首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为进一步研究污泥薄层在过热蒸汽干燥中湿分扩散机理与有效扩散系数,根据干燥法测定有效扩散系数计算时往往忽略物料湿含量变化对有效扩散系影响,该文采用傅里叶数法和优化法分别计算2、4、6和10 mm厚度污泥薄层,在120~280℃过热蒸汽温度下的有效扩散系数,分析有效扩散系数与过热蒸汽温度、薄层厚度之间的关系。计算分析结果表明:采用傅里叶数法和优化法得出的有效扩散系数数值基本一致,能更为精确反应污泥薄层过热蒸汽干燥有效扩散系数值及变化特性;傅里叶数法和优化法算得4 mm厚度污泥在120~280℃过热蒸汽干燥有效扩散系数分别为2.52×10-10~2.93×10-9 m2/s与2.75×10-10~3.32×10-9 m2/s;2、4、6和10 mm厚度污泥在160℃过热蒸汽干燥时2种方法计算的有效扩散系数分别为3.84×10-10~2.28×10-9 m2/s与4.40×10-10~2.72×10-9 m2/s;有效扩散系数随着过热蒸汽温度、薄层厚度增大而逐渐增大,并成线性关系。通过多元线性回归得到2种方法计算的有效扩散系数与干燥温度、薄层厚度简化的表达式,决定系数分别为0.9982、0.9956。计算结果可为污泥薄层过热蒸汽干燥湿分扩散过程与有效扩散系数的变化分析提供参考。  相似文献   

2.
为研究污泥薄层在过热蒸汽干燥和热风干燥过程中有效扩散系数及活化能,搭建了常压内循环式干燥试验装置。在160~280℃温度下,分别对4、10 mm污泥薄层进行过热蒸汽干燥和热风干燥。利用Fick扩散模型,建立有效扩散系数和干燥时间的关系,试验得到4 mm污泥薄层过热蒸汽干燥与热风干燥的有效扩散系数范围分别为7.1515×10-9~2.4852×10-8m2/s和1.2414×10-8~2.2769×10-8 m2/s;10 mm污泥薄层过热蒸汽干燥与热风干燥的有效扩散系数范围分别为1.9659×10-8~5.8811×10-8 m2/s和2.8042×10-8~5.6095×10-8 m2/s。根据Arrhenius经验公式建立有效扩散系数与温度的关系,得到4、10 mm污泥薄层过热蒸汽干燥和热风干燥的平均活化能分别为21.173、18.085和9.485、11.191 kJ/mol。用Midilli薄层干燥模型模拟得出的过热蒸汽干燥与热风干燥有效扩散系数和活化能与试验值基本吻合。研究结果表明:当温度超过260℃时,过热蒸汽干燥的有效扩散系数比热风干燥有效扩散系数大。过热蒸汽干燥有效扩散系数随温度增加的趋势近乎成一条斜直线,而热风干燥的有效扩散系数增加趋势则是曲线性,说明热风干燥过程中存在氧化、燃烧的可能。文章确定了污泥薄层干燥有效扩散系数值及过热蒸汽干燥逆转点温度,为污泥过热蒸汽干燥参数优化与干燥设备设计提供参考。  相似文献   

3.
基于图像处理的过热蒸汽与热风干燥污泥收缩特性分析   总被引:1,自引:1,他引:0  
为了解污泥过热蒸汽与热风干燥过程收缩特性,搭建了常压过热蒸汽和热风干燥试验台,选用直径为50 mm厚度为10 mm的污泥样品在160和200℃下进行试验。利用图像处理技术分析干燥过程污泥收缩现象及特性,采用叠加技术,建立了基于无限大平板和无限长圆柱体叠加而成的有限圆平板在考虑收缩情况下的Fick第二定律湿分扩散模型,并结合经验模型推导出计算有效扩散系数的表达式。结果表明:污泥在干燥过程中存在明显的收缩现象,前段干燥收缩幅度大,后段干燥收缩幅度小,收缩变化规律与水分变化规律一致。160、200℃污泥过热蒸汽与热风干燥终了时刻体积比约为0.3,体积收缩系数为0.7。过热蒸汽干燥和热风干燥对污泥的收缩影响一致。160、200℃污泥过热蒸汽与热风干燥有效扩散系数的变化与水分比的变化相对应。在考虑污泥收缩的条件下,160、200℃污泥过热蒸汽干燥平均有效扩散系数分别为1.92×10-8和3.75×10-8 m2/s,热风干燥平均有效扩散系数分别为0.94×10-8和1.31×10-8 m2/s,约为不考虑收缩条件下平均有效扩散系数值的1/2。试验结果为污泥干燥过程机理分析、工艺参数优化和干燥设备开发提供参考。  相似文献   

