首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Supercritical fluid extraction (SFE) has been utilized by the food industry in many applications to extract, fractionate, and recover compounds from various food matrices. However, little research has been conducted using SFE as an alternative process for producing reduced-fat cheese. Lipids in cheeses may be selectively extracted due to the nonpolar properties of supercritical carbon dioxide (SC-CO2), without leaving residual chemicals as is the case in solvent extraction. The objective of this study was to evaluate the influence on the extraction process due to cheese variety and protein breakdown by age. A Latin square design was utilized to test the extractability of lipids from Parmesan and Cheddar cheeses, aged young (9-10 months) or old (24 months). Extraction took place in a 500 mL SFE vessel using 100 g of grated cheese samples. The SFE parameters of the extraction were 350 bar, 35 degrees C, and supercritical carbon dioxide at a flow rate of 20 g/min for 55 min. Compositional analysis measured all treated samples and controls of total lipids, lipid profiling, total protein, protein/peptide analysis, moisture, ash, and pH. Cheese type was a major variable in fat extraction. The extraction in Cheddar showed an average fat reduction of 53.56% for young cheese, whereas that in old Cheddar was 47.90%. However, young Parmesan was reduced an average of 55.07%, but old Parmesan was reduced at 68.11%, measured on a dry basis. SFE extracted triglycerides and cholesterol, but did not remove phospholipids. This investigation introduces the observations of the effect of Cheddar and Parmesan varieties on SFE, offering data on the important parameters to consider in the design of SFE processes to reduce fat in cheese.  相似文献   

2.
Cheddar cheese has previously been shown to be an effective vehicle for delivery of viable cells of a probiotic Enterococcus faecium strain to the gastrointestinal tract. The particular strain, E. faecium PR88, has proven efficacy in the treatment of irritable bowel syndrome, and in this study it was evaluated for suitability as a starter adjunct for Cheddar cheese manufacture. When added to cheesemilk at an inoculum of 2 x 10(7) cfu/mL, the enterococcal adjunct maintained viability in Cheddar cheese at levels of up to 3 x 10(8) cfu/g during 9 months of ripening. Increased proteolysis and higher levels of some odor-active volatile compounds were observed in Cheddar cheeses containing the PR88 adjunct compared with the control throughout the ripening period. In addition, the enterococcal adjunct strain did not affect cheese composition. Although sensory evaluation showed no significant difference in flavor/aroma and body/texture scores between control and experimental cheeses, repeated comments by the commercial grader consistently described the cheeses containing PR88 as 'more advanced than the control' and as having 'better flavor'. These findings indicate that the presence of the PR88 adjunct strain in Cheddar cheese at levels of >/=10(8) cfu/g may positively influence Cheddar flavor.  相似文献   

3.
The influences of fluorescent light exposure and packaging atmosphere on the headspace volatiles and color of Cheddar cheese shreds were evaluated using gas chromatography-mass spectrometry and spectrocolorimetry, respectively. Cheddar cheeses were packaged under atmospheres of 100% carbon dioxide or 100% nitrogen and stored at 4 degrees C under fluorescent light for 6 weeks. Cheeses stored under carbon dioxide contained higher concentrations of aldehydes and fatty acids and lower concentrations of alcohols and esters than cheeses stored under nitrogen. Carbon dioxide atmospheres potentiated light-induced oxidation in shredded Cheddar cheeses, as evidenced by aldehyde and fatty acid headspace volatiles measured following storage. Color bleaching occurred only in cheeses packaged under carbon dioxide and exposed to light. The shift in color is proposed to be due to an interaction between carbon dioxide and high-intensity light, leading to the oxidation of the pigment molecule, bixin. The results have significant implications for procedures used to handle and store pigmented cheeses to ensure desirable flavor and consumer acceptability.  相似文献   

4.
To assess the contribution of starter lactic acid bacteria (LAB) to lipolysis in Cheddar cheese, the evolution of free fatty acids (FFAs) was monitored in Cheddar cheeses manufactured from pasteurized milks with or without starter. Starter-free cheeses were acidified by a combination of lactic acid and glucono-delta-lactone. Starter cultures were found to actively produce FFAs in the cheese vat, and mean levels of FFAs were significantly higher in starter cheeses over ripening. The contribution of nonstarter LAB toward lipolysis appears minimal, especially in starter-acidified cheeses. It is postulated that the moderate increases in FFAs in Cheddar cheese are primarily due to lack of access of esterase of LAB to suitable lipid substrate. The results of this study indicate that starter esterases are the primary contributors to lipolysis in Cheddar cheese made from good quality pasteurized milk.  相似文献   

