首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 281 毫秒
1.
针对苹果采摘机器人识别算法包含复杂的网络结构和庞大的参数体量,严重限制检测模型的响应速度问题,本文基于嵌入式平台,以YOLO v4作为基础框架提出一种轻量化苹果实时检测方法(YOLO v4-CA)。该方法使用MobileNet v3作为特征提取网络,并在特征融合网络中引入深度可分离卷积,降低网络计算复杂度;同时,为弥补模型简化带来的精度损失,在网络关键位置引入坐标注意力机制,强化目标关注以提高密集目标检测以及抗背景干扰能力。在此基础上,针对苹果数据集样本量小的问题,提出一种跨域迁移与域内迁移相结合的学习策略,提高模型泛化能力。试验结果表明,改进后模型的平均检测精度为92.23%,在嵌入式平台上的检测速度为15.11f/s,约为改进前模型的3倍。相较于SSD300与Faster R-CNN,平均检测精度分别提高0.91、2.02个百分点,在嵌入式平台上的检测速度分别约为SSD300和Faster R-CNN的1.75倍和12倍;相较于两种轻量级目标检测算法DY3TNet与YOLO v5s,平均检测精度分别提高7.33、7.73个百分点。因此,改进后的模型能够高效实时地对复杂果园环境中的苹果进行检测,适宜在嵌入式系统上部署,可以为苹果采摘机器人的识别系统提供解决思路。  相似文献   

2.
针对自然果园环境下苹果果实识别中,传统的目标检测算法往往很难在检测模型的检测精度、速度和轻量化方面实现平衡,提出了一种基于改进YOLO v7的轻量化苹果检测模型。首先,引入部分卷积(Partial convolution,PConv)替换多分支堆叠模块中的部分常规卷积进行轻量化改进,以降低模型的参数量和计算量;其次,添加轻量化的高效通道注意力(Efficient channel attention,ECA)模块以提高网络的特征提取能力,改善复杂环境下遮挡目标的错检漏检问题;在模型训练过程中采用基于麻雀搜索算法(Sparrow search algorithm,SSA)的学习率优化策略来进一步提高模型的检测精度。试验结果显示:相比于YOLO v7原始模型,改进后模型的精确率、召回率和平均精度分别提高4.15、0.38、1.39个百分点,其参数量和计算量分别降低22.93%和27.41%,在GPU和CPU上检测单幅图像的平均用时分别减少0.003s和0.014s。结果表明,改进后的模型可以实时准确地识别复杂果园环境中的苹果,模型参数量和计算量较小,适合部署于苹果采摘机器人的嵌入式设备上,为实现苹果的无人化智能采摘奠定了基础。  相似文献   

3.
为实时准确地检测到自然环境下背景复杂的荔枝病虫害,本研究构建荔枝病虫害图像数据集并提出荔枝病虫害检测模型以提供诊断防治。以YOLO v4为基础,使用更轻、更快的轻量化网络GhostNet作为主干网络提取特征,并结合GhostNet中的核心设计引入更低成本的卷积Ghost Module代替颈部结构中的传统卷积,得到轻量化后的YOLO v4-G模型。在此基础上使用新特征融合方法和注意力机制CBAM对YOLO v4-G进行改进,在不失检测速度和模型轻量化程度的情况下提高检测精度,提出YOLO v4-GCF荔枝病虫害检测模型。构建的数据集包含荔枝病虫害图像3725幅,其中病害种类包括煤烟病、炭疽病和藻斑病3种,虫害种类包括毛毡病和叶瘿蚊2种。试验结果表明,基于YOLO v4-GCF的荔枝病虫害检测模型,对于5种病虫害目标在训练集、验证集和测试集上的平均精度分别为95.31%、90.42%和89.76%,单幅图像检测用时0.1671s,模型内存占用量为39.574MB,相比改进前的YOLO v4模型缩小84%,检测速度提升38%,在测试集中检测平均精度提升4.13个百分点,同时平均精度比常用模型YOLO v4-tiny、EfficientDet-d2和Faster R-CNN分别高17.67、12.78、25.94个百分点。所提出的YOLO v4-GCF荔枝病虫害检测模型能够有效抑制复杂背景的干扰,准确且快速检测图像中荔枝病虫害目标,可为自然环境下复杂、非结构背景的农作物病虫害实时检测研究提供参考。  相似文献   

