首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
基于近红外高光谱图像的黄瓜叶片色素含量快速检测   总被引:5,自引:0,他引:5  
利用高光谱图像技术和高效液相色谱法(HPLC)快速检测了新鲜黄瓜叶中叶绿素a、叶绿素b、β-胡萝卜素和叶黄素4种色素含量。采集了120片黄瓜叶的近红外高光谱图像数据以及用HPLC精确测定黄瓜叶中色素含量;提取高光谱图像中50×50像素感兴趣区域(ROI)的平均光谱与4种色素含量分别建立偏最小二乘(PLS)预测模型;为了提高模型的稳定性和预测精度,分别采用区间偏最小二乘(iPLS)、向后区间偏最小二乘(BiPLS)和联合区间偏最小二乘(SiPLS)对各种色素对应的特征波段进行优选,同时对光谱划分数进行了优化。结果表明BiPLS和SiPLS对应模型的预测效果较好,对叶绿素a、叶绿素b、β-胡萝卜素和叶黄素4种色素的预测集相关系数RP分别为0.825 7、0.813 4、0.811 6、0.826 2。  相似文献   

2.
通过区间偏最小二乘法(iPLS)谱区筛选方法、反向区间偏最小二乘法(biPLS)谱区筛选方法和联合区间偏最小二乘法(siPLS)谱区筛选方法优化光谱特征区间,建立黄酮含量分析模型,并与波数范围为4 000~8 000 cm-1的全光谱偏最小二乘(PLS)模型进行比较。结果表明,采用siPLS谱区筛选方法将全光谱均匀划分21个子区间,选择两个子区间(7、12区间)联合时,建立的siPLS谱区筛选模型预测效果最佳,其交互验证均方根误差和预测均方根误差分别为2.950 0和3.000,校正集和预测集相关系数分别为0.938 4和0.943 7。因此采用siPLS谱区筛选方法可以有效选择光谱特征区域,提高建模预测能力,实现银杏叶总黄酮含量的快速检测。  相似文献   

3.
基于多元校正法的香梨糖度可见/近红外光谱检测   总被引:3,自引:0,他引:3  
应用可见/近红外光谱透射技术结合多元校正法探讨了样品在不同温度条件(5、10、15、20℃)下香梨糖度的快速无损检测。在波长500~900nm范围内,用逐步多元线性回归(SMLR)、偏最小二乘法(PLS)、最小二乘支持向量机(LS-SVM1、LS-SVM2)和遗传算法-偏最小二乘法(GA-PLS)等多种多元校正法进行了建模预测比较研究。预测结果从优到差依次为LS-SVM2、LS-SVM1、GA-PLS、PLS、SMLR。  相似文献   

4.
利用可见-近红外光谱技术结合最小二乘支持向量机(LS-SVM)对不同贮存温度下的蜂花粉进行鉴别.选择-20、4、15、25和40℃ 5个温度下分别贮存60d后的蜂花粉为研究对象.对原始光谱数据进行平滑和附加散射校正(MSC)的预处理后进行主成分分析,选择4~20个主成分作为输入变量进行LS-SVM建模.模型预测参数比较结果显示,当主成分数取20时模型的预测效果最好,预测相关系数r2p≥0.9919,预测标准偏差(SEP)和预测均方根误差(RMSEP)分别为1.7854和1.7675,优于偏最小二乘回归(PLS)的预测结果,说明基于LS-SVM的可见-近红外光谱技术能够很好地对蜂花粉贮存温度进行检测.  相似文献   

5.
针对目前面粉灰分含量的检测方法存在操作繁琐、耗时长、费时费力和检测效率低等问题,运用近红外光谱分析技术检测面粉的灰分含量,选择最优的光谱预处理方法和光谱范围,采用偏最小二乘法(PLS)及BP神经网络算法进行定量分析研究。结果表明:采用偏最小二乘法(PLS)所建的定量分析模型的决定系数R2为90.66,预测均方根误差RMSEP为0.055 3,总偏差为0.0279 3;用BP神经网络预测总偏差为0.036 7。研究发现,近红外光谱技术用于快速无损检测面粉灰分含量是可行的,且PLS、BP神经网络算法可进行面粉灰分含量预测。  相似文献   

