首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Experiments at two sites growing winter wheat show that in order to manage a wheat canopy more effectively, the use of specific remote sensing techniques both to monitor crop canopy expansion, and to determine variable nitrogen applications at key timings is required. Variations in seed rate were used to achieve a range of initial crop structures, and treatments were compared to standard farm practice. In the first year, the effect of varying seed rate (250, 350 and 450 seeds m−2) on crop structure, yield components and grain yield, was compared to the effects of underlying spatial variation. Plant populations increased up to the highest rate, but shoot and ear populations peaked at 350 seeds m−2. Compensation through an increased number of grains per ear and thousand grain weight resulted in the highest yield and gross margin at the lowest seed rate. In later experiments, the range of seed rates was extended to include 150 seeds m−2, each sown in 24 m wide strips split into 12 m wide halves. One half received a standard nitrogen dose of 200 kg [N] ha−1, the other a variable treatment based on near ‘real-time’ maps of crop growth. Both were split into three applications, targeted at mid-late tillering (early March), growth stages GS30-31 (mid April) and GS33 (mid May). At each timing, calibrated aerial digital photography was used to assess crop growth in terms of shoot population at tillering, and canopy green area index at GS30-31 and GS33. These were compared to current agronomic guidelines. Application rates were then varied below or above the planned amount where growth was above- or below-target, respectively. In the first field, total nitrogen doses in the variable treatments ranged from 188 to 243 kg [N] ha−1, which gave higher yields than the standards at all seed rates in the range 0·36–0·78 t ha−1 and gross margins of £17 to £60 ha−1. In the second field, variable treatments ranged from 135 to 197 kg [N] ha−1 that resulted in lower yields of −0·32 to +0·30 t ha−1. However, in three out of the four seed rates, variable treatments produced higher gross margins than the standard, which ranged from £2 to £20 ha−1. In both fields, the greatest benefits were obtained where the total amount of applied nitrogen was similar to the standard, but was applied variably rather than uniformly along the strips. Simple nitrogen balance calculations have shown that variable application of nitrogen can have an overall effect on reducing the nitrogen surplus by one-third.  相似文献   

2.
Soil moisture and gaseous N-flux (N2O, N2) dynamics in Costa Rican coffee plantations were successively simulated using a mechanistic model (PASTIS) and two process-based models (NGAS and NOE). Two fertilized (250 kg N ha−1 y−1) coffee plantations were considered, namely a monoculture and a system shaded by the N2 fixing legume species Inga densiflora. In situ N2O fluxes were previously measured in these plantations. NGAS and NOE used specific microbial activities for the soils. To parameterize NGAS, we estimated N mineralization via in situ incubations and the contribution of heterotrophic soil respiration to total soil respiration. Potential denitrification rates and the proportion of denitrified N emitted as N2O were measured in the laboratory to define the values of NOE parameters, as well as nitrification rates and related N2O production rates for parameterizing both models. Soil moisture and both NGAS and NOE N2O fluxes were best modelled on an hourly time step. Soil moisture dynamics were satisfactorily simulated by PASTIS. Simulated N2O fluxes by both NGAS and NOE (3.2 and 2.1 kg N ha−1 y−1 for NGAS; 7.1 and 3.7 kg N ha−1 y−1 for NOE, for the monoculture and shaded plantations respectively) were within a factor of about 2 of the observed annual fluxes (4.3 and 5.8 kg N ha−1 y−1, for the monoculture and shaded plantations respectively). Statistical indicators of association and coincidence between simulated and measured values were satisfactory for both models. Nevertheless, the two models differed greatly in describing the nitrification and denitrification processes. Some of the algorithms in the model NGAS were apparently not applicable to these tropical acidic Andosols. Therefore, more detailed information about microbial processes in different agroecosystems would be needed, notably if process-oriented models were to be used for testing strategies for mitigating N2O emissions.  相似文献   

