首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Towada Ando soils consisted of five soils—Towada-a (1,000 years old), Towada-b (2,000 years old), Chuseri (4,000 years old), Nanbu (8,600 years old), and Ninokura soils (10,000 years Amorphous clay materials of these soils taken at different localities were studied by the combined use of selective dissolution and differential infrared spectroscopy, X-ray analysis, electron microscopy, etc.

The main clay minerals of Towada-a soils, present-day soils, were montmorillonite-vermic-ulite chloritic intergrades and opaline silica, or these minerals and allophane in the humus horizons, and allophane in the non-humus ones. Towada-b soils overlain by the Towada-a soils showed the clay mineralogical constituents similar to those of Towada-a soils. However, allophane was one of the main clay minerals in all the humus horizons as well as non-humus ones. The main clay minerals of Chuseri soils were allophane and layer silicates consisting chiefly of chloritic intergrades and chlorite in the humus horizons, and allophane in the non-humus ones. Opaline silica was present in minor amounts in the humus horizons of Chuseri soils, but nearly absent in Nanbu and Ninokura soils.

There were remarkable differences in the clay mineralogical composition of Nanbu and Ninokura soils with differences of their environmental conditions. Allophane and imogolite Were dominant in the clay fractions of both humus and non-humus horizons of very shallowly buried Nanbu soil which was subjected to the strong leaching process. Allophane was the main clay mineral of deeply buried Nanbu and Ninokura soils which showed the absence of notable accumulation of bases and silica. On the contrary, halloysite with a small amount of siliceous amorphous material appeared in very deeply buried Nanbu and Ninokura soils where bases and silica were distinctly accumulated. The amounts of halloysite in the clay fractions were larger in the humus horizons than non-humus ones, and in Ninokura soil than Nanbu soil.

Soil age, soil organic matter, and depositional overburden of tephras were observed to be conspicuous among various factors relating to the weathering of amorphous clay materials in Towada Ando soils.  相似文献   

2.
A comparative assessment of pedogenetic processes in solonetzes (Calcic Gypsic Salic Solonetzes (Siltic, Albic, Cutanic, Differentic)) developing on terraces of lake depressions within the Volga–Ural interfluve of the Caspian Lowland has been performed on the basis of data on their macro- and micromorphological features and chemical, physicochemical, and physical properties. The studied soils have number of common characteristics shaped by the humus-accumulative, solonetzic, eluvial–illuvial, calcification, and gypsification processes. However, it is shown that macro- and micromorphological indicators of solonetzic processes (the development of clay–humus coatings and the character of structural units in the solonetzic (B) horizon) do not always agree with the modern physicochemical conditions of the development of this process. This is explained by differences in the degree and chemistry of the soil salinization and the depth and salinity of the groundwater. Solonetzes developing on the second terrace of Playa Khaki are distinguished by the highest water content and maximum thickness of the horizons depleted of soluble salts. They are characterized by the well-pronounced humus-accumulative process leading to the development of the light-humus (AJ) horizon. In other solonetzes, the accumulation of humus is weaker, and their topsoil part can be diagnosed as the solonetzic-eluvial (SEL) horizon. Active solodic process and illuviation of organomineral substances with the development of thick coatings and infillings in the B horizon are also typical of solonetzes on the second terrace of Playa Khaki. Micromorphological data indicate that, at present, layered clayey coatings in these soils are subjected to destruction and in situ humification owing to the active penetration of plant roots into the coatings with their further biogenic processing by the soil microfauna. The process of gleyzation (as judged from the number of Fe–Mn concentrations) is most active in solonetzes developing on the first terrace of Playa Khaki. These soils are also characterized by the highest degree of salinization with participation of toxic salts. The maximum accumulation of gypsum is typical of the heavy-textured horizons.  相似文献   

3.
The study of soils of different ages in different physiographic regions of the Crimean Peninsula made it possible to reveal the main regularities of pedogenesis in the Late Holocene (in the past 2800 years). With respect to the average rate of the development of soil humus horizons, the main types of soils in the studied region were arranged into the following sequence: southern chernozems and dark chestnut soils > mountainous forest brown soils > gravelly cinnamonic soils. In the newly formed soils, the accumulation of humus developed at a higher rate than the increase in the thickness of humus horizons. A sharp decrease in the rates of development of soil humus profiles and humus accumulation took place in the soils with the age of 1100-1200 years. The possibility for assessing the impact of climate changes on the pedogenetic process on the basis of instrumental meteorological data was shown. The potential centennial fluctuations of the climate in the Holocene determined the possibility of pulsating shifts of soil-geographic subzones within the steppe part of the Crimea with considerable changes in the rates of the development of soil humus horizons in comparison with those in the Late Holocene.  相似文献   