6.
基于近红外光谱技术的紫薯贮藏期间花青素含量检测   总被引:1,自引:0,他引:1  
紫薯采后贮藏过程中,受环境因素影响,紫薯花青素会逐渐发生降解,导致紫薯色泽变化,营养品质下降。应用近红外光谱技术对贮藏期间的紫薯花青素含量变化进行了分析,建立了快速无损检测模型。实验采集了不同贮藏时间紫薯样本(120个)的近红外光谱,基于全波长范围4 000~10 000 cm-1结合不同光谱信号预处理方法(数据卷积平滑、一阶求导、标准正态变量变换(SNV))建立紫薯花青素的PLS(偏最小二乘)、SNV-PLS、i PLS(区间偏最小二乘)、GA-PLS(遗传算法-偏最小二乘)定量预测模型。结果显示,全波段经SNV为最优的原始光谱预处理方法。对经SNV预处理的光谱进行i PLS、GA特征波段筛选,所建立的GA-PLS模型预测效果最佳,预测集决定系数R2v和均方根误差为0. 913 6和7. 239 8 mg/(100 g),剩余预测偏差为3. 339 7。研究结果表明,应用近红外光谱技术可以较好地检测紫薯花青素含量,研究结果可为紫薯加工原料智能筛选以及贮藏品质监测提供一种可靠手段。  相似文献   

7.
醋醅中微生物群落及其代谢产物是镇江香醋独特口感和风味形成的关键因素。研究醋醅微生物的快速识别方法,有利于监控醋醅微生物的群落组成及其动态变化情况,保障发酵产品品质。利用近红外光谱技术对醋醅中5种形态相似的常见杆菌进行快速检测。首先采集5种杆菌菌落的近红外光谱信息,并利用PCR方法对5种杆菌进行生物学鉴别(分别为地衣芽孢杆菌、短小芽孢杆菌、嗜酸乳杆菌、枯草芽孢杆菌和醋酸杆菌),然后利用K-最近邻法和最小二乘支持向量机法建立5种杆菌的近红外光谱识别模型,结果表明当主成分为4时,LS-SVM模型对应的校正集识别率为100%,预测集识别率为97.50%。  相似文献   

8.
通过分析56个不同发酵池种子醋醅乙醇脱氢酶(ADH)的活性与56个对应接种池的不挥发酸和总酸的关系,得出将种子ADH活性控制在600~700 U/m L时,被接种池的醋醅品质较高。利用嗅觉可视化技术结合误差反向传播人工神经网络(BP-ANN)模型,快速检测种子ADH活性和预测被接种池不挥发酸及总酸质量分数。结果表明,BP-ANN模型预测ADH、不挥发酸、总酸的相关系数分别为0.781 6、0.844 7和0.946 3。因此,嗅觉可视化技术结合BP-ANN可有效预测醋酸发酵过程中的理化指标。  相似文献   

9.
芝麻油掺伪的近红外透射光谱检测技术   总被引:2,自引:0,他引:2  
采用近红外光谱技术结合间隔偏最小二乘法分别建立芝麻油中掺入大豆油、玉米油和花生油的定量检测模型。实验配制不同比例的掺假芝麻油混合样品,采集样品在4 000~12 000 cm-1范围内的近红外透射光谱,把数据分为校正集与预测集。将4 420~12 000 cm-1波段的光谱进行各种预处理,最佳方法为平滑预处理,并利用间隔偏最小二乘波长筛选法(iPLS)选取光谱特征波段,最后采用偏最小二乘法建立掺假芝麻油的定标模型。结果显示:3种掺假芝麻油的PLS模型预测相关系数分别达到0.998、0.999、0.999,预测均方根误差分别为0.24%、0.24%和0.19%,具有较高的预测精度。实验证明近红外光谱技术对芝麻油掺假的快速检测具有可行性。  相似文献   