3.
A field experiment was conducted for two crop cycles during 2003–2005 and 2004–2006 at the Indian Institute of Sugarcane Research, Lucknow in subtropical India. Trichoderma viride and Gluconacetobacter diazotrophicus amended farm yard manure (FYM) increased organic carbon (19.44 Mg ha−1) and available nitrogen (260 kg N ha−1) content of soil from 14.78 Mg ha−1 (OC) and 204 kg N ha−1 observed under farmer's practice (sole N application). Application of bioagents amended FYM improved soil porosity and reduced compaction (bulk density—1.39 Mg m−3 over 1.48 Mg m−3 under farmer's practice). Sugarcane ratoon crop removed the highest amount of nitrogen (N—165.7 kg ha−1), phosphorus (P—24.01 kg ha−1) and potassium (K—200.5 kg ha−1) in the plots receiving FYM with Trichoderma and Gluconacetobacter. Inoculation of FYM with bioagents improved population of ammonifying and nitrifying bacteria in the soil. Phosphorus and potassium uptake of the crop was greatest in the plots receiving FYM, Trichoderma and Gluconacetobacter. Bioagents (Trichoderma and Gluconacetobacter) amended FYM increased ratoon cane (70.2 Mg ha−1) and sugar yields (7.93 Mg ha−1) compared with control (62.3 and 7.06 Mg ha−1 ratoon cane and sugar yields, respectively).  相似文献   

4.
Soil water and nutrients play an important role in increasing sorghum (Sorghum bicolor L. Moench) yields in the Vertisols of semi-arid tropics during post-rainy season. The effects of tillage practices, organic materials and nitrogen fertilizer on soil properties, water conservation and yield of sorghum were evaluated during winter seasons of 1994–1995 and 1995–1996 on deep Vertisols at Bijapur in the semi-arid tropics of Karnataka State (Zone 3) of south India. Conservation and availability of water and nutrients during different stages of crop growth were increased by deeper tillage resulting in increased grain yield of winter sorghum. Medium and deep tillage increased the grain yield by 23% (1509 kg ha−1) and 57% (1919 kg ha−1) during 1994–1995 and 14% (1562 kg ha−1) and 34% (1835 kg ha−1) during 1995–1996, respectively, over shallow tillage. Water use efficiency increased from shallow (4.90 kg ha−1 mm−1) to deep tillage (7.30 kg ha−1 mm−1). Greater water use efficiency during 1994–1995 as compared to 1995–1996 was attributed to lower consumptive use of water during 1994–1995. Among organic materials, application of Leucaena loppings conserved larger amounts of water and increased winter sorghum yield and water use efficiency. Application of Leucaena loppings increased the winter sorghum grain yield by 9% (mean of 1994–1995 and 1995–1996) as compared to vermicompost. Significantly (P < 0.05) higher water use efficiency of 6.32 kg ha−1 mm−1 was observed in Leucaena loppings incorporated plots compared to 5.72 kg ha−1 mm−1 from vermicompost. Grain yield increased by 245 kg ha−1 with application of 25 kg N ha−1 in 1994–1995, and a further increase in N application to 50 kg ha−1 increased the grain yield by about 349 kg ha−1 in 1995–1996. Deep tillage with application of 25 kg N ha−1 resulted in significantly higher sorghum yield (2047 kg ha−1) than control during 1994–1995. Deep tillage with integrated nutrient management (organic and inorganic N sources) conserved higher amount of soil water and resulted in increased sorghum yields especially during drought years.  相似文献   

5.
Land preparation for mechanisation in vineyards of the Anoia–Alt Penedès region, NE Spain, has required major soil movements, which has enormous environmental implications not only due to changes in the landscape morphology but also due to soil degradation. The resulting cultivated soils are very poor in organic matter and highly susceptible to erosion, which reduces the possibilities of water intake as most of the rain is lost as runoff. In order to improve soil conditions, the application of organic wastes has been generalised in the area, not only before plantation but also every 3–4 years at rates of 30–50 Mg ha− 1 mixed in the upper 30 cm.These organic materials are important sources of nutrients (N and P) and other elements, which could reduce further fertilisation cost. However, due to the high susceptibility to sealing of these soils, erosion rates are relatively high, so a higher nutrient concentration on the soil surface increases non-point pollution sources due to runoff.The aim of this study is to analyse the influence of applied composted cattle manure on infiltration, runoff and soil losses and on nutrients transported by runoff in vineyards of the Alt Penedès–Anoia region, NE Spain. In the two plots selected for the analysis, composted cattle manure had been applied in alternate rows 1 year previous to the study. In each plot soil surface samples (0–25 cm) were taken and compared to those of plots without manure application. The study was carried out at laboratory scale using simulated rainfall. Infiltration rates were calculated from the difference between rainfall intensity and runoff rates, and the sediment and total nitrogen and phosphorus were measured for each simulation. In addition, the influence of compost was investigated in the field under natural rainfall conditions by analysing the nutrient concentration in runoff samples collected in the field (in the same plots) after seven rainfall events, which amount different total precipitation and had different erosive character.Compost application increases infiltration rates by up to 26% and also increases the time when runoff starts. Sediment concentration in runoff was lower in treated (13.4 on average mg L− 1) than in untreated soils (ranging from 16.8 to 23.4 mg L− 1). However, the higher nutrient concentration in soils produces a higher mobilisation of N (7–17 mg L− 1 in untreated soils and 20–26 mg L− 1 in treated soils) and P (6–7 mg L− 1 in untreated soils and 13–19 mg L− 1 in treated soils). A major part of the P mobilised was attached to soil particles (about 90% on average) and only 10% was dissolved. Under natural conditions, higher nutrient concentrations were always recorded in treated vs. untreated soils in both plots, and the total amount of N and P mobilised by runoff was higher in treated soils, although without significant differences. Nutrient concentrations in runoff depend on rainfall erosivity but the average value in treated soils was twice that in untreated soils for both plots.  相似文献   