5.
In this study, the effects of whey pH at drainage on the physicochemical, sensory, and functional properties of mozzarella cheese made from buffalo milk during storage were investigated. Four cheese samples were manufactured using starter culture at different whey pH values [(A) 6.2, (B) 5.9, (C) 5.6, and (D) 5.3] and analyzed on the 1st, 28th, and 56th day. Ash, calcium, and phosphorus concentrations decreased as the whey pH at drainage was lowered. Cheese yield and calcium recovery were the highest in D cheeses. During storage, expressible serum levels decreased and nonexpressible serum levels increased, indicating an increase in the water holding capacity of the cheeses. Reducing the calcium content of cheeses increased meltability values, but an overly low calcium level (D cheeses) had an adverse effect on the meltability. The melting properties of cheese samples, except D cheeses, were improved with aging. A cheeses were the hardest and D cheeses the softest throughout storage. The 1st day sensory evaluations revealed that C and D cheeses were preferred and that A cheeses were not. All sensory properties of A cheeses were improved with storage. D cheeses were rated inferior to the others at the end of the storage time.  相似文献   

6.
Varieties of market cheese were analyzed for alkaline phosphatase by the modified rapid colorimetric method of the American Public Health Association (APHA) and the official AOAC method, 16.304-16.306. In the APHA method, 5 g cheese (pH less than 7.0) is macerated with 2 mL 1:1 carbonate buffer, or 2 mL water (for cheese with pH greater than 7.0). Addition of 0.1 mL magnesium acetate (1 mg magnesium) to test portions of cheese extracts yielded reproducible and quantitative recovery of added phosphatase. In the AOAC method, macerating 0.5 g cheese with 1 mL borate buffer before adding milk phosphatase improved recovery among cheeses. Addition of magnesium ion increased phosphatase activity in some cheeses. Phosphatases in blue mold-ripened and Swiss cheeses were inactivated by heat faster than was milk phosphatase, yet milk phosphatase added to various soft cheeses was completely inactivated at 60 degrees C for 10 min. The lability of phosphatase was due to the heat-denaturing effect of NaCl present in finished cheeses. Some Mexican style soft cheeses contained both heat-labile and heat-stable phosphatases. These data suggest that the phosphatase test to differentiate milk and microbial phosphatases on the basis of repasteurization and analysis of cheese is no longer valid.  相似文献   

7.
The aroma-active compounds that contribute to the rosy/floral flavor in Cheddar cheese were characterized using both instrumental and sensory techniques. Two cheeses (>12 months old) with rosy/floral flavor and two Cheddar cheeses of similar ages without rosy/floral flavors were selected. After direct solvent extraction/solvent-assisted flavor evaporation and separation into neutral/basic and acidic fractions, samples were analyzed by gas chromatography-olfactometry with aroma extract dilution analysis. Selected compounds were quantified using internal standard methodology. Some of the intense aroma-active compounds in the neutral basic fraction of the rosy/floral cheeses included 2-phenethanol (rosy), phenylethyl acetate (rosy), and phenylacetaldehyde (rosy/floral). Quantification, threshold analysis, and sensory analysis of model cheeses confirmed that increased concentrations of phenylacetaldehyde and phenylacetic acid caused rosy/floral flavor when spiked into Cheddar cheese.  相似文献   

8.
Semihard low-fat cheeses made from ultrafiltered (UF) or microfiltered (MF) milk were compared. The use of MF membranes and milder pasteurization of the milk reduced the retention of whey proteins in the retentate to 35%, compared with approximately 100% retained in the UF process. Microbiological development, physicochemical composition, and cheese ripening were not altered by the concentration processes. The lower retention of whey protein in MF cheeses accounted for their higher hardness, which correlated with higher firmness values in the textural analysis. Microstructure showed a protein matrix with open spaces through the protein network, although micrographs of UF cheeses showed the presence of spongy structures linked to the casein, which did not appear in MF cheeses and which correspond to the denatured whey protein bound to the casein. Firmness was scored better in MF cheeses, although when MF membranes were used, the optimum yields achieved using UF membranes were not attained.  相似文献   