4.
为了确定较优的污泥过热蒸汽干燥工艺参数,搭建了常压过热蒸汽干燥试验台,选取相对单位能耗和平均干燥强度为评价指标,采用三因素二次正交旋转组合试验设计,建立了污泥过热蒸汽干燥工艺参数评价指标与过热蒸汽温度、污泥质量和过热蒸汽流量之间的数学模型。通过试验数据分析表明:建立的相对单位能耗和平均干燥强度回归方程决定系数R2分别为0.842和0.797;3个因子对2个评价指标影响大小的顺序均为:污泥质量蒸汽流量蒸汽温度;污泥过热蒸汽干燥相对单位能耗最优工艺条件为:蒸汽温度为215℃,污泥质量为26 g(厚度约为8 mm),蒸汽流量为30 m3/h,在此条件下相对单位能耗预测值为281.313 k J/g,验证试验得到实际相对单位能耗为280 k J/g,相对误差为0.467%。该试验结果可为污泥过热蒸汽干燥工艺参数优化及干燥设备研制提供参考。  相似文献   

5.
污泥低温干燥动力学特性及干燥参数优化   总被引:3,自引:3,他引:0  
为了研究污泥的低温干燥动力学特性,以薄层污泥为研究对象进行了低温干燥试验,探讨了温度、薄层厚度以及风速对污泥水分比和干燥速率的影响,并对低温干燥参数进行了优化.结果表明:污泥低温干燥过程主要由升速和降速段组成,其中降速阶段存在第一、第二降速阶段;不同低温干燥条件下的第二临界含水率变化不大,大致在0.5g/g(干基)附近.使用决定系数R2、卡方χ2及均方根误差RMSE对6种常用干燥模型进行评价,结果表明Midilli模型的平均R2最大、平均χ2及RMSE最小,分别为0.9998、2.46×10-5、0.0042,是描述污泥低温热风干燥的最优模型.根据Fick第二定律和Arrhenius方程,得到5、10和15mm厚度污泥在50~90℃热风干燥的水分有效扩散系数和活化能.正交试验得到相对单位能耗最优干燥工艺为:温度90℃、风速0.8m/s、厚度10mm,平均干燥强度最优工艺为干燥温度90℃、风速0.8m/s、厚度5mm.试验结果可为后续研究污泥热泵干燥及太阳能-热泵联合干燥提供参考.  相似文献   

6.
红外联合气体射流冲击方法缩短哈密瓜片的干燥时间   总被引:14,自引:13,他引:1  
为了缩短哈密瓜片干制时间,应用中短波红外联合气体射流冲击方法干燥哈密瓜片,研究了干燥温度(50、55、60、65、70、75和80℃)、辐射距离(80、120和160 mm)和切片厚度(3、5、7、9和11 mm)对哈密瓜片干燥动力学、水分有效扩散系数、干燥活化能的影响。试验结果表明:与其他干燥技术相比,中短波红外联合气体射流冲击干燥哈密瓜片的干燥时间大幅缩短,约为2~3.5 h;哈密瓜片整个干燥过程属于降速干燥,通过费克第二定律求出了干燥过程中水分有效扩散系数在10.65×10-10~33.76×10-10m2/s和8.06×10-10~39.97×10-10m2/s的范围内分别随着干燥温度和切片厚度的增大而增大;通过阿尼乌斯公式计算出了干燥活化能为7.788 kJ/mol,表明中短波红外联合气体射流冲击干燥哈密瓜片时,启动干燥所需能量较低,水分脱除较为容易;哈密瓜片表面温度的动力曲线表明,中短波红外联合气体射流冲击干燥中能量直接与水分耦合,使物料在中前期干燥过程中温度迅速上升,加速了干燥进程。该研究为哈密瓜片中短波红外联合气体射流冲击干燥技术的应用提供了理论依据和技术支持。  相似文献   