6.
Few studies address nutrient cycling during the transition period (e.g., 1–4 years following conversion) from standard to some form of conservation tillage. This study compares the influence of minimum versus standard tillage on changes in soil nitrogen (N) stabilization, nitrous oxide (N2O) emissions, short-term N cycling, and crop N use efficiency 1 year after tillage conversion in conventional (i.e., synthetic fertilizer-N only), low-input (i.e., alternating annual synthetic fertilizer- and cover crop-N), and organic (i.e., manure- and cover crop-N) irrigated, maize–tomato systems in California. To understand the mechanisms governing N cycling in these systems, we traced 15N-labeled fertilizer/cover crop into the maize grain, whole soil, and three soil fractions: macroaggregates (>250 μm), microaggregates (53–250 μm) and silt-and-clay (<53 μm). We found a cropping system effect on soil Nnew (i.e., N derived from 15N-fertilizer or -15N-cover crop), with 173 kg Nnew ha−1 in the conventional system compared to 71.6 and 69.2 kg Nnew ha−1 in the low-input and organic systems, respectively. In the conventional system, more Nnew was found in the microaggregate and silt-and-clay fractions, whereas, the Nnew of the organic and low-input systems resided mainly in the macroaggregates. Even though no effect of tillage was found on soil aggregation, the minimum tillage systems showed greater soil fraction-Nnew than the standard tillage systems, suggesting greater potential for N stabilization under minimum tillage. Grain-Nnew was also higher in the minimum versus standard tillage systems. Nevertheless, minimum tillage led to the greatest N2O emissions (39.5 g N2O–N ha−1 day−1) from the conventional cropping system, where N turnover was already the fastest among the cropping systems. In contrast, minimum tillage combined with the low-input system (which received the least N ha−1) produced intermediate N2O emissions, soil N stabilization, and crop N use efficiency. Although total soil N did not change after 1 year of conversion from standard to minimum tillage, our use of stable isotopes permitted the early detection of interactive effects between tillage regimes and cropping systems that determine the trade-offs among N stabilization, N2O emissions, and N availability.  相似文献   

7.
To date, the most widely adopted resource conserving technology in the Indo-Gangetic Plains (IGP) of South Asia has been zero-tillage (ZT) wheat after rice, particularly in India. The paper reviews and synthesizes the experience with ZT in the Indian IGP. ZT wheat is particularly appropriate for rice–wheat systems in the IGP by alleviating system constraints by allowing earlier wheat planting, helping control the weed Phalaris minor, reducing production costs and saving water. ZT wheat after rice generates substantial benefits at the farm level (US$97 ha−1) through the combination of a ‘yield effect’ (a 5–7% yield increase, particularly due to more timely planting of wheat) and a ‘cost savings effect’ (US$52 ha−1, particularly tillage savings). These benefits explain the widespread interest of farmers and the rapidity of the diffusion across the Indian IGP, further aided by the wide applicability of this mechanical innovation.  相似文献   

