首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aerobic incubations to estimate net nitrogen (N) mineralization typically involve periodic leaching of soil with 0.01 M calcium chloride (CaCl2), so as to remove mineral N that would otherwise be subject to immobilization. A study was conducted to evaluate the accuracy of leaching for analysis of exchangeable ammonium (NH4+)-N and nitrate + nitrite (NO3?+ NO2)-N, relative to conventional extractions using 2 M potassium chloride (KCl). Ten air-dried soils were used, five each from Illinois and Brazil, that had been amended with NH4+-N (1 g kg?1) and NO3-N (0.6 g kg?1). Both methods were in good agreement for inorganic N analysis of the Brazilian Oxisols, whereas leaching was significantly lower by 12–48% in recovering exchangeable NH4+-N from Illinois Alfisols, Mollisols, and Histosols. The potential for underestimating net N mineralization was confirmed by a 12-wk incubation experiment showing 9–86% of mineral N recoveries from three temperate soils as exchangeable NH4+.  相似文献   

2.
Abstract

Heavy‐metal inhibition of nitrification in soils treated with reformulated nitrapyrin was investigated. Clarion and Okoboji soils were treated with ammonium sulfate [(NH4)2SO4] and a nitrification inhibitor. Copper(II) (Cu), Zinc(II) (Zn), Cadmium(II) (Cd), or Lead(II) (Pb) were added to each soil. A first‐order equation was used to calculate the maximum nitrification rate (K max), duration of lag period (t′), period of maximum nitrification (Δt), and the termination period of nitrification (t s). In the Clarion soil, the K max decreased from 12 mg kg?1 d?1 without the nitrification inhibitor to 4, 0.25, 0.86, and 0.27 mg kg?1 d?1, respectively, when the inhibitor and Cu, Zn, Pb, or Cd were applied. In the Okoboji soil, K max decreased from 22 mg kg?1 d?1 with no inhibitor to 6, 3, 4, and 2 mg kg?1 d?1, respectively, when an inhibitor and Cu, Zn, Pb, or Cd were added. The t′ varied from 8 to 25 d in the Clarion soil and from 5 to 25 d in the Okoboji soil, due to addition of Cu, Zn, Pb, or Cd and the inhibitor.  相似文献   

3.
The uptake of N by ryegrass grown in pot culture on a range of soils differing widely in content of nonexchangeable NH4-N (topsoils: 117 to 354 mg kg?1 soil; subsoils: 117 to 270 mg kg?1 soil) was measured to indicate whether the amounts of NH4-N released from clay minerals were correlated with soil NH4-N. After two cuts soil analysis revealed that the amounts of mobilized nonexchangeable NH4-N were between 3.5 and 25.2 mg kg?1 from topsoils and between 0 and 8.2 mg kg?1 from subsoils. There was no correlation between soil nonexchangeable NH4-N content and release. The NH4-N extracted with 1 N HCl and the actual N uptake of the plants correlated highly significant. Assuming that the whole of the NH4-N released was taken up by ryegrass, NH4-N accounted for 11.2 to 75.0% of total N uptake from topsoils and 0 to 37.3% from subsoils. The release of nonexchangeable NH4-N was increased by the application of nitrate.  相似文献   

4.
Accurate estimation of the available potassium (K+) supplied by calcareous soils in arid and semi‐arid regions is becoming more important. Exchangeable K+, determined by ammonium acetate (NH4OAc), might not be the best predictor of the soil K+ available to crops in soils containing micaceous minerals. The effectiveness of different extraction methods for the prediction of K‐supplying capacities and quantity–intensity relationships was studied in 10 calcareous soils in western Iran. Total K+ uptake by wheat grown in the greenhouse was used to measure plant‐available soil K+. The following methods extracted increasingly higher average amounts of soil K+: 0.025 M H2SO4 (45 mg K+ kg?1), 1 M NaCl (92 mg K+ kg?1), 0.01 M CaCl2 (104 mg K+ kg?1), 0.1 M BaCl2 (126 mg K+ kg?1), and 1 M NH4OAc (312 mg K+ kg?1). Potassium extracted by 0.01 M CaCl2, 1 M NaCl, 0.1 M BaCl2, and 0.025 M H2SO4 showed higher correlation with K+ uptake by the crop (P < 0.01) than did NH4OAc (P < 0.05), which is used to extract K+ in the soils of the studied area. There were significant correlations among exchangeable K+ adsorbed on the planar surfaces of soils (labile K+) and K+ plant uptake and K+ extracted by all extractants. It would appear that both 0.01 M CaCl2 and 1 M NaCl extractants and labile K+ may provide the most useful prediction of K+ uptake by plants in these calcareous soils containing micaceous minerals.  相似文献   