7.
荷花粉真空脉动干燥特性和干燥品质   总被引:9,自引:8,他引:1  
为了缩短花粉的干燥时间,保证干燥品质,将真空脉动干燥技术应用于干燥新鲜荷花粉,研究了真空保持时间(15、12、9、6和3 min)、干燥温度(45、50、55、60和65℃)对干燥动力学、水分有效扩散系数、干燥活化能的影响,并运用Weibull分布函数模拟了花粉真空脉动干燥特性曲线;此外还研究了真空保持时间、干燥温度对花粉蛋白质含量以及微观结构的影响,并对干燥前后的花粉进行了色差分析。试验结果表明:Weibull分布函数能够很好地描述花粉的真空脉动干燥过程,结合尺度参数、形状参数计算出花粉真空脉动干燥水分有效扩散系数在2.154 2×10-11~6.254 3×10-11 m2/s之间;干燥活化能为20.88 k J/mol,表明新鲜荷花粉干燥每脱除1 kg水所需要的启动能量为1 160.00 k J;试验参数范围内,随着真空保持时间的减少,干燥后花粉蛋白质质量分数呈现先增加后减少的趋势;当干燥温度为45℃,真空常压脉动比为12 min:3 min时花粉蛋白质质量分数最高,为18.43%;扫描电镜结果显示,随着干燥温度的升高,花粉颗粒间致密程度降低,形成孔隙结构,这有助于干燥中水分的扩散迁移,花粉颗粒微观结构的完整性随着干燥温度的升高而降低;干燥前后花粉未发生色泽劣变。荷花粉真空脉动干燥的较佳参数为真空常压脉动比为12 min:3 min,干燥温度为45℃。研究结果为花粉真空脉动干燥技术的应用提供了理论依据和技术支持。  相似文献   

8.
利用非稳态菲克第二定律计算苹果片变温压差膨化干燥过程中水分扩散系数,讨论膨化温度、抽空温度和切片厚度对苹果片干燥过程中水分扩散的影响.采用Page、Henderson&Pabis和Logarithmic3种数学模型对苹果膨化干燥过程中水分的扩散进行了模型拟合,由模型统计参数平均偏差(MBE)、相对平均标准差(RMSE)、卡方(X2)、模型拟合效率(EF)值及决定系数r2评价模型优劣.结果表明:Logarithmic模型能够很好地描述苹果片变温压差膨化干燥中水分扩散的过程(r2≥0.97).试验设定工艺参数下,有效水分扩散系数De.在98.034×10-12 ~274.165×10-12m2 ·s-1之间,并且有效水分扩散系数随膨化温度、抽空温度的升高而升高;随切片厚度的增加而降低.  相似文献   

9.
过热蒸汽干燥凝结段的干燥动力学特性   总被引:4,自引:2,他引:2  
为了深入了解过热蒸汽干燥过程的机理,进而优化干燥操作,开展了褐煤热空气干燥和过热蒸汽干燥对比试验,结果表明:在过热蒸汽干燥的初始阶段存在明显的蒸汽凝结现象,其干燥动力学特性与热空气干燥存在明显不同。通过对过热蒸汽干燥动力学过程的理论分析,研究了过热蒸汽凝结对干燥过程初始阶段的影响。在热空气干燥过程数学模型的基础上,结合过热蒸汽的凝结现象,对过热蒸汽干燥的数学模型进行了改进。经试验结果验证,改进的数学模型具有很好的拟合精度,决定系数大于0.97。研究为优化干燥设备设计和操作条件提供了依据。  相似文献   