8.
On-site and off-site environmental impacts of runoff and erosion are usually stressed in order to bring to the public's attention the importance and implications of soil erosion. However, few studies are aimed at calculating the economic implications of erosion, this being the message that farmers and/or policy makers understand best. In this current work we estimated the cost of erosion in vineyards in the Penedès–Anoia region (NE Spain), in which high intensity rain storms (> 80–100 mm h− 1) are frequent. Modern plantations in the region consist of trained vines, usually planted perpendicular to the maximum slope direction. Broadbase terraces are interspersed between vine rows to intercept surface runoff and convey it out of the field. Part of the sediment generated above these terraces is deposited in them and other parts are either deposited beyond the boundaries of the fields or are exported to the main drainage network. High intensity rainfall produces heavy soil losses (up to 207 Mg ha− 1 computed in an extreme event in June 2000, which had a maximum intensity in 30-min periods of up to 170 mm h− 1). To estimate the cost of erosion in vineyard fields of this region, two important aspects were considered. These were a) the cost incurred by the maintenance of the broadbase terraces, drainage channels and filling of ephemeral gullies and b) the cost incurred by the loss of fertilisers (mainly N and P) caused by erosion. According to farmers' records, the former was estimated at 7.5 tractor-hour ha− 1 year− 1 (as average), which comprises 5.4% of the income from grape sales. Regarding N and P losses, nutrients exported by runoff were 14.9 kg ha− 1 N and 11.5 kg ha− 1 of P, which, if compared to the annual intakes, represent 6% and 26.1% of the N and P respectively. In economic terms, the replacement value of the N and P lost represents 2.4% for N or 1.2% for P of the annual income from the sale of the grapes.  相似文献   

9.
Broiler chicken (Gallus gallus) manure, a rich source of plant nutrients, is generated in large quantities in southeastern USA where many row crops, such as corn (Zea mays L.), are also extensively grown. However, the use of broiler manure as an economical alternative source of nutrients for corn production has not been extensively explored in this region. This study was conducted to examine the use of broiler litter as a source of nutrients for corn production, as influenced by tillage and litter rate, and any residual effects following application. In addition, the consequence of litter application to soil test nutrient levels, particularly P, Zn and Cu, was explored. The treatments consisted of two rates of broiler litter application, 11 and 22 Mg ha−1 on a wet weight basis, and one rate of chemical fertilizer applied under no-till and conventional tillage systems. Treatments were replicated three times in a randomized complete block design. Corn was grown with broiler litter and inorganic fertilizer applied to the same plots each year from 1998 to 2001. In 2002 and 2003, corn was planted no-till, but only N fertilizer was applied in order to make use of other residual litter nutrients. Soil samples were taken yearly in the spring prior to litter application and 4 years after the cessation of litter application to evaluate the status of the residual nutrients in soil. Two years out of the 4-year experiment, broiler litter application produced significantly greater corn grain yield than equivalent chemical fertilizer application and produced similar grain yield in the other 2 years. Corn grain yield was significantly greater under no-till in 1999, but significantly greater under conventional-till in 2000, and no difference between the two tillage systems were observed in 1998 and 2001. With 4 years of litter application, Mehlich-3 P increased from an initial 18 mg kg−1 to 156 mg kg−1 with 11 Mg ha−1 litter and to 257 mg kg−1 with 22 Mg ha−1 litter. For every 6 kg ha−1 of P applied in poultry litter Mehlich-3 P was increased by 1 mg kg−1. Modest increases in Mehlich-3 Cu and Zn did not result in phytotoxic levels. This study indicated that an optimum rate of broiler litter as a primary fertilizer at 11 Mg ha−1 applied in 4 consecutive years on a silt loam soil produced corn grain yields similar to chemical fertilizer under both no-till and conventional tillage systems and kept soil test P, Cu and Zn levels below values considered to be harmful to surface water quality or the crop.  相似文献   

10.
The net dry flux of ammonia gas was measured between the atmosphere and a semi-natural grassland with low nitrogen input in Hungary, during the years of 2000 and 2001. A continuous flow denuder system was used to detect the ammonia concentrations at three levels (0.5, 1.0 and 2.0 m above the vegetation). Fluxes were calculated by the aerodynamic gradient method. According to the measurements, the net dry ammonia flux in the vegetation period is 0.37 kg N ha−1 (emission) and −5.0 kg N ha−1 (deposition) in the dormant season. For comparison the total atmospheric (dry + wet) input is −9.2 kg N ha−1 year−1 including all nitrogen forms and excluding ammonia. Net emission was observed only at daytime during the vegetation period when the canopy concentration exceeded the atmospheric ammonia concentration, due to an elevated stomatal compensation point. In all other times (night-time, outside the vegetation period) net deposition flux was observed. A sudden increase of N-input (application of 100 kg N ha−1 fertiliser) resulted in a large enhancement in emission during daytime, which lasted for 2-week period after the application of fertiliser, when the accumulated N-loss (emission factor) of fertiliser was amounted to approximately 1.3%. During night-time week deposition was detected from the fertilised sector suggesting that ammonia is emitted mainly by the plant through stomata in daytime, rather than from the soil. Measured fluxes have been compared to the prediction of a single layer compensation point model. The agreement is good, but some challenges remain for the selection of the parameterisation for individual model parameters.  相似文献   

