首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以蛹虫草菌株CM-16为研究对象,小麦为主要栽培基质,研究不同的光条件对蛹虫草的子座产量及虫草素和腺苷的影响。结果表明,当光照度为150lx时,子座产量及2种有效成分质量分数均较高,此时子座产量(以干质量计)达到每盒52.66g,虫草素和腺苷的质量分数分别为4.56mg/g和2.11mg/g;光照时间为8h/d时,子座产量及虫草素质量分数较高,此时子座产量达到每盒54.30g,虫草素质量分数为4.41mg/g,光照时间对腺苷的积累影响不大;蓝光有利于蛹虫草生长和子座积累虫草素,但其他光质对子座中的腺苷的作用没有太大差异。  相似文献   

2.
探索基质用量和料水比对蛹虫草子座中虫草素产量的影响,为蛹虫草的优质栽培提供依据。以蛹虫草菌株CM-16为研究对象,小麦为主要栽培基质,采用单因素和二次正交旋转组合设计2种分析法,研究基质用量和料水比对蛹虫草子座中虫草素产量的影响。结果表明,随着基质用量和料水比的增加,蛹虫草子座中虫草素的产量均呈先增加后降低的趋势,当基质用量为每盒350g,料水比(质量体积比)控制在1∶1.5时,蛹虫草子座中虫草素质量分数最高,为3.96mg/g。基质用量和料水比是影响蛹虫草子座中虫草素质量分数的重要因素,当以小麦为主要原料栽培蛹虫草时,小麦用量为每盒350g,最佳料水比(质量体积比)控制在1∶1.5。  相似文献   

3.
探索基质用量和料水比对蛹虫草子座中虫草素产量的影响,为蛹虫草的优质栽培提供依据。以蛹虫草菌株CM-16为研究对象,小麦为主要栽培基质,采用单因素和二次正交旋转组合设计2种分析法,研究基质用量和料水比对蛹虫草子座中虫草素产量的影响。结果表明,随着基质用量和料水比的增加,蛹虫草子座中虫草素的产量均呈先增加后降低的趋势,当基质用量为每盒350 g,料水比(质量体积比)控制在1∶1.5时,蛹虫草子座中虫草素质量分数最高,为3.96 mg/g。基质用量和料水比是影响蛹虫草子座中虫草素质量分数的重要因素,当以小麦为主要原料栽培蛹虫草时,小麦用量为每盒350 g,最佳料水比(质量体积比)控制在1∶1.5。  相似文献   

4.
本研究以燕麦、大米和小麦为主要栽培基质对蛹虫草菌株QC04进行栽培,比较不同栽培基质和栽培周期对蛹虫草子实体生物量和活性成分的影响,以期为蛹虫草菌株QC04的生产及充分开发利用提供参考。结果表明:栽培时间为35~55 d时,随着栽培时间的延长,子实体干重不断增加且同一时期子实体干重由高到低为小麦培养基>燕麦培养基>大米培养基,燕麦培养基和大米培养基的剩余栽培料干重大于小麦培养基且剩余栽培料干重均大于子实体干重;燕麦和小麦培养基的子实体和栽培剩余物中虫草素和腺苷含量均高于大米培养基;55 d时子实体和栽培剩余物中虫草酸和腺苷含量达到最高;同一时期同一种培养基虫草素在子实体中的含量低于栽培剩余物,腺苷则相反;大米培养基的虫草酸含量普遍高于燕麦和小麦培养基,子实体后期生物量衰退时,子实体虫草酸含量有少量增加且在65 d时大米培养基的子实体虫草酸含量达到最大值,为195.18mg/100g。  相似文献   

5.
【目的】探索基质料水比对蛹虫草生长发育相关指标的影响,为蛹虫草的高产优质栽培提供依据。【方法】以蛹虫草菌株CM-16为研究对象,小麦为主要栽培基质,采用规格为300mm×200mm×110mm的蛹虫草栽培专用盘,设置基质料(g)水(mL)比分别为1∶1.3,1∶1.4,1∶1.5,1∶1.6和1∶1.7,研究基质料水比对蛹虫草的子座鲜质量、生产周期、子座密度、子座长度、子座生物学效率及基质利用率的影响。【结果】随着基质料水比的增加,蛹虫草子座鲜质量、子座密度、子座生物学效率和基质利用率均呈先增加后降低的趋势,生产周期呈先降低后增加的趋势,子座长度变化幅度较小。当基质料水比为1:1.6时,上述6个指标均达到最大值,其中,子座鲜质量为305.9g/盒,生产周期为56d,子座密度为8.9根/cm2,子座长度为9.7cm/个,子座生物学效率为102%,基质利用率为51.5%。【结论】基质料水比是影响蛹虫草生长发育及子座产量的重要因素,当以小麦为主要原料栽培蛹虫草时,最佳基质料水比为1∶1.6。  相似文献   