10.
莲子薄层热风干燥特性与水分变化规律   总被引:6,自引:4,他引:2  
为了解莲子干燥过程中水分传递过程,监控、预测水分变化,该文通过开展莲子薄层热风干燥试验,考察了莲子在不同干燥温度(50、60、70、80、90℃)下干燥特性,建立了莲子热风干燥试验模型;利用低场核磁共振技术(nuclear magnetic resonance,NMR),弛豫时间(transverse relaxation time,T2)和成像(nuclear magnetic resonance imaging,MRI),考察了干燥过程中莲子内部水分分布状态与变化规律。结果表明,莲子干燥一直处于降速干燥段;干燥温度显著影响干燥过程(P0.05),干燥温度升高,干燥时间缩短;通过比较4种数学模型,发现莲子干燥过程采用Midilli模型(决定系数R20.998)进行准确模拟(相对误差E10%);有效扩散系数在6.056 7×10-10~1.660 3×10-9 m2/s之间,并随着干燥温度的升高而增大;活化能为24.268 5 k J/mol。核磁共振试验表明,半结合水是莲子的特征水分,占新鲜莲子总水分的85.59%,其脱除过程呈现指数特征(R20.91);干燥过程中,不同状态的水分流动性变差。莲子内部存在水分梯度,表层最先失去水分,莲芯水分最后脱除;干燥终止时,剩余水分主要存在于莲芯部位。MRI为确定莲子干燥终点提供了直观的参考依据。研究结果可为控制莲子热风干燥过程、优化干燥工艺参数提供理论依据。  相似文献   

11.
地热——太阳能干燥室温室兼用装置的热源是低温地热能(60~70℃地热水)和太阳能。该装置夏季用于干燥,冬季用于温室栽培,使一套装置多种用途,全年使用。该装置通过强制通风和自然通风的选择,地热水流量、新风风量和回风风量的调节,在干燥过程中实现了低温地热能和太阳能的合理匹配与互补,满足了不同工况的要求。  相似文献   

12.
辣椒热风干燥特性的研究(简报)   总被引:12,自引:5,他引:7  
为了为辣椒热风干燥及设备参数的调整提供理论依据,该文对辣椒进行热风干燥试验,研究其在不同热风温度、风速和装载厚度条件下的热风干燥特性.分析试验得出的不同条件下的干燥特性曲线,然后运用Marlab软件对散点图进行有效拟合,并将其转化成干燥速率曲线.结果表明:温度对辣椒干燥的影响最大,其次为风速和装载厚度;辣椒的干燥过程在初期的大多数时间内处于恒速干燥阶段,然后则处于缓慢降速干燥阶段.  相似文献   

13.
冯谦  王冠  王芳 《农业工程学报》2008,24(7):264-268
为更有效地利用巨大而宝贵的桑枝资源,该文针对桑枝屑工厂化生产利用中需对物料进行抽样并快速检测其含水率的要求,依据烘干失重的测试原理,比较了桑枝屑的高温真空干燥方法和微波干燥方法.着重考察了物料初始重量、初始含水率、温度、真空度以及时间等工艺参数对干燥结果的影响.试验表明,无论采用哪种方法,物料的干燥曲线大致为预热、恒速、减速干燥3个阶段;在高温真空干燥中,温度较真空度对干燥速度的影响更为明显;在微波干燥中,微波功率对干燥速度的影响较大;微波干燥方法具有干燥速度快、对物料含水率检测更准确等优点.  相似文献   

14.
荔枝常压与减压干燥过程的试验研究   总被引:4,自引:2,他引:4  
在干燥介质相对湿度基本不变和不同的温度条件下,考察了荔枝整果和果皮、果肉、果核各部分在常压和减压下的干燥特性及干燥过程中果内温度的变化特性。查明了果膜对果肉及果核中水分向果壳迁移的抑制力很强;减压干燥虽有利于果皮中的水分扩散,但并不能有效地促使荔枝果肉及果核中水分向外迁移;在整个干燥过程中,整果内的温度上升速度比较缓慢。  相似文献   

15.
玉米丸粒化种子的薄层干燥试验及其干燥模型   总被引:4,自引:4,他引:4       下载免费PDF全文
玉米丸粒化种子刚制成后其含水率比较大,必须及时干燥。其干燥工艺的合理选择对提高干燥效率,减少能耗,保证质量非常重要。采用正交试验的方法,对玉米丸粒化种子进行了3因素3水平的干燥试验,得出其干燥曲线为指数曲线,并分析各试验因素对干燥特性的影响。同时对不同风温下的干燥曲线进行了模型比较,采用多元线性回归分析程序,经拟合得出适合于玉米丸粒化种子的数学模型为Page模型。玉米丸粒化种子干燥特性不同于非丸粒化种子,丸粒化种子有其特定的薄层干燥方程。该模型能较好地预测各干燥阶段的干燥速率及含湿量,确定合理的干燥工艺以便调控干燥环境,达到高效低耗的目的。  相似文献   