5.
Leaching of nutrients in soil can change the surface and groundwater quality. The present study aimed at investigating the effects of raw and ammonium (NH4+)-enriched zeolite on nitrogen leaching and wheat yields in sandy loam and clay loam soils. The treatments were one level of nitrogen; Z0: (100 kg (N) ha?1) as urea, two levels of raw zeolite; Z1:(0.5 g kg?1 + 100 kg ha?1) and Z2: (1 g kg?1 + 100 kg ha?1), and two levels of NH4+-enriched zeolite; Z3: (0.5 g kg?1 + 80 kg ha?1) and Z4: (1 g kg?1 + 60 kg ha?1). Wheat grains were sown in pots and, after each irrigation event, the leachates were collected and their nitrate (NO3?) and NH4+ contents were determined. The grain yield and the total N in plants were measured after four months of wheat growth. The results indicated that the amounts of NH4+ and NO3? leached from the sandy loam soil were more than those from the clay loam soil in all irrigation events. The maximum and minimum concentrations of nitrogen in the drainage water for both soils were observed at control and NH4+-zeolite treatments, respectively. Total N in the plants grown in the sandy loam was higher compared to plants grown in clay loam soil. Also, nitrogen uptake by plants in control and NH4+-zeolite was higher than that of raw-zeolite treatments. The decrease in the amount of N leaching in the presence of NH4+-zeolite caused more N availability for plants and increased the efficiency of nitrogen fertilizers and the plants yield.  相似文献   

6.
Pot experiments were conducted on three soils differing in their ammonium (NH4 +) fixation capacity [high = 161 mg NH4-nitrogen (N) kg?1 soil; medium = 31.5 mg NH4-N kg?1 soil; and no = no NH4-N was additionally fixed], and the effect of N fertilizer forms and doses on wheat (Triticum aestivum L.) was investigated. Grain yields responded to almost all forms of N fertilizer with 80, 160, and 240 kg N ha?1 in the high, medium, and no NH4 + fixing soil process, respectively. Agronomic efficiency of applied N fertilizers was significantly greater in the no NH4 + fixing soil. Thousand grain weights (TGW) of wheat grown on the high and medium NH4 + fixing soil decreased with increasing N. Grain protein increased with increasing NH4 + fixation capacity. Nitrogen doses and the forms of N fertilizers affected grain protein at a significance level. The combination of urea + ammonium nitrate (NH4NO3) was most effective in increasing grain protein content.  相似文献   

7.
Increasing the retention of nutrients by agricultural soils is of great interest to minimize losses of nutrients by leaching and/or surface runoff. Soil amendments play a role in nutrient retention by increasing the surface area and/or other chemical processes. Biochar (BC) is high carbon-containing by-product of pyrolysis of carbon-rich feedstocks to produce bioenergy. Biosolid is a by-product of wastewater treatment plant. Use of these by-products as amendments to agricultural soils is beneficial to improve soil properties, soil quality, and nutrient retention and enhance carbon sequestration. In this study, the adsorption of NH4-N, P, and K by a sandy soil (Quincy fine sand (QFS)) and a silty clay loam soil (Warden silty loam (WSL)) with BC (0, 22.4, and 44.8 mg ha?1) and biosolid (0 and 22.4 mg ha?1) amendments were investigated. Adsorption of NH4-N by the QFS soil increased with BC application at lower NH4-N concentrations in equilibrium solution. For the WSL soil, NH4-N adsorption peaked at 22.4 mg ha?1 BC rate. Biosolid application increased NH4-N adsorption by the WSL soil while decreased that in the QFS soil. Adsorption of P was greater by the WSL soil as compared to that by the QFS soil. Biosolid amendment significantly increased P adsorption capacity in both soils, while BC amendment had no significant effects. BC and biosolid amendments decreased K adsorption capacity by the WSL soil but had no effects on that by the QFS soil. Ca release with increasing addition of K was greater by the WSL soil as compared to that by the QFS soil. In both the soils, Ca release was not influenced by BC amendment while it increased with addition of biosolid. The fit of adsorption data for NH4-N, P, and K across all treatments and in two soils was better with the Freundlich model than that with the Langmuir model. The nutrients retained by BC or biosolid amended soils are easily released, therefore are readily available for the root uptake in cropped soils.  相似文献   