11.
The objectives of the study were to identify principal hydrological pathways and source areas of N and P losses by multi-scale monitoring and to estimate total nutrient losses from the catchment. An agricultural catchment with rain-fed agriculture and irrigated paddy fields in subtropical China was monitored with regularly sampling, together with intensive sampling during and after rain storms. Regular weekly sampling showed that the N concentrations in the overland flows from the upland and paddy fields were higher than those from the streams, but lower than those in the subsurface waters. The N concentration, on average, was 10.0 mg L− 1 in the well and 1.7 mg L− 1 in the spring water, the former was 10.2 times as high as that in the stream waters (1.0–1.5 mg L− 1). Nitrogen and P in the overland flows originated dominantly in particulate forms from the uplands (over 70%) and in dissolved forms from the paddy fields. Inorganic N and P dominated in the streams and subsurface waters. The intensive sampling allowed us to establish flow-nutrient concentration relationships and to extrapolate nutrient losses during rainstorms without regular sampling. The extrapolation increased the estimated nutrient losses by about 30% to 50%. The average total nutrient losses within three water years were estimated as 21 kg N ha− 1 yr− 1 and 1 kg P ha− 1 yr− 1, accounting for 9.5% and 1.4% of chemical N and P fertilizers applied to the catchment after subtracting the nutrient inputs with irrigation and rainfall. The estimation showed that paddy fields were as important as the uplands in terms of nutrient losses. These results suggest that control of soil erosion and excessive irrigation could be effective to reduce nutrient export through overland flow and subsurface flow.  相似文献   

12.
Soybean (Glycine max (L.) Merr.) is an important crop in the southeastern United States, and thus there is a need for additional information on the effects of tillage, weed control methods and row spacing on soybean yields, weed populations and soil properties. The objective of this study was to determine the effects of three weed control methods (none, cultivation, and herbicide) and three row spacings (45, 60 and 90 cm) on soybeans planted in a conventionally prepared seedbed or planted in wheat stubble (no-till (NT)) on a Decatur silty clay loam (Rhodic Paleudult) soil during the 1987 and 1988 growing seasons. Following NT planting, soybean plots produced a seed yield of 3102 kg ha−1 with herbicide, 2911 kg ha−1 with cultivation and 2216 kg ha−1 with no weed control. On a conventionally prepared seedbed, herbicide and cultivation resulted in almost equal seed yields (3898 kg ha−1 and 3954 kg ha−1 respectively) which were significantly higher than those from the no weed control plots (3151 kg ha−1). Soybeans in narrow (45 cm) rows (3997 kg ha−1) consistently out-yielded those in the wider 60 cm rows (3130 kg ha−1) and 90 cm rows (2490 kg ha−1) in both growing seasons, results averaged across years showed that conventionally planted soybeans produced higher yields (3668 kg ha−1) than NT planted soybeans (2743 kg ha−1). The weed infestation was significantly less with herbicide or cultivation than with no weed control and also less in narrow rows (45 cm) than in wider rows (60 and 90 cm). Data on the soil properties (from a depth of 0–15 cm) showed that moisture content, organic matter content and total soil nitrogen were higher in NT plots than in conventional plots. Similarly, disease ratings and infestation of bacterial blight of soybean were significantly higher in NT than in conventional tillage systems.  相似文献   

13.
Little is known about nutrient fluxes and nutrient‐use efficiencies in urban and peri‐urban agriculture (UPA) of rapidly expanding cities in developing countries. Therefore, horizontal flows of carbon (C), nitrogen (N), phosphorus (P), and potassium (K) as well as leaching losses of mineral N and P were measured over 2 years in three representative agricultural production systems of Kabul. These comprised 21 gardens and 18 fields dedicated to vegetable farming, cereal farming, and table‐grape production (vineyards). Across sites (fields and gardens) biennial inputs averaged 375 kg N ha–1, 155 kg P ha–1, 145 kg K ha–1, and 15 kg C ha–1 while with harvests 305 kg N ha–1, 40 kg P ha–1, 330 kg K ha–1, and 7 kg C ha–1 were removed. In vegetable gardens, biennial net balances were 80 kg N ha–1, 75 kg P ha–1, –205 kg K ha–1, and 4 kg C ha–1, whereas in cereal farming biennial horizontal balances amounted to –155 kg N ha–1, 20 kg P ha–1, –355 kg K ha–1, and 5 kg C ha–1. In vineyards, corresponding values were 295 kg N ha–1, 235 kg P ha–1, 5 kg K ha–1, and 3 kg C ha–1. Annual leaching losses in two selected vegetable gardens varied from 70 to 205 kg N ha–1 and from 5 to 10 kg P ha–1. Night soil and irrigation water were the major sources among the applied nutrient inputs in all studied farming systems, contributing on average 12% and 25% to total N, 22% and 12% to total P, 41% and 53% to total K, and 79% and 10% to total C, respectively. The results suggest that soils in extensive cereal fields are at risk of N and K depletion and in vegetable gardens of K depletion, while vineyards may be oversupplied with nutrients possibly contributing to groundwater contamination. This merits verification.  相似文献   