16.
双孢菇片微波真空干燥特性及工艺优化   总被引:4,自引:2,他引:2  
为解决双孢菇的干制问题,采用微波真空干燥技术对双孢菇片进行干燥试验,研究双孢菇片的干燥特性,并与热风干燥、真空干燥和冷冻干燥方法进行比较。研究结果显示,微波真空干燥时,微波强度对双孢菇片的干燥速率有显著影响,而真空度影响较小,最优的干燥参数为:微波强度为17.4 W/g,真空度70 kPa,干燥时间20 min,含水率可达6.9%。通过对比4种干燥方法的干制时间及产品的复水率、色泽和维生素C含量,可知微波真空干燥的菇片品质接近冷冻干燥,明显优于热风干燥和真空干燥,而微波真空干燥在干制时间方面要比冷冻干燥明显缩短。微波真空干燥是适合双孢菇片的有潜力的干制技术。  相似文献   

17.
为减少脱水蔬菜冷冻干燥过程的能耗,以胡萝卜片为试材,采用真空微波和冷冻干燥组合的工艺,即先微波真空后冻干(组合Ⅰ)和先冻干后微波真空干燥(组合Ⅱ)。组合Ⅰ的优化参数为:真空微波阶段微波功率密度1.6w/g,脱去40个百分点的湿基水,冻干阶段升华干燥4 h,解析干燥3 h;组合Ⅱ的优化参数为:冻干阶段升华干燥7 h;真空微波干燥功率密度选1.0w/g以下,采用温度控制模式。所干燥胡萝卜片的β-胡萝卜素保留率和复水率等与纯冻干产品接近,体积保留率比纯冻干稍小,但仍能保持平直的外形;两种组合干燥工艺比纯冻干分别节能47.0%和54.2%,且干燥时间可缩短一半。  相似文献   

18.
红枣微波-热风联合干燥特性及对其品质的影响   总被引:12,自引:8,他引:4  
为了提高红枣干制品的品质,在分段热风干燥和微波间歇干燥的基础上,采用微波+高温热风+低温热风的联合干燥方式干燥红枣,研究不同干燥方式下红枣的干燥特性和品质。结果表明:联合干燥方式的干燥时间比分段热风干燥缩短11%以上;分段热风干燥的红枣内部温度高于表面温度,微波间歇干燥的红枣温度升高幅度大,干燥速率高。300g红枣在119W下微波干燥12min,间歇4min,重复7次(转换点干基含水率≤99%),然后55℃热风干燥9h(转换点干基含水率≤66%),最终50℃热风干燥12h(干燥方式Ⅳ)的条件下干燥的红枣总维生素C含量最高,褐变系数相对较低,复水效果最好,能耗较低,是较优的红枣微波-热风联合干燥组合。微波-热风联合干燥是适合红枣干燥的较好技术方法。  相似文献   

19.
为了提高海米的干燥质量,利用高压电场和热风组合方式对海米进行了干燥试验研究,并与单纯高压电场及单纯热风干燥进行比较,研究结果表明,利用35 kV的高压电场加45℃C热风的组合干燥方式进行海米的干燥,所需干燥时间比同温度下单纯热风干燥缩短50%,干燥能耗降低51.9%,其干燥速度与80℃下的单纯热风干燥速度相近,但干燥海米的收缩率和复水率比80℃时单纯热风干燥均有不同程度的改善.利用组合干燥方法所得干燥海米的10 min和20 min复水率分别比80℃时热风干燥高2.3个百分点和1.33个百分点,收缩率小5.5个百分点,干燥海米具有良好的感官品质和适中疏密程度的组织结构.较之单纯热风干燥,组合干燥具有优势,是一种良好的替代方法.  相似文献   

20.
荔枝的微波干燥特性及其对品质的影响研究   总被引:18,自引:5,他引:18  
针对荔枝热风干燥中存在的问题,应用自制的微波干燥试验测试系统,采用间歇干燥工艺,试验研究了荔枝微波干燥特性及干燥条件对干后品质、能耗的影响。结果表明:荔枝微波干燥主要处于恒速阶段,干燥速度取决于不同的间歇比;温度变化可分为上升和趋于稳定两个阶段;微波间歇时间对干后品质有显著影响,干燥能耗受间歇比的影响,但主要影响因素是加热时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号