10.
贺城  杨增玲  黄光群  廖娜  韩鲁佳 《农业机械学报》2011,42(10):125-128,104
实现秸秆和煤混燃物中秸秆含量快速检测对制定生物质混燃发电补贴方法具有重要意义.收集我国不同地区、不同品种秸秆样品81个,煤样品9个,样品粉碎后,按不同秸秆质量分数(1% ~ 30%)制备样品90个,其中60个为校正集,30个为独立验证集.用傅里叶变换近红外光谱仪进行光谱扫描,分别采用间隔偏最小二乘法(iPLS)和遗传算法(GA)进行波长选择,用偏最小二乘法(PLS)建立定量分析模型.研究结果表明,采用GA - PLS方法,最优模型建模数据点从3 001个减少到33个,独立验证集决定系数为0.89,预测标准差为2.87%,相对分析误差为3.06.近红外光谱技术结合GA - PLS建模用于快速检测秸秆和煤混燃物中秸秆含量具有可行性.  相似文献   

11.
本文研究醋柳红素胶囊对老龄小鼠的抗氧化作用。给予老龄小鼠不同剂量的醋柳红素胶囊内容物灌胃,连续30d,检测小鼠血清中超氧化物歧化酶(SOD)活性,全血谷胱甘肽过氧化物酶(GSH—PX)活性和过氧化脂质(MDA)的含量。结果表明醋柳红素胶囊无提高小鼠红细胞SOD活性,能提高GSH—PX活性,显著降低小鼠血中MDA含量,结果显示醋柳红素胶囊具有抗氧化作用。  相似文献   

12.
沙棘是一种营养价值很高的果实,含有丰富的氨基酸、脂肪酸、微量元素,特别是维生素C含量很高。通过微生物发酵法生产出沙棘果醋,并经精心调制而成的沙棘醋酸饮料,具有美容保健之功效。  相似文献   

13.
我国红薯年产量占全世界的80%以上。随着薯类淀粉加工业的发展,大量薯渣没有被合理利用。对红薯薯渣酿醋在技术、经济上的可行性进行了全面分析,认为该项技术是可行的,且经济、社会效益显著。  相似文献   

14.
青梅果醋醋酸发酵工艺的优化   总被引:3,自引:2,他引:1  
以青梅为原料,采用液体发酵法对青梅果醋的醋酸发酵工艺进行了试验。将人工神经网络和正交试验相结合,提出了一种新的数据处理和分析方法,利用神经网络特有的自学能力,通过仿真、评估和优化,获得了醋酸发酵的优化工艺,即发酵时间为70h,起始酒精度为7%,接种量为11%。  相似文献   

15.
木醋液对牛粪好氧堆肥理化特性与育苗效果的影响   总被引:1,自引:0,他引:1  
传统的牛粪好氧堆肥作为育苗基质利用,其育苗效果差,加入调理剂是改善育苗效果的重要手段。为研究木醋液对牛粪好氧堆肥物料理化特性及育苗效果的影响,以牛粪、小麦秸秆为原料,木醋液添加量为0、1%、3%、5%,在自主设计的小试堆肥反应器中进行好氧堆肥试验。选取黄瓜为指示植物,使用堆肥腐熟料进行育苗试验。结果表明:随着木醋液添加量的升高,堆肥物料的含水率、总氮含量、总磷含量、K+含量及有机质降解率呈现上升趋势,pH值、电导率呈现下降趋势;低浓度(添加量1%)木醋液可促进纤维素、半纤维素的降解,发芽指数最高,为79.17%,且1%木醋液处理组的壮苗指数最高,为0.0449g,显著高于其他3组(P<0.05)。  相似文献   

16.
基于嗅觉可视化与图像处理的食醋醋龄检测   总被引:1,自引:0,他引:1       下载免费PDF全文
应用基于色敏传感器阵列的嗅觉可视化系统对不同醋龄的食醋进行鉴别。运用系统的图像处理模块,比较了不同方法对目标图像的中心点定位和特征区域选取的影响。尤其在基于不同颜色空间提取特征值方面,对比了RGB、HSV、Lab颜色空间,结果表明Lab的效果最好。利用3种颜色空间中获得的特征数据并结合主成分分析(PCA)和线性判别分析(LDA)等模式识别方法,鉴别食醋醋龄,Lab颜色空间下的训练集和预测集识别率均大于90%。  相似文献   