9.
This study was carried out to determine the cholesterol removal rate and resulting changes in flavor, fatty acid and bitter amino acid production in reduced-cholesterol Cheddar cheese, made by cream separation followed by 10% beta-cyclodextrin (beta-CD) treatment. The cholesterol removal from the cheese was 92.1%. The production of short-chain free fatty acids (FFAs) increased the ripening time in control and cream-treated cheeses. The quantity of short-chain FFAs released between treatments during ripening was different, while not much difference was found in the production of neutral volatile compounds in the samples. Reduced-cholesterol cheese produced much higher levels of bitter amino acids than the control. In sensory analysis, the texture score of control Cheddar cheese increased significantly with ripening time; however, that of the cream treatment group decreased dramatically with ripening time. On the basis of our results, we conclude that the cheese made from beta-CD-treated cream had a higher rate of cholesterol removal and ripened rapidly.  相似文献   

10.
The nanostructure of Mozzarella cheeses prepared from microfluidized milk was compared with that of control cheeses made from untreated milk. Milk heated to 10 or 54 degrees C and containing 1.0 or 3.2% fat was homogenized by microfluidization at 34 or 172 MPa prior to cheesemaking. The effects on the casein particles and fat globules in the cheese were determined by transmission electron microscopy after 1 day and 6 weeks of storage at 4 degrees C. The micrographs showed that electron-dense regions theorized to be casein submicelles rearranged from a homogeneous configuration to a pattern of clusters during the storage period. The nanostructure of the cheeses made from milk processed under the mildest conditions resembled the controls, but otherwise the fat droplets decreased in size and increased in number as the pressure and temperature were increased. The results indicate that both homogenization temperature and pressure affect the nanostructure of Mozzarella cheese.  相似文献   

11.
为了改善奶酪品质,奶酪生产过程中通常会添加脂肪酶或者产脂肪酶乳酸菌来提升产品品质。该研究以前期筛选的4株高产脂肪酶乳酸菌为发酵剂,分别随机选取3株乳酸菌复配制作酸凝奶酪。试验组:A组T1-5和T1-3属融合魏斯氏菌(Weissella confusa)、H1-6属瑞士乳杆菌(Lactobacillus helveticus),B组H1-6、T1-5、B2-5属植物乳杆菌(Lactobacillus plantarum),C组H1-6、T1-3、B2-5,D组T1-3、T1-5、B2-5,对照组(E组)(添加商业发酵剂),分析发酵剂对传统奶酪pH值、滴定酸度和脂肪氧化情况的影响,并利用气相色谱法(Gas Chromatography,GC)检测奶酪中脂肪酸变化、利用气相色谱-离子迁移谱(Gas Chromatography-Ion Mobility Chromatography,GC-IMS)分析奶酪中风味物质的变化。结果表明:A,B,C,D组4组奶酪的pH值、过氧化值(Peroxide value,POV值)明显低于E组(对照组)(P < 0.05),A,B组奶酪滴定酸度比对照E组高(P < 0.05);A,B,C,D组奶酪中饱和脂肪酸(Saturated Fatty Acids,SFA)含量、单不饱和脂肪酸(Monounsaturated Fatty Acids,MUFA)含量和多不饱和脂肪酸(Polyunsaturated Fatty Acids,PUFA)含量均显著高于E组(P < 0.05);4个试验组样品中亚油酸(C18∶2n6c)含量明显高于对照组(E组)(P < 0.05)。GC-IMS及主成分分析结果显示,A、B组奶酪挥发性风味物质种类多,且相似度较高,其中2-庚酮、丁醛、乙酸丁酯是主要呈味物质;C、E两组奶酪中风味物质比较相似,风味物质主要以乙酸乙酯、乙酸丙酯、己酸乙酯等酯类为主;D组与其他4组有所差异,主要挥发性风味物质为乙酸丁酯、3-辛酮、庚醛等。结合感官评定,A、B两组奶酪整体风味和口感较好,评分较高。筛选得到的产脂肪酶乳酸菌可以作为发酵剂用于提升新疆传统奶酪品质。  相似文献   