14.
Linear erosion (LE), including rilling and gullying, has been identified as the major problem for sustainable agriculture in steepland areas. It causes severe environmental, economic, and social impacts. This issue is even more crucial in those areas undergoing rapid changes in land use, as for example northern Laos, and may dramatically affect soil conservation. Despite an increasing interest in the sloping lands of tropical areas, field evaluations of LE are still infrequent. Furthermore, the controlling environmental factors of topography, land use, climate and soils at the catchment level are seldom analysed. Our main objective was to quantify the spatial and temporal variations of LE at the catchment level and at a yearly basis. The study was conducted in a 0.62 km2 watershed of Laos (Luang Prabang province) representative of the slash and burn systems of sloping lands. Linear erosion was monitored from 2001 to 2003 within 9 sub-catchments of differing surface areas, topographic characteristics and land use. The length, depth and width of the linear erosion features were recorded every 5-m from their headcuts to their outlets in order to estimate the total catchment LE. 52 linear features, mainly rills, were formed or developed within the study area with a mean erosion rate of 1.3 Mg ha− 1 y− 1. LE rates ranged between 0.1 Mg ha− 1 y− 1 in 2003 to 2.4 Mg ha− 1 y− 1 in 2001. LE features mostly occurred within croplands where erosion rates reached 18 Mg ha− 1 y− 1. In 2001 and 2002 there was a significant correlation between LE and the proportion of the catchment area under crops (r = 0.88 and r = 0.69, respectively). However this was not the case in 2003 when few rills developed. In 2002 only, LE correlated well with the catchment surface area, the mean slope gradient and the sub-catchment perimeter confirming the non-constancy of LE landscape relation under varying rainstorm conditions. A linear regression model for LE prediction at the catchment level, generated from 2001 data, was able to explain 78% of LE variance for the 9 sub-catchments. However, this model was unable to predict accurately LE for 2002 and 2003 (ME > 5 Mg ha− 1 y− 1). This method for quantifying the linear erosion at the catchment level and some of its controlling factors can also be used for prediction over larger areas since topography and land use data, closely correlated with LE, are easily accessible.  相似文献   

15.
A simultaneous model for ultrasonic aggregate stability assessment   总被引:2,自引:1,他引:1  
A. Fristensky  M.E. Grismer   《CATENA》2008,74(2):153-164
Aggregate stability is a difficult to quantify, complex soil property. Ultrasonic processing of soil–water suspensions enables quantifiable and readily reproducible assessment of the level of mechanical energy applied to soil aggregates. Here, we present a method of investigating the stability and comminution of soil aggregates by simultaneously modeling the redistribution of particles throughout any arbitrarily-selected set of soil particle-size intervals as ultrasonic energy is applied to a soil–water suspension. Following model development, we demonstrate its application to 5 particle-size subgroups (0.04–2000 μm) of a Dystroxerept subject to 12 levels of ultrasonic energy between 0 and 5800 J g− 1 (750 mL− 1). Laser granulometry was used for particle-size distribution (PSD) analysis, providing precise, non-disruptive measurements of changes in the volume of PSD subgroups in both the microaggregate (< 250 μm; 3 subgroups) and macroaggregate (> 250 μm; 2 subgroups) fractions throughout ultrasonic treatment. Two groups of aggregates were detected exhibiting significantly (p < 0.05) different ultrasonic stability: a group composed exclusively of macroaggregates ranging 250–2000 μm in size, and a finer, relatively stable group ranging 20–1000 μm. The PSD of particles liberated from two aggregate groups significantly (p < 0.05) differed: the coarser, less-stable group liberated 13% clay (0.04–2 μm), 53% fine silt (2–20 μm), and 34% coarse silt and sand (20–250 μm); while the finer, more-stable group liberated 26% clay and 74% fine silt. The ultrasonic energy required to disrupt 25%, 50%, and 75% of all aggregates within a given PSD interval significantly (p < 0.05) differed between all selected intervals, showing a trend of declining stability with increasing particle-size. Both the flexibility of the proposed model and the extension of ultrasonic stability assessment to simultaneous analysis of both microaggregate and macroaggregate subgroups can facilitate broader application of ultrasonic methods to soil processes related research.  相似文献   

