损失最小;两进口对应的局部阻力系数均不随雷诺数产生变化,但随汇流比变化趋势相反,当汇流比为0.2~1.0之间时,较大流量进口的局部阻力系数为1.16~1.31,较小流量进口的局部阻力系数为1.31~4.22。【结论】两井泵汇流装置结构及水力性能可用于圆形喷灌机灌溉工程设计和运行管理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号