6.
以虫草素和腺苷含量为指标优化蛹虫草人工栽培   总被引:3,自引:2,他引:3  
为提高人工栽培蛹虫草中主要活性成分的含量,以虫草素和腺苷含量为检测指标进行蛹虫草优化栽培研究,在采用Cm-1菌株、以20%豆粕为氮源、水料比为1.4的条件下,可获得子实体产量为每瓶42.2 g、子实体中虫草素含量为4.46 mg.g-1的栽培效果,虫草素含量超过了以蚕蛹为寄主的蛹虫草(2.83 mg.g-1),表明植物蛋白完全可以用作栽培蛹虫草的氮源,同时证实采收子实体后的培养基中仍含有大量虫草素,可作为提取虫草素的原料。  相似文献   

7.
以不添加废弃培养基的普通栽培的蛹虫草为对照,研究蛹虫草废弃培养基二次应用于蛹虫草栽培对于蛹虫草子实体鲜质量、虫草素及腺苷含量的影响。结果表明:与对照组相比,废弃培养基添加量为10%、20%、30%时,蛹虫草子实体鲜质量高于对照组,但无显著差异;废弃培养基添加量大于30%时,蛹虫草子实体鲜质量则低于对照组,差异显著;虫草素含量则随废弃培养基添加量的增加而逐渐提高,腺苷含量与对照组相比也有所升高,当废弃培养基添加量为100%时达到最高;虫草素含量比对照组提高2.10倍,腺苷含量比对照组提高1.75倍。  相似文献   

8.
目的】研究分析Na2SeO3对药食用真菌蛹虫草子实体生长及功能成分腺苷、虫草素的影响,大面积人工栽培富硒蛹虫草提供理论依据和技术支持。【方法】以新疆本地蛹虫草菌种作为富硒载体,采用瓶栽法,系统分析不同浓度亚硒酸钠处理对蛹虫草菌丝、子座、子实体生长,产量、生物转化率、总硒及其功能成分腺苷、虫草素含量的影响。【结果】处理1(硒浓度20 mg/L)和处理2(硒浓度40 mg/L)与对照相比其蛹虫草的菌丝体生长、子座生长、子实体出草长度、鲜重、干重、生物转化率等无影响,其子实体中总硒含量最高,功能成分腺苷、虫草素含量明显增加;从处理3(硒浓度60 mg/L)至处理7(硒浓度200 mg/L)与对照相比,其蛹虫草的菌丝体生长、子座生长受到抑制,其子实体出草长度、鲜重、干重、生物转化率等呈显著性差异(P<0.05),呈降低趋势,并随着硒浓度增加,抑制越明显;其子实体中总硒含量逐渐降低,功能成分腺苷、虫草素含量逐渐下降。【结论】以亚硒酸钠作为外源硒,硒浓度20~40 mg/L效果最好,可作为进行蛹虫草富硒栽培较为理想的浓度。  相似文献   

9.
采用不同种类培养基栽培蛹虫草,以虫草素和腺苷含量为指标,筛选出培养蛹虫草的最优培养基。结果表明,最佳栽培培养基配方为3号培养基(大米40 g+纯柞蚕蛹),以3号培养基栽培获得的蛹虫草子实体中虫草素和腺苷含量均为最高,分别达到15 986.3 mg/kg和2176.5 mg/kg,与其它实验组结果的差异达到极显著水平。  相似文献   

10.
以双蒸水为溶剂,用反相高效液相色谱-紫外检测法测定蚕蛹虫草样品中虫草素和腺苷含量,并用该方法测定了19-3、17-3、MS、1-1以及1-Y等12种不同虫草菌株栽培的蚕蛹虫草、不同品质的蚕蛹虫草以及蚕蛹虫草不同组织中的虫草素和腺苷的含量。结果表明:1-Y菌株的虫草素和腺苷含量均最高,质量分数达15.45 mg/g和4.40 mg/g;不同品质的蚕蛹虫草中虫草素则以感染而未出草的僵蚕最高;蚕蛹虫草的僵蚕体对虫草素的富集能力高于子座,蚕蛹虫草的子座对腺苷的富集能力高于僵蚕体。该结果可对探求高虫草素含量和高腺苷含量的虫草材料提供理论依据。  相似文献   