8.
Field experiments were conducted to determine the effect of nitrogen (N) fertilizer forms and doses on wheat (Triticum aestivum L.) on three soils differing in their ammonium (NH4) fixation capacity [high = 161 mg fixed NH4-N kg?1 soil, medium = 31.5 mg fixed NH4-N kg?1 soil and no = nearly no fixed NH4-N kg?1 soil]. On high NH4+ fixing soil, 80 kg N ha?1 Urea+ ammonium nitrate [NH4NO3] or 240 kg N ha?1 ammonium sulfate [(NH4)2SO4]+(NH4)2SO4, was required to obtain the maximum yield. Urea + NH4NO3 generally showed the highest significance in respect to the agronomic efficiency of N fertilizers. In the non NH4+ fixing soil, 80 kg N ha?1 urea+NH4NO3 was enough to obtain high grain yield. The agronomic efficiency of N fertilizers was generally higher in the non NH4+ fixing soil than in the others. Grain protein was highly affected by NH4+ fixation capacities and N doses. Harvest index was affected by the NH4+ fixation capacity at the 1% significance level.  相似文献   

9.
Wildfires often modify soil properties, including the N status and net N mineralization rates, but their impacts on gross N fluxes have been scarcely evaluated. We aimed to ascertain the immediate effects of a medium–high severity wildfire on soil N transformations. Net and gross N rates were analytically and numerically (FLUAZ) quantified in burned (BS) and unburned (US) topsoils from the temperate–humid region (NW Spain). Analytical and numerical solutions were significantly correlated for both gross N mineralization (m) (r 2?=?0.815; p?<?0.001) and gross nitrification (n) (r 2?=?0.950; p?<?0.001). In BS, all NH4 +-N fluxes (net m, gross m and gross NH4 +-N immobilization, ‘ia’) increased, while those of NO3 ?-N decreased (gross n and gross NO3 ?-N immobilization, ‘in’) or did not vary (net n). In US and BS, gross m (0.26–3.60 and 4.70–15.42 mg N kg?1 day?1, respectively) predominated over gross n (0.026–2.45 and 0.001–0.002 mg N kg?1 day?1, respectively), and the same was true for the net fluxes. Compared with the few available data on recently burned soils (m?=?8–55 mg N kg?1 day?1; n?=?0.50–1.83 mg N kg?1 day?1), our gross m and n rates were similar and very low, respectively; gross n showed that nitrifiers were active in US and also in BS, despite the 98 % reduction observed immediately after the fire. For gross fluxes, m increased more than ia suggesting an NH4 +-N accumulation, but there is no risk of NO3 ?-N leaching because n decreased more than in.  相似文献   

10.
土壤微生物体氮测定方法的研究   总被引:29,自引:4,他引:25  
用熏蒸-0.5mol/LK2SO4 直接浸取NH4+-N法 (简称薰蒸 铵态氮法 ) ,熏蒸 淹水培养法和熏蒸 通气培养法测定了有机质、全氮和C/N比差异较大的 15种土壤的铵态氮增量 (FN)。结果表明 ,它们之间有极显著的正相关 ,在反映土壤微生物体氮上有相同趋势。两种培养方法测定的FN 近乎一致 ,由此而计算的微生物体氮也几乎相同。对红油土铵态氮法测定值仅为两种培养法的 1/ 10。把铵态氮法中的FN 校正后 ,其结果与 2种培养法测定的微生物体氮同样近乎一致。用 3种方法测定的微生物体氮均与土壤有机碳存在显著正相关性。淹水培养和铵态氮法水分条件易控制 ,又无NH3的挥发损失 ,比通气培养法更加优越。对培养试验和长期肥料定位试验的土样测定结果表明 ,土壤中易矿化新鲜有机物料也会使熏蒸 淹水培养法测定的FN 显著下降 ,由此而计算的微生物体氮也显著减少 ,但熏蒸 铵态氮法测定的FN 不受新鲜有机物质的影响。与土壤微生物数目进行比较后发现 ,土壤中含易分解有机物质少或微生物体氮含量低时 ,选用熏蒸 淹水培养法测定误差小 ;当土壤中富含新鲜有机物质时 ,熏蒸 铵态氮法测定的结果更加可靠。用这两种方法在同类土壤上测定的FN 的比值相对稳定 ,微生物体氮 (BN)的平均比值为 0.98~1.01,不受施肥的影响  相似文献   