12.
The chemical composition and properties of lipids, both triglycerides and phospholipids, play a major role in the functional and nutritional properties of food products. In this study, the suprastructure of fat, solid fat content, and crystallographic properties of triglycerides were investigated in hard-type cheeses from the microscopic scale to the molecular level using the combination of relevant techniques. Two industrial cheeses with different oiling off properties were compared with experimental cheeses manufactured in the laboratory. Microstructural analysis performed using confocal laser scanning microscopy showed that milk processing led to the disruption of fat globules with the formation of nonglobular fat. For a similar fatty acid composition, oiling off was mainly related to the fat in dry matter content and to the suprastructure of fat in cheese. An exogenous fluorescent phospholipid permitted the localization of milk phospholipids in the cheese matrix, which mainly remain around fat inclusions after disruption of the milk fat globule membrane, and to show heterogeneities. We also showed using differential scanning calorimetry that the suprastructure of fat did not affect the solid fat content in cheese at 4 degrees C: 71.6 +/- 4.9%. The organization of triglyceride molecules in fat crystals, elucidated at a molecular level using X-ray diffraction, corresponded to the coexistence of 2 lamellar structures (2L 40.5 angstroms and 3L 54.6 angstroms) with four polymorphic forms: alpha, two beta' and beta. A schematic representation of the multiscale organization of triglycerides and phospholipids in cheese is proposed.  相似文献   

13.
Esters are important contributors to cheese flavor, but their mechanisms of synthesis in cheese are largely unknown. This study aimed to determine whether ethanol concentration limits the formation of ethyl esters in cheese. Mini Swiss cheeses were manufactured with (E) or without (C) the addition of ethanol to cheese milk. Ethanol concentrations (enzymatic analysis) were 64 +/- 17 and 330 +/- 82 microg g(-1), respectively, in C and E cheeses. E cheeses also contained 5.4 +/- 2.3 times more of the five ethyl esters quantified than C cheeses, regardless of the concentrations of esters in C cheeses (range 1-128 ng g(-1)). Furthermore, the presence of propionibacteria added as acid-producing secondary starters was associated with greater concentrations of esters, due to the increase in acid concentrations that propionibacteria induced and/or to an involvement of propionibacteria enzymes in ester synthesis. This study demonstrates that ethanol is the limiting factor of ethyl ester synthesis in Swiss cheese.  相似文献   

14.
Mild cheese flavor in reduced fat Cheddar cheese was enhanced by using an integrated starter culture system. Three cultures, Lactococcus lactis subsp. cremoris SK11, L. lactis subsp. lactis biovar. diacetylactis JVI, and Lactobacillus casei 7A, were carefully selected to obtain a nonbitter, mildly acid, buttery flavored cheese. Cheeses were produced from all possible combinations of these cultures with the constraint that L. lactis subsp. cremoris SK11 was used as the primary acid-producing culture. Cheeses made with SK11 were compared to cheeses produced using an L. lactis subsp. cremoris commercial starter culture. Cheeses were ripened for 150 days and periodically sampled for chemical, microbiological, and sensory analysis. Cheeses produced with L. lactis subsp. cremorisSK11 had substantially lower bitterness intensity than the cheeses produced with commercial starter culture. L. lactis subsp. lactis biovar. diacetylactis JVI significantly increased diacetylacetoin and acetate concentrations. Sensory results indicate that these cheeses had increased buttery (diacetyl) flavor.  相似文献   

15.
An internal standard method was previously developed to measure the concentration of a synthetic bitter peptide, beta-CN f193-209, by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The objective of this study was to evaluate the relationship between beta-CN f193-209 concentration in an aqueous extract of aged Cheddar cheese and bitterness intensity of the cheese. Concentrations of beta-CN f193-209 in cheese extracts were determined by MALDI-TOF at 0, 120, 180, and 270 days. Trained panels evaluated the bitterness intensity of the cheeses at 180 and 270 days. Correlation coefficients between MALDI and sensory data at 180 and 270 days were 0.803 and 0.554, respectively. The decreased correlation may be due to the presence of other bitter peptides more responsible for bitterness at longer aging or the production of compounds that mask bitterness intensity.  相似文献   