11.
【目的】对蛹虫草人工栽培的栽培基质进行优化。【方法】以蛹虫草菌株CDM-003为供试材料,采用400mL玻璃罐头瓶为栽培容器,研究了蚕蛹粉、基质含水率、葡萄糖、蛋白胨和微量元素添加剂对蛹虫草子座生物学效率的影响。通过建立数学模型,确定蛹虫草人工栽培中上述几种常用基本基质用量与子座生物学效率之间的函数关系。【结果】确定了基质中各主要成分的最佳用量为:蚕蛹粉0.156g/g,葡萄糖12.19g/L,蛋白胨10g/L,基质含水率66.75%,微量元素添加剂25g/L。【结论】蚕蛹粉用量、基质含水率及栽培营养液中葡萄糖、蛋白胨、微量元素添加剂的含量对蛹虫草的生物学效率具有显著的影响。  相似文献   

12.
提高蛹虫草培养物中虫草素含量的研究   总被引:5,自引:0,他引:5  
为提高蛹虫草的虫草素含量,从寄主培养、液体培养、固体培养和代料栽培等方面进行研究,使蛹虫草培养物的虫草素含量获得显著提高,寄主培养的蚕虫草虫草素含量超过12mg/g,菌核超过30mg/g;液体培养的培养液超过0.2mg/ml,菌丝体超过3mg/g;固体培养物超过10mg/g,代料栽培子实体超过3mg/g,采后培养基的虫草素含量比子实体还要高。  相似文献   

13.
虫草深层发酵的培养条件和培养基优化研究   总被引:3,自引:1,他引:2  
以菌丝体干重、腺苷含量及腺苷总量为指标,研究温度、初始pH值、碳源、氮源和金属离子等因素对蛹虫草液体培养的影响.结果表明,蛹虫草液体摇瓶培养的最佳温度为20 ℃,初始pH值为4.0,最适培养基组成为糖蜜20 g/L、玉米浆10 g/L、氯化钙0.5 g/L、磷酸二氢钾0.5 g/L、磷酸氢二钾0.5 g/L、维生素B1 0.1 g/L.在优化的培养条件下,蛹虫草菌丝体生物量为15.55 g/L,腺苷含量为6.26 mg/g,腺苷总量为97.25 mg/L.  相似文献   

14.
【目的】研究亚硒酸钠对蛹虫草菌落形态、子座产量及子座硒含量的影响,旨在为富硒蛹虫草产业化开发提供依据。【方法】以蛹虫草菌株CM003为试材,采用平板培养基探讨不同质量浓度(0,50,100,150,200,250,300,350,400和450 mg/L)亚硒酸钠对蛹虫草菌落形态的影响。在此基础上,采用常规瓶栽法研究不同质量浓度(0,50,100,150,200和250 mg/L)亚硒酸钠对蛹虫草长势、子座产量及子座硒含量的影响,并拟合了栽培营养液中亚硒酸钠质量浓度与蛹虫草长势评分、子座产量、子座硒含量之间的函数关系。【结果】在平板培养基上,当亚硒酸钠质量浓度≤100 mg/L 时,蛹虫草的菌落形态基本正常,菌落直径的变化幅度较小;当亚硒酸钠质量浓度为450 mg/L 时,蛹虫草菌丝仍能缓慢生长。采用常规瓶栽法栽培蛹虫草时,随着亚硒酸钠质量浓度的增加,蛹虫草的长势评分和子座产量呈先增加后减小的趋势,子座硒含量呈逐渐增加趋势。拟合方程显示,营养液中亚硒酸钠质量浓度为28.2 mg/L时,蛹虫草的长势最好;亚硒酸钠质量浓度为58.17 mg/L时,蛹虫草子座产量最高;亚硒酸钠质量浓度为200 mg/L时,子座硒含量最高达92.68 mg/kg。【结论】蛹虫草对亚硒酸钠不仅具有较强的耐受性,且具有较强的富硒能力,是人工生产富硒产品的优良载体。  相似文献   

15.
对"圆头"和"尖头"两种典型蛹虫草的交配型以及栽培周期、鲜重、干重、虫草素和腺苷含量等主要农艺特征进行了比较。结果表明:"圆头"蛹虫草均为双交配型,栽培周期65—70 d,子实体中虫草素平均含量为0. 869μg/mg;"尖头"蛹虫草均为单交配型,栽培周期70—75 d,子实体中虫草素平均含量为2. 599μg/mg;两者虫草素含量差异极显著,但腺苷含量差别不明显。研究初步探明了蛹虫草主要农艺特征与其交配型之间的联系,为进一步开展蛹虫草育种工作和质量检测提供了科学依据。  相似文献   