11.
In the framework of the European nitrate directive (91/676/EEG), losses of nitrate (NO3)– nitrogen (N) to both surface and groundwater are limited to 50 mg/l. Because the residual NO3-N in the soil profile after harvest is considered the main determinant of nitrate leaching during wintertime, the Flemish government imposed a limit value of 90 kg NO3-N ha?1 up to a soil depth of 90 cm between 1 October and 15 November. This study compared two different soil sample preparation methodologies. When samples were analyzed immediately upon arrival, no differences in NO3-N concentration were observed. However, although field-moist samples are maintained at 4 °C, nitrification is not completely stopped, as indicated by the increased NO3-N concentration in field-moist samples 10 days after storage at 4 °C . In contrast, nitrification in air-dried samples is stopped during the oven drying when 40 °C is reached. Moreover, the reproducibility was significantly greater in air-dried samples as compared to field-moist samples.  相似文献   

12.
Abstract

A sandy soil was amended with various rates (20 – 320 g air-dry weight basis of the amendments per kg of air-dry soil) of chicken manure (CM), sewage sludge (SS), and incinerated sewage sludge (ISS) and incubated for 100 days in a greenhouse at 15% (wt/wt) soil water content. At the beginning of incubation, NH4-N concentrations varied from 50 – 280 mg kg?1 in the CM amended soil with negligible amounts of NO3-N. Subsequently, the concentration of NH4-N decreased while that of NO3-N increased rapidly. In soil amended with SS at 20 – 80 g kg?1 rates, the NO3-N concentration increased sharply during the first 20 days, followed by a slow rate of increase over the rest of the incubation period. However, at a 160 g kg?1 SS rate, there were three distinct phases of NO3-N release which lasted for160 days. In the ISS amended soil, the nitrification process was completed during the initial 30 days, and the concentrations of NH4-N and NO3-N were lower than those for the other treatments. The mineralized N across different rates accounted for 20 – 36%, 16 – 40%, and 26 – 50% of the total N applied as CM, SS, and ISS, respectively.  相似文献   

13.
Abstract

In this paper, we proposed a new approach for on-site colorimetric analysis of ferrous ions (Fe2+) and ammonium-nitrogen (NH4 +-N) using a soil color meter as an alternative method to conventional spectrophotometry. The soil color meter we used can express solution color numerically on the basis of L*a*b* color space. After coloring of water by the 1, 10 phenanthroline method and the Indophenol blue method, the color of solution was measured by the soil color meter. A linear relationship between Fe2+ and a* or b* values, and systematic change of NH4 +-N with L* value, enable us to make a calibration curve. The Fe2+ and NH4 +-N concentrations in groundwater samples (Fe2+: 0.3–1.3 mg L?1; NH4 +-N: 0.02–0.62 mg L?1) determined by the proposed method agreed well with those determined by conventional spectrophotometry with the difference being ± 0.05 mg L?1 and ± 0.02 mg L?1, respectively. Since a similar apparatus is widely used in the soil science field, this technique would facilitate field surveys.  相似文献   

14.
The aim of this study was to evaluate the sustainability of an agro-industry sludge as a nitrogen (N) fertilizer in perennial crops by assessing its dynamics of release of: 1) N as ammonium (NH4+)- and nitrate (NO3?)-N, and 2) carbon as soil respiration. In incubation assay, application of agro-industry sludge promoted the maximum NH4+-N concentration (50 mg kg?1) 2 h after application, then it decreased with time until day 26. NO3?-N increased, reaching the maximum between day 60 and day 100, according to a second degree function. Agro-industry sludge showed a slower release of NO3?-N compared with urea. Soil basal respiration and cumulative amount of carbon dioxide were higher in sludge from day 71 on. In field, soil NO3?-N increased after fertilization treatments and was higher in Calcari Stagnic Cambisols soil. Sludge showed a potential lower environment impact in terms of mineral N release, than urea.  相似文献   