16.
A field trial was conducted during the kharif (rainy) seasons of 2002 and 2003 at the Research Farm, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India. The trial was carried out to study the effect of planting methods, sources and levels of nitrogen on soil properties, yield and NPK uptake by rice (Oryza sativa L.) under direct seeded condition. Planting methods significantly influenced the physical, chemical and biological properties of soil. Bulk density (1.385 g cm−3), organic carbon (0.43%) and soil moisture content (15.46%) were higher in zero till seeding plots than rotavator and conventional seeding. However, infiltration rate, soil temperature, pH and electrical conductivity showed a declining trend under this treatment and were found maximum (11.54 mm h−1, 36.21 °C at 55 DAS, 30.65 °C at harvest, 7.59 and 0.47 ds m−1) with conventional seeding. The maximum population of bacteria (25.60 × 105), fungi (14.26 × 104) and azotobactor (10.19 × 103) were found in the plot with zero till seeding while in case of actinomycetes the highest population (25.61 × 105) was found in conventional seeding. Nitrogen sources as well as levels failed to bring about any significant change in the soil properties. The highest grain (3825 kg ha−1) and straw yields (5446 kg ha−1) and N, P, K uptake were recorded in conventional seeding and were found significantly superior to zero till seeding (3144 kg ha−1) but it remained at par with rotavator seeding (3585 kg ha−1). Among the nitrogen sources, neem (Azadirachta indica) coated urea produced significantly higher grain (3761 kg ha−1) and straw yields (5396 kg ha−1) with greater NPK uptake than prilled urea and prilled urea + spent mentha. (The distillation waste of mint (Mentha arvensis) herbage is known as spent mentha.) Application of 150 kg N ha−1 produced maximum grain (3828 kg ha−1) and straw yields (5460 kg ha−1) although it remained at par with 100 kg N ha−1 (3738 and 5393 kg ha−1).  相似文献   

17.
Rainfed crop yields are low in semiarid central Spain because precipitation is limited and highly variable. Under these circumstances, producers have to adopt alternative tillage systems that convey a reduction in their unit costs of production to offset the continuous decline in commodity prices. Farmers respond to this situation in essentially two ways: there is a growing interest in adopting reduced tillage systems for seedbed preparation, and a trend to enlarge enterprises by acquiring more arable land either as ownership or tenancy. The objective of the present study was to assess, in semiarid conditions of central Spain, the economic feasibility of chisel ploughing (CP) and no-tillage (NT) systems compared to mouldboard ploughing (MP) for rainfed winter wheat (Triticum aestivum L.) and forage legume, either vetch (Vicia sativa L.) or pea (Pisum sativum L.), production on different farm sizes ranging from 100 to 1600 ha. A decision support system was used to solve for the least-cost machinery selection for each farm enterprise and tillage system considered. No differences were observed in either wheat or forage vetch crop yields averaged across several years, irrespective of the tillage system used. The economic performance was found to depend on the tillage system adopted and farm size. On average fuel consumption was 23% lower in CP and 62% in NT than in MP. Total variable unitary costs were 3.7 and 5.6% lower in CP and NT than in MP. The cost of herbicides in NT was €7.6 ha−1 year−1 higher than in MP and CP. Average unitary gross margins were 11.9 and 10.8% higher in NT than in MP and CP, respectively. If revenues were considered similar in the three tillage systems, MP would still exhibit the poorest economic results in all farm sizes, while CP performance would improve NT values in farm sizes with 200 ha, or less, of arable land. NT was clearly the most profitable system on farms with 400 ha or more of arable land. The 400 ha farm enterprise was observed to mark the breakeven point between the two reduced tillage systems, since up to that size CP was found to provide a better economic performance than NT.  相似文献   