17.
为探究木醋液在植物病害生物防治中的实际应用及对其病原真菌呼吸作用的影响,试验采用菌丝生长速率法测定其对 7 种植物病原真菌的抑菌活性,并研究其对供试敏感菌株——黄色镰刀菌(Fusarium culmorum)的菌体三羧酸循环关键酶和能量代谢的影响。结果表明:木醋液对 7 种供试植物病原真菌均有一定的抑制效果,其中对供试敏感菌株——黄色镰刀菌(Fusarium culmorum)的抑菌作用表现最为显著,其 EC50 值为 4.98 μL/mL,在浓度 5.5 μL/mL 时,木醋液对其孢子萌发和生物量抑制率分别达 90.09% 和 95.22 %;经木醋液处理后,黄色镰刀菌的呼吸速率受到抑制,琥珀酸脱氢酶和苹果酸脱氢酶活性降低,三磷酸腺苷含量降低,二磷酸腺苷和磷酸腺苷含量先升高后降低,能荷水平降低,表明木醋液抑制了黄色镰刀菌的呼吸代谢,阻碍了三羧酸循环的正常运行,干扰了其能量代谢,导致菌体细胞功能紊乱。初步探明,木醋液主要是通过破坏菌体呼吸代谢来实现其抑菌效果。  相似文献   

18.
利用自主研制的嗅觉可视检测仪对镇江产的3种原料的食醋进行鉴别,并对3种不同批次的米醋进行区分。利用不同色敏材料对不同食醋挥发气体的响应信号进行判别分析,得出了9种卟啉和6种酸碱指示剂组成的传感器阵列的LDA训练集和预测集的识别率均为100%,说明嗅觉可视化可很好地用于食醋种类的鉴别;单纯通过5种酸碱指示剂鉴别的LDA训练集和预测集的识别率分别为100%,98.33%,说明酸碱指示剂对不同种类食醋的鉴别起了主要作用;单纯利用5种卟啉对3种食醋的训练集和预测集的识别率分别为96.67%,80%,说明传感器阵列可抑制醋中高浓度乙酸,响应醋中的微量成分。用15种色敏材料制得的传感器阵列对3个批次的米醋的响应信号进行判别分析,其训练集和预测集的识别率均为77.78%。结果表明,嗅觉可视检测仪对不同原料和批次的食醋均有很好的识别能力。  相似文献   

19.
试验研究活性污泥厌氧初期吸附降解木醋液及产甲烷情况。结果表明,活性污泥对木醋液的厌氧初期吸附在10min内达到动态平衡,木醋液降解率为15.6%,主要是物理性吸附;10min后,吸附为物理性和生物性吸附共同作用;伴随着吸附过程木醋液中有机物的水解酸化,醋酸和丙酸含量增加,pH值下降;被吸附降解的有机物以酚类化合物为主;木醋液及其主要有机物的吸附过程可以很好地用Freundlich吸附等温方程描述;甲烷产量随着木醋液初始体积分数的增加而增加。  相似文献   

20.
荔枝果醋液态发酵工艺优化   总被引:3,自引:0,他引:3  
研究了荔枝果醋加工中的液态酒精与醋酸发酵工艺,试验表明添加4 g/L的多肽,可促进酒精发酵过程中菌种生长和风味成分(酯及氨基酸态氮)的生成.采用四因素二次通用旋转组合设计优化了酒精发酵工艺条件,当接种量0.15%(安琪酵母和菌株CICC 1312的体积比为2∶1)、还原糖质量浓度为18 g/(100 mL)、发酵温度为30℃、pH值为4.5时,发酵体的酒精度达9.76%.通过L_9(3~4)正交试验优化的醋酸发酵工艺条件为:接种量10%、温度33℃、酒精度6%;此条件下,荔枝果醋总酸质量浓度为5.99 g/(100 mL),总酯质量浓度为0.48 g/L,氨基酸态氮质量浓度达59.8 mg/(100 mL).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号