15.
Optimal fertilizer nitrogen (N) rates result in economic yield levels and reduced pollution. A soil test for determining optimal fertilizer N rates for wheat has not been developed for Quebec, Canada, or many other parts of the world. Therefore, the objectives were to determine: 1) the relationship among soil nitrate (NO? 3)- N, soil ammonium (NH + 4)- N and N fertilizer on wheat yields; and 2) the soil sampling times and depths most highly correlated with yield response to soil NO? 3-N and NH + 4-N. In a three year research work, wet and dried soil samples of 0- to 30- and 30- to 60-cm depths from 20 wheat fields that received four rates of N fertilizer at seeding and postseeding (plants 15 cm tall) were analyzed for NH + 4-N and NO? 3 -N using a quick-test (N-Trak) and a standard laboratory method. Wheat yield response to N fertilizer was limited, but strong to soil NO? 3-N.  相似文献   

16.
The effects of temperature, moisture content and the addition of pig slurry on nitrification in two soils were studed. There was no accumulation of NO2?-N under the incubation conditions investigated and the accumulation of NO3?-N was linear for additions of 50–250 μg NH4+-N g? soil, either as ammonium sulphate or as pig slurry. Nitrate formation was treated as a single step, zero order process to enable a rate constant to be calculated. Nitrification rate increased with increasing moisture content up to the highest level tested, soil water potential ?8.0 kPa, corresponding to approximately 60% of water holding capacity in both soils. Measurable nitrification was found in both soils at the lowest moisture content (soil water potential ?1.5 MPa) and temperature (5° C) tested. The nitrification rate constant in soils treated with 50 μg NH4+-N g? soil was not significantly affected (P = 0.05) by the form of ammonium added. Addition of 250 μg NH4+-N as ammonium sulphate caused a marked inhibition of nitrification at all moisture contents and temperatures. Addition of 250 μg NH4+-N as pig slurry caused a marked increase in nitrification rate, the increase being greater at the higher temperatures and moisture contents.  相似文献   

17.
Use of nitrogen (N) fertilizer is underway to increase in Sub-Saharan Africa (SSA). The effect of increasing N rates on ammonia (NH3) volatilization—a main pathway of applied-N loss in cropping systems—has not been evaluated in this region. In two soils (Alfisols, ALF; and Andisols, AND) with maize crop in the East African highlands, we measured NH3 volatilization following urea broadcast at six rates (0–150 kg N ha?1) for 17 days, using a semi-open static chamber method. Immediate irrigation and urea deep placement were tested as mitigation treatments. The underlying mechanism was assessed by monitoring soil pH and mineral N (NH4+ and NO3?) concentrations. More cumulative NH3-N was volatilized in ALF than in AND at the same urea-N rate. Generally, higher urea-N rates increased proportional NH3-N loss (percent of applied N loss as NH3-N). Based on well-fitted sigmoid models, simple surface urea application is not recommended for ALF, while up to 60 kg N ha?1 could be adopted for AND soils. The susceptibility of ALF to NH3 loss mainly resulted from its low pH buffering capacity, low cation exchange capacity, and high urease activity. Both mitigation treatments were effective. The inhibited rise of soil pH but not NH4+ concentration was the main reason for the mitigated NH3-N losses, although nitrification in the irrigation treatment might also have contributed. Our results showed that in acidic soils common to SSA croplands, proportional NH3-N loss can be substantial even at a low urea-N rate; and that the design of mitigation treatments should consider the soil’s inherent capacity to buffer NH3 loss.  相似文献   