18.
Results are presented from a 3 year investigation into nitrate leaching from isolated 0.4 ha grassland plots fertilized with 250, 500 and 900 kg N ha?1 a?1. Cumulative nitrate leaching over the 3 years was equivalent to 1.5%, 5.4% and 16.7% of the fertilizer applied at 250, 500 and 900 kg N ha?1 rates respectively. Over a whole drainage season, mean nitrate leachate concentrations at 250 kg N ha?1 did not exceed 4 mgl?1, although maximum values of 13.3 mgl?1 were observed. In contrast, at 900 kg N ha?1, the mean nitrate leachate concentration in two of the years exceeded 90 mgl?1. Mineral nitrogen balances constructed for the 1979 growing season indicated that leaching at 250 kg N ha?1 was low because net mineralization of soil organic nitrogen was small, and crop nitrogen uptake almost balanced fertilizer application. Although the pattern of nitrate leaching suggested that by-passing occurred in the movement of water down the soil profile, it was not possible to confirm this using simulation models of leaching. Possible reasons for this, including the occurrence of rapid water flow down gravitationally drained macropores, are discussed.  相似文献   

19.
Integrated crop–livestock management systems (ICLS) have been increasingly recommended in Brazilian agroecosystems. However, knowledge of their effect on soil organic carbon (SOC) and total nitrogen (TN) concentrations and stocks is still limited. The study was undertaken to evaluate the effects of ICLS under two tillage and fertilization regimes on SOC and TN concentrations and stocks in the 0–30 cm soil layer, in comparison with continuous crops or pasture. The following soil management systems were studied: continuous pasture; continuous crop; 4 years’ crop followed by 4 years’ pasture and vice-versa. The adjacent native Cerrado area was used as a control. Under the rotation and continuous crop systems there were two levels of soil tillage (conventional and no-tillage) and fertility (maintenance and corrective fertility). The stock calculations were done using the equivalent soil mass approach. The land use systems had a significant effect on the concentrations of SOC and TN in the soil, but no effect was observed for the soil tillage and fertilizer regimes. For these two latter, some significant discrepancies appeared in the distribution of SOC and TN concentrations in the 0–30 cm layer. Carbon storage was 60.87 Mg ha−1 under Cerrado, and ranged from 52.21 Mg ha−1 under the ICLS rotation to 59.89 Mg ha−1 with continuous cropping. The decrease in SOC stocks was approximately 8.5 and 7.5 Mg ha−1, or 14 and 12%, for continuous pasture and ICLS respectively. No-tillage for 10 years after the conversion of conventional tillage to no-tillage under the continuous crop system, and 13 years of conventional tillage in continuous cropping did not result in significant changes in SOC stocks. The SOC and TN stocks in surface layers, using the equivalent soil mass approach rather than the equivalent depth, stress the differences induced by the calculation method. As soil compaction is the principal feature of variability of stocks determinations, the thickness should be avoid in these types of studies.  相似文献   

20.
Previous studies have demonstrated inconsistent results on the impact of tillage systems on nitrogen (N) losses from field-applied manure. This study assessed the impact of no-tillage (NT) and conventional tillage (CT) systems on gaseous N losses, N2O:N2O + N2 ratios and NO3-N leaching following surface application of cattle manure. The study was undertaken during the 2003/2004 and 2004/2005 seasons at two field sites in Nova Scotia namely, Streets Ridge (SR) in Cumberland County and the Bio-environmental Engineering Centre (BEEC) in Truro. Results showed that the NT system had higher (p < 0.05) NH3 losses than CT. Over the two seasons, manure incorporation in CT reduced NH3 losses on average by 86% at SR and 78% at BEEC relative to NT. At both sites and during both seasons, denitrification rates and N2O fluxes in NT were generally higher than in CT plots, presumably due to higher soil water and organic matter content in NT. Over the two seasons, mean denitrification rates at SR were 239 and 119 g N ha−1 d−1, while N2O fluxes were 120 and 64 g N ha−1 d−1 under NT and CT, respectively. At BEEC mean denitrification rates were 114 and 71 g N ha−1 d−1, while N2O fluxes were 52 and 27 g N ha−1 d−1 under NT and CT, respectively. Conversely, N2O:N2O + N2 ratios were lower in NT than CT suggesting more complete reduction of N2O to N2 under NT. When averaged across all soil depths, NO3-N was higher (p < 0.05) in CT than NT. Nitrate-N decreased with depth at both sites regardless of tillage. In most cases, NO3-N was higher under CT than NT at all soil depths. Similarly, flow-weighted average NO3-N concentrations in drainage water were generally higher under CT. This may be partly attributed to higher denitrification rates under NT. Therefore, NT may be a viable strategy to remove NO3-N from the soil, and thus, reduce NO3-N contamination of groundwater. However, it should be noted that while the use of NT reduces NO3-N leaching it may come with unintended environmental tradeoffs, including increased NH3 and N2O emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号