4.
针对two-stage网络模型训练成本高,无人机搭载的边缘计算设备检测速度低等问题,提出一种基于改进YOLO v4模型的受灾树木实时检测方法,以提高对落叶松毛虫虫害树木的识别精度与检测速度。以黑龙江省大兴安岭地区呼玛县白银纳乡受落叶松毛虫侵害的落叶松无人机图像为数据,利用LabelImg软件标注75~100 m的无人机图像,构建落叶松毛虫虫害树木图像数据集。将CSPNet应用于YOLO v4模型的Neck架构,重新设计Backbone的特征提取网络——CSPDarknet53模型结构,并在CSPNet进行优化计算前的卷积中加入SENet以增加感受野信息,使其改变网络的深度、宽度、分辨率及网络结构,实现模型缩放,提高检测精度。同时,在PANet中使用CSPConvs卷积代替原有卷积Conv×5,最后经过YOLO Head检测输出预测结果。将YOLO v4-CSP网络模型部署至GPU进行训练,训练过程的内存降低至改进前的82.7%。再搭载至工作站进行测试,结果表明:改进的YOLO v4-CSP网络模型在测试阶段对虫害树木检测的正确率为97.50%,相比于YOLO v4的平均正确率提高3.4...  相似文献   

5.
为实现作物病害早期识别,本文提出一种基于红外热成像和改进YOLO v5的作物病害早期检测模型,以CSPD-arknet为主干特征提取网络,YOLO v5 stride-2卷积替换为SPD-Conv模块,分别为主干网络中的5个stride-2卷积层和Neck中的2个stride-2卷积层,可以提高其准确性,同时保持相同级别的参数大小,并向下阶段输出3个不同尺度的特征层;为增强建模通道之间的相互依赖性,自适应地重新校准通道特征响应,引入SE机制提升特征提取能力;为减少模型计算量,提高模型速度,引入SPPF。经测试,改进后YOLO v5网络检测性能最佳,mAP为95.7%,相比YOLO v3、YOLO v4、SSD和YOLO v5网络分别提高4.7、8.8、19.0、3.5个百分点。改进后模型相比改进前对不同温度梯度下的作物病害检测也有提高,5个梯度mAP分别为91.0%、91.6%、90.4%、92.6%和94.0%,分别高于改进前3.6、1.5、7.2、0.6、0.9个百分点。改进YOLO v5网络内存占用量为13.755MB,低于改进前基础模型3.687MB。结果表明,改进YOLO v5可以准确快速地实现病害早期检测。  相似文献   

6.
冀汶莉  刘洲  邢海花 《农业机械学报》2024,55(1):212-222,293
针对已有杂草识别模型对复杂农田环境下多种目标杂草的识别率低、模型内存占用量大、参数多、识别速度慢等问题,提出了基于YOLO v5的轻量化杂草识别方法。利用带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法对部分图像数据进行预处理,提高边缘细节模糊的图像清晰度,降低图像中的阴影干扰。使用轻量级网络PP-LCNet重置了识别模型中的特征提取网络,减少模型参数量。采用Ghost卷积模块轻量化特征融合网络,进一步降低计算量。为了弥补轻量化造成的模型性能损耗,在特征融合网络末端添加基于标准化的注意力模块(Normalization-based attention module,NAM),增强模型对杂草和玉米幼苗的特征提取能力。此外,通过优化主干网络注意力机制的激活函数来提高模型的非线性拟合能力。在自建数据集上进行实验,实验结果显示,与当前主流目标检测算法YOLO v5s以及成熟的轻量化目标检测算法MobileNet v3-YOLO v5s、ShuffleNet v2-YOLO v5s比较,轻量化后杂草识别模型内存占用量为6.23MB,分别缩小54.5%、12%和18%;平均精度均值(Mean average precision,mAP)为97.8%,分别提高1.3、5.1、4.4个百分点。单幅图像检测时间为118.1ms,达到了轻量化要求。在保持较高模型识别精度的同时大幅降低了模型复杂度,可为采用资源有限的移动端设备进行农田杂草识别提供技术支持。  相似文献   