4.
Agrogenic degradation of soils in Krasnoyarsk forest-steppe was investigated. Paleocryogenic microtopography of microlows and microhighs in this area predetermined the formation of paragenetic soil series and variegated soil cover. Specific paleogeographic conditions, thin humus horizons and soil profiles, and long-term agricultural use of the land resulted in the formation of soils unstable to degradation processes and subjected to active wind and water erosion. Intensive mechanical soil disturbances during tillage and long-term incorporation of the underlying Late Pleistocene (Sartan) calcareous silty and clay loams into the upper soil horizons during tillage adversely affected the soil properties. We determined the contents of total and labile humus and easily decomposable organic matter and evaluated the degree of soil exhaustion. It was concluded that in the case of ignorance of the norms of land use and soil conservation practices, intense soil degradation would continue leading to complete destruction of the soil cover within large areas.  相似文献   

5.
Greyzems (Grey Forest Soils) are zonal soils of the forest–steppe, in Russia geographically situated between the (Podzo) Luvisols of the southern taiga forest and the (Luvic) Chernozems of the steppe. Greyzems are characterized by a dark mollic horizon, with uncoated (bleached) silt and sand grains on pedfaces, and an argic horizon as diagnostic horizons. The FAO–Unesco soil map of the world shows Greyzems and Luvisols in Russia at this transition (the Russian soil map shows only Greyzems), while in similar geographic position in the USA and Canada the proportion of Greyzems is very small and Luvic Phaeozems/Chernozems and Albic Luvisols occupy those transitional zones of the grassland–forest interface. Three Greyzem profiles, presently under forest, and developed on loess-like mantle loams of Late Weichselian (Valday) age in the northern forest–steppe zone of the East European plain (Middle Russian Upland) were described and sampled near Pushchino, some 100 km south of Moscow. Micromorphology, particle size data, chemical data and clay mineralogy were studied. Based on the particle size distribution and the occurrence of fragments of a second humus horizon (SHH) the presence of two, rather similar, deposits in the solum is advocated. The following processes have been deduced from the study: (i) decalcification and secondary accumulation of carbonates; (ii) humus accumulation, including the significance of the SHH; (iii) clay illuviation, presumably two main phases; (iv) biological activity; (v) degradation of the mollic A: occurrence of bleached grains; (vi) downward migration of textural components and organic matter, in the Bt horizon along major pedfaces: occurrence of black organo-clay coatings and uncoated silt/sand grains; (vii) gleying. The tentative sequence of these processes during Late Weichselian and Holocene times leads us to conclude that Greyzems are polygenetic. They formed as Podzo(Luvisols) under forest, with fine clay coatings in the fine pores inside the blocky and prismatic peds, in the Late Glacial and Early Holocene. The change to tall grass steppe in the Atlanticum created a mollic horizon, that degrades when forest re-invades during the Subatlanticum. Fine clay, combined with organic matter forms black coatings on the major pedfaces. Uncoated silt and sand particles also migrate downward along those major pedfaces. Biological activity is involved in the very complex pattern of the transitional AhE and EBt horizons. Active gleying only occurs in the profile on the lowest topographic position. These latter processes are still active today. Similar soils do occur in the grassland–forest interface in North America, except where the younger age of the landscape and high CaCO3 content at shallow depth prevented their full development.  相似文献   

6.
The method of chemodestructive fractionation is suggested to assess the composition of soil organic matter. This method is based on determination of the resilience of soil organic matter components and/or different parts of organic compounds to the impact of oxidizing agents. For this purpose, a series of solutions with similar concentration of the oxidant (K2Cr2O7), but with linearly increasing oxidative capacity was prepared. Chemodestructive fractionation showed that the portion of easily oxidizable (labile) organic matter in humus horizons of different soil types depends on the conditions of soil formation. It was maximal in hydromorphic soils of the taiga zone and minimal in automorphic soils of the dry steppe zone. The portion of easily oxidizable organic matter in arable soils increased with an increase in the rate of organic fertilizers application. The long-lasting agricultural use of soils and burying of the humus horizons within the upper one-meter layer resulted in the decreasing content of easily oxidizable organic matter. It was found that the portion of easily oxidizable organic matter decreases by the mid-summer or fall in comparison with the spring or early summer period.  相似文献   

7.
陇东和陇中黑垆土的发生与演变   总被引:3,自引:0,他引:3  
胡双熙 《土壤学报》1994,31(3):295-304
前人认为,我国黑垆土是现代草原环境条件下形成的。我们通过对陇东和陇中黑垆土理化性质分析,14C年代和孢粉组成的测定。认为这里的黑垆土是由深色埋藏古土壤层和浅色表土覆盖层叠加构成。剖面呈两段性构造。古土壤层由晚更新世晚期开始发育,主要成壤于全新世中期,具有与现代成土环境不相符合的深厚腐殖质蓄积层,理化性质,孢粉成分等残遗埋藏特性。浅色表土层是全新世晚期气候传向旱型化条件下发育的土壤,其性质和现代成土  相似文献   

8.
A contrasting occurrence of clay minerals was found within a soil profile which was derived from volcanic materials in the suburbs of Fukuoka-city, Northern Kyushu. The soil profile is located on an isolated terrace, and the morphological characteristics of the soil correspond exactly to Andosols, so-called Kuroboku soils or Humic Allophane soils.