16.
为研究氮源对蛹虫草产量及药效物质产量的影响,本试验测定了添加不同量氮源时蛹虫草的产量情况,同时测定了蛹虫草中腺苷、虫草素、虫草多糖和虫草酸的含量。结果表明,PDA培养基添加10%的蚕蛹粉时蛹虫草的产量以及腺苷、虫草素和虫草酸的产量最高,PDA培养基添加15%的蚕蛹粉时蛹虫草的虫草多糖产量最高,综合考虑蛹虫草的药效价值最高,选用PDA培养基添加10%的蚕蛹粉为蛹虫草的最佳培养条件。  相似文献   

17.
研究5种氮源对蛹虫草子实体生长及虫草素、虫草多糖含量的影响,结果表明:添加氮源对蛹虫草整个生长过程有很大的促进作用,且以添加蛋白胨和蚕蛹粉处理更有利于蛹虫草生长,子实体产量和质量均较高;添加蚕蛹粉处理的虫草素含量及产量均最高,分别达到(7.93±0.092)mg·g~(-1)和每瓶(34.06±0.158)mg;添加蛋白胨处理虫草多糖含量最高,达到(21.36±0.076)mg·g~(-1);添加蚕蛹粉处理的虫草多糖产量最高,每瓶达(103.85±0.169)mg。  相似文献   

18.
本研究采用大米米饭固体培养基培养出蛹虫草子实体,在菌株、培养基、接种方式三个因素中筛选出高产蛹虫草子实体的最优组合,并与工业液体发酵蛹虫草菌丝体作比较,用高效液相色谱法(High Performance Liquid Chromatography,HPLC)测定了子实体和采后培养基中的虫草素含量,结果表明,子实体中的虫草素含量(10.22 mg/g)是采后培养基中虫草素含量(2.04 mg/g)的5倍,是工业液体发酵蛹虫草菌丝体中虫草素含量(7.06 mg/g)的1.45倍。  相似文献   

19.
8种物质对蛹虫草液体发酵中虫草素及多糖含量的影响   总被引:3,自引:0,他引:3  
【目的】研究不同前体物及营养物对蛹虫草液体发酵中虫草素和虫草多糖含量的影响,筛选提高虫草素及虫草多糖的最适添加物及其添加质量浓度。【方法】将不同质量浓度的腺苷、核糖、次黄嘌呤、谷氨酰胺、甘氨酸、核黄素、苯丙氨酸及甲硫氨酸8种物质添加到蛹虫草液体发酵培养基中,提取菌丝体中的虫草素与多糖,分别用HPLC法、硫酸-苯酚法对其含量进行检测。【结果】在8种添加物中,腺苷、核糖、谷氨酰胺、甘氨酸均能明显提高虫草素及虫草多糖的含量,其最适添加量分别为4.0,2.0~3.0,0.5~1.0,0.5mg/mL;苯丙氨酸、甲硫氨酸、次黄嘌呤对蛹虫草液体发酵中虫草素和多糖含量的促进作用不明显;核黄素对虫草素与多糖合成有抑制作用。【结论】蛹虫草发酵过程中添加腺苷合成途径中的前体物能明显提高其中的虫草素与虫草多糖含量。  相似文献   

20.
为了探讨微量元素硒锗组合对蛹虫草(Cordyceps militaris)中主要活性成分虫草素、腺苷和虫草多糖产生的协同效应,选择Na_2SeO_3质量浓度依次为5、10、15 mg/L,GeO_2质量浓度依次为100、200、300、400 mg/L,正交设计配制成12个硒锗组合质量浓度组,按照常规固体培养蛹虫草的方法,分别添加在基本培养基中,观察蛹虫草子实体在硒锗组合影响下的生长情况,再分别使用高效液相色谱和苯酚-硫酸法测定虫草素、腺苷和虫草多糖的含量。结果表明:经过不同质量浓度的硒锗组合处理,所有样品组的子实体生长发育都很健壮旺盛,绝大部分都呈金黄色,而且比空白对照组粗壮、色深。在生物量方面,相同条件下的鲜质量与干质量都明显大于对照组,干质量增长率最高可达14.50%。所有样品处理组的虫草素、腺苷和虫草多糖含量都高于对照组。当硒锗组合质量浓度为10 mg/L×300 mg/L时,子实体中虫草素含量达到最高,为1.12%,是对照组的2.89倍;当硒锗组合质量浓度为15 mg/L×100 mg/L时,子实体中腺苷含量最高为0.116%,是对照组的2.7倍;当硒锗组合质量浓度为10 mg/L×200 mg/L时,虫草多糖的合成量达到最高(5.72%),为对照组的1.93倍。硒、锗2种微量元素能显著影响蛹虫草子实体的生长发育及其主要生理活性物质的含量,硒、锗同时添加时具有明显的协同效应,有利于蛹虫草子实体生物量的增加以及虫草素、腺苷和虫草多糖的生物合成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号