7.
为了解决裂纹皮蛋分选中存在的效率低、人力成本高等问题,提出了一种基于改进YOLO v5的皮蛋裂纹在线检测方法。使用EfficientViT网络替换主干特征提取网络,并采用迁移学习对网络进行训练,分别得到YOLO v5n_EfficientViTb0和YOLO v5s_EfficientViTb1两个模型。YOLO v5n_EfficientViTb0为轻量化模型,相较于改进前参数量减少14.8%,浮点数计算量减少26.8%;YOLO v5s_EfficientViTb1为高精度检测模型,平均精度均值为87.8%。采用GradCAM++对模型可视化分析,得出改进模型减少了对背景区域的关注度,证明了改进模型的有效性。设计了视频帧的目标框匹配算法,实现了视频中皮蛋的目标追踪,依据皮蛋的检测序列实现了对皮蛋的定位和裂纹与否的判别。轻量化模型的判别准确率为92.0%,高精度模型的判别准确率为94.3%。研究结果表明,改进得到的轻量化模型为运算能力较差的皮蛋裂纹在线检测装备提供了解决方案,改进得到的高精度模型为生产要求更高的皮蛋裂纹在线检测装备提供了技术支持。  相似文献   

8.
玉米苗期杂草的实时检测和精准识别是实现精准除草和智能农业的基础和前提。针对保护性耕作模式地表环境复杂、杂草易受地表秸秆残茬覆盖影响、现有算法检测速度不理想等问题,提出一种适用于Jetson TX2移动端部署的秸秆覆盖农田杂草检测方法。运用深度学习技术对玉米苗期杂草图像的高层语义信息进行提取与分析,构建玉米苗期杂草检测模型。在YOLO v5s模型的基础上,缩小网络模型宽度对其进行轻量化改进。为平衡模型检测速度和检测精度,采用TensorRT推理加速框架解析网络模型,融合推理网络中的维度张量,实现网络结构的重构与优化,减少模型运行时的算力需求。将模型迁移部署至Jetson TX2移动端平台,并对各模型进行训练测试。检测结果表明,轻量化改进YOLO v5ss、YOLO v5sm、YOLO v5sl模型的精确率分别为85.7%、94%、95.3%,检测速度分别为80、79.36、81.97 f/s, YOLO v5sl模型综合表现最佳。在Jetson TX2嵌入式端推理加速后,YOLO v5sl模型的检测精确率为93.6%,检测速度为28.33 f/s,比模型加速前提速77.8%,能够在保证检...  相似文献   

9.
为方便调查宁夏全区荒漠草原植物种类及其分布,需对植物识别方法进行研究。针对YOLO v5s模型参数量大,对复杂背景下的植物不易识别等问题,提出一种复杂背景下植物目标识别轻量化模型YOLO v5s-CBD。改进模型YOLO v5s-CBD在特征提取网络中引入带有Transformer模块的主干网络BoTNet(Bottleneck transformer network),使卷积和自注意力相结合,提高模型的感受野;同时在特征提取网络融入坐标注意力(Coordinate attention, CA),有效捕获通道和位置的关系,提高模型的特征提取能力;引入SIoU函数计算回归损失,解决预测框与真实框不匹配问题;使用深度可分离卷积(Depthwise separable convolution, DSC)减小模型内存占用量。实验结果表明,YOLO v5s-CBD模型在单块Nvidia GTX A5000 GPU单幅图像推理时间仅为8 ms,模型内存占用量为8.9 MB,精确率P为95.1%,召回率R为92.9%,综合评价指标F1值为94.0%,平均精度均值(mAP)为95.7%,在VOC数据集...  相似文献   