16.
Vitamin A was determined in fortified chocolate milk and skim milk; vitamin D was determined in fortified chocolate milk, skim milk, and vitamin D concentrates, using reverse phase high pressure liquid chromatography (HPLC). The sample is saponified, extracted with hexane, and chromatographed in an HPLC system on a 10 micron Vydac TP reverse phase C18 column, using acetonitrile-methanol (9+1) as the mobile phase. For 6 replicates, the recoveries of vitamins A and D, using this procedure, were 99 and 98%, respectively.  相似文献   

17.
Two mixtures of Propionibacterium freudenreichii commercial strains were tested as adjunct cultures in pasteurized milk Raclette cheese to investigate the ability of propionibacteria (PAB) to enhance flavor development. Cheese flavor was assessed by a trained sensory panel, and levels of free amino acids, free fatty acids, and volatile compounds were determined. The PAB level showed a 1.4 log increase within the ripening period (12 weeks at 11 degrees C). Eye formation, which was not desired, was not observed in PAB cheeses. PAB fermented lactate to acetate and propionate and produced fatty acids by lipolysis, branched chain volatile compounds derived from isoleucine and leucine catabolism and some esters. One of the experimental cheeses received the highest scores for odor and flavor intensity and was characterized by higher frequencies of detection for some minor notes ("propionic"and "whey" odor, "sweet" taste). PAB can therefore be considered as potential adjunct cultures to enhance or modify cheese flavor development.  相似文献   

18.
Three amino acid-balanced, vitamin- and mineral-fortified peanut spreads were stored at 4, 23, and 40 degrees C for 3 months. These were 69.6% peanut/19% soybean-40.5% fat, 61.9% peanut/19% soybean-44.5% fat, and 74.1% peanut/14% nonfat dry milk (NFDM)-40% fat. The peanut spreads were fortified with vitamin A, thiamin, riboflavin, vitamin B(6), vitamin C, calcium, and iron to provide 33.3% of the Recommended Dietary Allowances for children. Water-soluble vitamins were quite stable in deaerated peanut spreads. The antioxidant activity of phytochemicals in soybean prevented vitamin A degradation in soy-containing spreads, whereas the NFDM spread lost 70% of the initial content. Instron analysis detected major changes in texture when peanut spreads were stored at 40 degrees C, suggesting that the polymorphic form of lipid transformed and the proper crystallization of stabilizer was destroyed. Panelists did not detect the texture changes in peanut spreads stored at different temperatures. At 40 degrees C, the primary deteriorative changes in sensory quality were increased browning and the development of "soybean" and "oxidized" flavors as well as decreased "roasted peanutty" flavor.  相似文献   

19.
Daily intake levels of vitamin E in the range of 200–800 IU are now recommended for its antioxidant effect. However, only vitamin E supplements or fortified foods may provide these high intake levels. As a fortified food, breads were prepared containing 200, 400, 800, or 1,600 IU of added vitamin E (dl‐α‐tocopheryl acetate) per pound loaf. These levels of fortification exerted no adverse effects on bread quality. However, only about two‐thirds of the added vitamin E was retained (recovered) in the breads, with retention values showing no further significant change during the seven‐day shelf‐life of the product. In fresh breads, vitamin E retention values were nearly the same (range 66.3–68.5%, average 67.2%) at all levels of vitamin E tested; this may hold true for levels not tested. Factoring in an average retention value of 67.2%, and actual potency (81.8%) of the vitamin E source used, a 50‐g serving of bread fortified with 1,600 IU of vitamin E per loaf would provide nearly one‐fourth of a suggested daily intake of 400 IU.  相似文献   

20.
To enhance the understanding of the quality traits of goat's milk cheeses, rheological and proteolytic properties of Monterey Jack goat's milk cheese were evaluated during 26 weeks of 4 degrees C storage. As expected with aging, beta-casein levels decreased with concomitant increases in peptide levels and were correlated with changes in rheological properties of the cheese. Hydrolysis of the protein matrix resulted in more flexible (increased viscoelastic properties) and softer (decreased hardness, shear stress, and shear rigidity) cheeses. During the first 4-8 weeks of storage, cheese texture changed significantly (P < 0.05) and then stabilized. Characterization of rheological and proteolytic properties of the goat's milk semihard cheese during aging provided insight into the changes occurring in the protein matrix, the relationship to structure, and a shift in cheese quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号