18.
Abstract

The rate and timing of manure application when used as nitrogen (N) fertilizer depend on N‐releasing capacity (mineralization) of manures. A soil incubation study was undertaken to establish relative potential rates of mineralization of three organic manures to estimate the value of manure as N fertilizer. Surface soil samples of 0–15 cm were collected and amended with cattle manure (CM), sheep manure (SM), and poultry manure (PM) at a rate equivalent to 200 mg N kg?1 soil. Soil without any amendment was used as a check (control). Nitrogen‐release potential of organic manures was determined by measuring changes in total mineral N [ammonium‐N+nitrate‐N (NH4 +–N+NO3 ?–N)], NH4 +–N, and accumulation of NO3 ?–N periodically over 120 days. Results indicated that the control soil (without any amendment) released a maximum of 33 mg N kg?1soil at day 90, a fourfold increase (significant) over initial concentration, indicating that soil had substantial potential for mineralization. Soil with CM, SM, and PM released a maximum of 50, 40, and 52 mg N kg?1 soil, respectively. Addition of organic manures (i.e., CM, SM, and PM) increased net N released by 42, 25, and 43% over the control (average). No significant differences were observed among manures. Net mineralization of organic N was observed for all manures, and the net rates varied between 0.01 and 0.74 mg N kg?1 soil day?1. Net N released, as percent of organic N added, was 9, 10, and 8% for CM, SM, and PM. Four phases of mineralization were observed; initial rapid release phase in 10–20 days followed by slow phase in 30–40 days, a maximum mineralization in 55–90 days, and finally a declined phase in 120 days. Accumulation of NO3 ?–N was 13.2, 10.6, and 14.6 mg kg?1 soil relative to 7.4 mg NO3 ?–N kg?1 in the control soil, indicating that manures accumulated NO3 ?–N almost double than the control. The proportion of total mineral N to NO3 ?–N revealed that a total of 44–61% of mineral N is converted into NO3 ?–N, indicating that nitrifiers were unable to completely oxidize the available NH4 +. The net rates of mineralization were highest during the initial 10–20 days, showing that application of manures 1–2 months before sowing generally practiced in the field may cause a substantial loss of mineralized N. The rates of mineralization and nitrification in the present study indicated that release of inorganic N from the organic pool of manures was very low; therefore, manures have a low N fertilizer effect in our conditions.  相似文献   

19.
Abstract

To optimize the efficient use of nutrients in pig slurry by crops and to reduce the pollution risks to surface and groundwater, a full knowledge of the fate of nitrogen (N) in amended soils is needed. A 120 day laboratory incubation experiment was conducted to study the effects of pig slurry application on soil N transformations. Pig slurry was added at the rates of 50 and 100 g kg?1. A nonamended soil was used as a control treatment. Soil samples were taken after 0, 7, 14, 30, 45, 60, and 120 days of incubation and analyzed for NH4 +‐N and NO3 ?‐N. Initially, the application of pig slurry produced significant increases in NH4 +‐N, especially at the highest application rate, whereas NO3 ?‐N content was not affected. Nitrification processes were active during the entire incubation time in the three treatments. In the control soil, the net N mineralization rate was highest during the 1st week (5.7 mg kg?1 d?1), followed by a low‐steady phase. Initially, net N mineralization rate was slower in soil with the lowest slurry rate (2.7 mg kg?1 d?1), whereas in the treatment with the highest slurry rate, a net N immobilization was observed during the 1st week (4.8 mg kg?1 d?1). Mineral‐N concentrations after 120 days were 180, 310, and 475 mg kg?1 in soils amended with 0, 50, and 100 g kg?1 of pig slurry, respectively. However, when results were expressed as net mineralized N, the opposite trend was observed: 74, 65, and 44 mg kg?1. Of the six kinetic models tested to describe the mineralization process, a two‐component, first exponential model (double model) offered the best results for all treatments.  相似文献   

20.
Abstract

The accumulation of heavy metals in plants is related to concentrations andchemical fractions of the metals in soils. Understanding chemical fractions and availabilities of the metals in soils is necessary for management of the soils. In this study, the concentrations of copper (Cu), cadmium (Cd), lead (Pb), and zinc (Zn) in tea leaves were compared with the total and extractable contents of these heavy metals in 32 surface soil samples collected from different tea plantations in Zhejiang province, China. The five chemical fractions (exchangeable, carbonate‐bound, organic matter‐bound, oxides‐bound, and residual forms) of the metals in the soils were characterized. Five different extraction methods were also used to extract soil labile metals. Total heavy metal contents of the soils ranged from 17.0 to 84.0 mgCukg?1, 0.03 to 1.09 mg Cd kg?1, 3.43 to 31.2 mg Pb kg?1, and 31.0 to 132.0 mg Zn kg?1. The concentrations of exchangeable and carbonate‐bound fractions of the metals depended mainly on the pH, and those of organic matter‐bound, oxides‐bound, and residual forms of the metals were clearly controlled by their total concentrations in the soils. Extractable fractions may be preferable to total metal content as a predictor of bioconcentrations of the metals in both old and mature tea leaves. The metals in the tea leaves appeared to be mostly from the exchangeable fractions. The amount of available metals extracted by 0.01 mol L?1 CaCl2, NH4OAc, and DTPA‐TEA is appropriate extractants for the prediction of metals uptake into tea plants. The results indicate that long‐term plantation of tea can cause sol acidification and elevated concentrations of bioavailable heavy metals in the soil and, hence, aggravate the risk of heavy metals to tea plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号