10.
芽眼检测是马铃薯种薯智能切块首先要解决的问题,为实现种薯芽眼精准高效检测,提出了一种基于改进YOLO v5s的马铃薯种薯芽眼检测方法。首先通过加入CBAM注意力机制,加强对马铃薯种薯芽眼图像的特征学习和特征提取,同时弱化与芽眼相似的马铃薯种薯表面背景对检测结果的影响。其次引入加权双向特征金字塔BiFPN增加经骨干网络提取的种薯芽眼原始信息,为不同尺度特征图赋予不同权重,使得多尺度特征融合更加合理。最后替换为改进的高效解耦头Decoupled Head区分回归和分类,加快模型收敛速度,进一步提升马铃薯种薯芽眼检测性能。试验结果表明,改进YOLO v5s模型准确率、召回率和平均精度均值分别为93.3%、93.4%和95.2%;相比原始YOLO v5s模型,平均精度均值提高3.2个百分点,准确率、召回率分别提高0.9、1.7个百分点;不同模型对比分析表明,改进YOLO v5s模型与Faster R-CNN、YOLO v3、YOLO v6、YOLOX和YOLO v7等模型相比有着较大优势,平均精度均值分别提高8.4、3.1、9.0、12.9、4.4个百分点。在种薯自动切块芽眼检测试验中,改进Y...  相似文献   

11.
基于改进YOLO v4网络的马铃薯自动育苗叶芽检测方法   总被引:1,自引:0,他引:1  
为提高马铃薯幼苗叶芽检测识别的准确率,提高自动育苗生产系统的工作效率,提出了基于YOLO v4网络的改进识别网络。将YOLO v4特征提取部分CSPDarknet53中的残差块(Residual Block)替换为Res2Net,并采用深度可分离卷积操作减小计算量。由此,在增大卷积神经网络感受野的同时,能够获得叶芽更加细小的特征信息,减少马铃薯叶芽的漏检率。设计了基于扩张卷积的空间特征金字塔(D-SPP模块),并嵌入和替换到特征提取部分的3个特征层输出中,用于提高马铃薯叶芽目标识别定位的准确性。采用消融实验对改进策略的有效性进行了验证分析。实验结果表明,改进的识别网络对马铃薯叶芽检测的精确率为95.72%,召回率为94.91%,综合评价指标F1值为95%,平均精确率为96.03%。与Faster R-CNN、YOLO v3、YOLO v4网络相比,改进的识别网络具有更好的识别性能,从而可有效提高马铃薯自动育苗生产系统的工作效率。  相似文献   

12.
为提高马铃薯幼苗叶芽检测识别的准确率,提高自动育苗生产系统的工作效率,提出了基于YOLO v4网络的改进识别网络。将YOLO v4特征提取部分CSPDarknet53中的残差块(Residual Block)替换为Res2Net,并采用深度可分离卷积操作减小计算量。由此,在增大卷积神经网络感受野的同时,能够获得叶芽更加细小的特征信息,减少马铃薯叶芽的漏检率。设计了基于扩张卷积的空间特征金字塔(D-SPP模块),并嵌入和替换到特征提取部分的3个特征层输出中,用于提高马铃薯叶芽目标识别定位的准确性。采用消融实验对改进策略的有效性进行了验证分析。实验结果表明,改进的识别网络对马铃薯叶芽检测的精确率为95.72%,召回率为94.91%,综合评价指标F1值为95%,平均精确率为96.03%。与Faster R-CNN、YOLO v3、YOLO v4网络相比,改进的识别网络具有更好的识别性能,从而可有效提高马铃薯自动育苗生产系统的工作效率。  相似文献   

13.
基于改进YOLO v3的自然场景下冬枣果实识别方法   总被引:4,自引:0,他引:4  
为实现自然场景下冬枣果实的快速、精准识别,考虑到光线变化、枝叶遮挡、果实密集重叠等复杂因素,基于YOLO v3深度卷积神经网络提出了一种基于改进YOLO v3(YOLO v3-SE)的冬枣果实识别方法。YOLO v3-SE模型利用SE Net 的SE Block结构将特征层的特征权重校准为特征权值,强化了有效特征,弱化了低效或无效特征,提高了特征图的表现能力,从而提高了模型识别精度。YOLO v3-SE模型经过训练和比较,选取0.55作为置信度最优阈值用于冬枣果实检测,检测结果准确率P为88.71%、召回率R为83.80%、综合评价指标F为86.19%、平均检测精度为82.01%,与YOLO v3模型相比,F提升了2.38个百分点,mAP提升了4.78个百分点,检测速度无明显差异。为检验改进模型在冬枣园自然场景下的适应性,在光线不足、密集遮挡和冬枣不同成熟期的情况下对冬枣果实图像进行检测,并与YOLO v3模型的检测效果进行对比,结果表明,本文模型召回率提升了2.43~5.08个百分点,F提升了1.75~2.77个百分点,mAP提升了2.38~4.81个百分点,从而验证了本文模型的有效性。  相似文献   

14.
针对蚕茧加工过程中人工目测下茧效率低的问题,采用机器视觉的检测方法代替人工检测下茧。首先,根据图像采集系统成像的景深为线阵扫描相机选择合适的拍摄距离,并通过采样频率的计算进一步配置图像采集系统的参数;然后,用采集得到的线阵图像合成面阵图像构建下茧检测数据集;最后,以YOLO v4目标检测模型为基础模型设计出下茧实时检测模型(Inferior cocoons net, ICNet)。该模型通过K-means算法对下茧检测数据集聚类分析来预置候选框参数提升模型精度;采用模型深度调控的方法进行模型压缩,以降低模型权重所占储存空间,提升模型速度;设计轻量级卷积模块构建轻量级特征提取网络进一步提升模型的速度。实验结果表明,本文设计的ICNet下茧实时检测模型较原YOLO v4基础模型平均检测精度提升1.87个百分点,达到95.55%,模型权重所占储存空间压缩40.82%,降为145.00 MB,平均检测速度提升91.65%,达到49.37帧/s。  相似文献   

15.
奶牛体况评分是评价奶牛产能与体态健康的重要指标。目前,随着现代化牧场的发展,智能检测技术已被应用于奶牛精准养殖中。针对目前检测算法的参数量多、计算量大等问题,以YOLO v5s为基础,提出了一种改进的轻量级奶牛体况评分模型(YOLO-MCE)。首先,通过2D摄像机在奶牛挤奶通道处采集奶牛尾部图像并构建奶牛BCS数据集。其次,在MobileNetV3网络中融入坐标注意力机制(Coordinate attention, CA)构建M3CA网络。将YOLO v5s的主干网络替换为M3CA网络,在降低模型复杂度的同时,使得网络特征提取时更关注于牛尾区域的位置和空间信息,从而提高了运动模糊场景下的检测精度。YOLO v5s预测层采用EIoU Loss损失函数,优化了目标边界框回归收敛速度,生成定位精准的预测边界框,进而提高了模型检测精度。试验结果表明,改进的YOLO v5s模型的检测精度为93.4%,召回率为85.5%,mAP@0.5为91.4%,计算量为2.0×109,模型内存占用量仅为2.28 MB。相较原始YOLO v5s模型,其计算量降低87.3%,模型内存占用量减...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号