The clay fraction of upper horizons of the soil consists largely of alumina-rich gel-like materials, gibbsite, and layer silicates such as chlorite and chloritevermiculite intergrades, while that of lower horizons is composed of allophane and gibbsite or halloysite. There was no positive indication of allophane in the upper horizons. Corresponding with the clay mineralogical composition, quartz is abundant in the fine sand fraction of the upper horizons, while the mineral is very scarce or none in the lower horizons, suggesting a close relation between the petrological nature of parent volcanic materials and the mineralogical composition of weathering products. The dominant clay mineral in the volcanic 1.10il might be dependent on the petrological nature of parent materials, and allophane is mostly formed from andesitic materials, and alumina-rich gel-like materials and layer silicates have come from quartz andesitic materials. Allophane would transform to gibbsite or halloysite according to weathering conditions, and aluminarich gel-like materials change to gibbsite under a well-drained condition.

The soil materials have been so greatly weathered that some horizons contain gibbsite of even more than 40 per cent or halloysite over 70 per cent. The morphology and mineralogy are quite similar to so-cailed “non-volcanic Kuroboku soils.”  相似文献   

9.
A large autochthonic soil of preoligocene age from lower devonian schist of the Eifel Paleosols of Mesozoic-Tertiary age and their sediments are very important for the reconstruction of the landscape history in the area of the Rhenish Massiv. But stratigraphically determined, as well as autochthonous soils with exact analytical datas scarcely exist. Therefore a thick, autochthonous profile of a red fossil soil rich in clay was investigated. It consists of a concretion zone, mottled clay zone and a pallid zone above a 30 m thick saprolithe zone from bleached Devonian clay and silt shales with sandstone layers. Stratigraphical investigations of the superficial layers improve a pre-Oligocene age of soil formation. Results of soil analysis show an absolute accumulation of red coloured Fe oxides in the upper horizons and an intensive formation of kaolinite from chlorites and micas. Quartz underwent solution only in the finest fractions. Desilication did not proceed so far, that gibbsite could be formed. Therefore the molar SiO2 : Al2O3 ratio of the clay fraction does not decrease below 2. Erosion of formerly existing, stronger weathered horizons can't be excluded. According to the FAO-UNESCO soil map of the world and the Soil Taxonomy the criteria for Oxisols and Ferralsols are closely fulfilled. By the systematic of the Federal Republic of Germany the palesol is to be classified as a red-plastosol.  相似文献   

10.
The occurence of acid brown soils, podzols and podzolic soils, and the intermediate types of ochreous brown and brown podzolic soils over arenaceous granite in Vosges was closely correlated with the contents of iron rather than with calcium plus magnesium in the parent materials. Acid brown soils were associated with high and podzols and podzolic soils with low contents of iron, the limiting value being near 5 percent. Additional investigations in beech forests of soils derived from a variety of acid rocks indicated that contents of iron and clay in the parent materials controlled the type of humification of litter. With higher contents of iron and clay, humification gave rise to mull. With lower contents, mor or moder was formed. The nature of humification was believed responsible for tilting pedogenesis toward brunification or toward podzolization. In brunification, the clay-iron-humus complexes that are formed tend to be immobile and promote formation of crumbly structure. The “active iron” occurs as films around clay particles and thus links them to humus. In podzolization, on the other hand, the complexes formed are of humus with iron or aluminum but without clay. These are mobile and are translocated downward in profiles to form spodic horizons. The organo-metal complexes in ochreous brown and brown podzolic soils are mobile to only a limited extent. The combined results of these investigations demonstrate that contents of iron and clay rather than calcium in parent materials determine the pathway of pedogenesis from acid rocks under humid, temperate climates.  相似文献   

11.
Data on the morphology and radiocarbon ages of humus of dark vertic quasigley nonsaline clayey soils with alternating bowl-shaped (Pellic Vertisols (Humic, Stagnic)) and diapiric (Haplic Vertisols (Stagnic, Protocalcic)) structures are discussed, and the genetic concept for these soils is suggested. The studied soils develop on loesslike medium clay in the bottom of a large closed depression on the Eisk Peninsula in the lowest western part of the Kuban–Azov Lowland. The lateral and vertical distribution of humus in the studied gilgai catena displays a lateral transition of a relatively short humus profile of the accumulative type with a maximum near the surface and with a sharp increase in 14C dates of humus in the deeper layers within the diapiric structure to the extremely deep humus profile with a maximum at the depth of 40–80 cm, with similar mean residence time of carbon within this maximum, and with a three times slower increase in 14C dates of humus down the profile within the bowl-shaped structure. The development of the gilgai soil combination is specified by the joint action of the lateral–upward squeezing of the material of the lower horizons from the nodes with an increased horizontal stress toward the zones a decreased horizontal stress, local erosional loss of soil material from the microhighs and its accumulation in the adjacent microlows, leaching of carbonates from the humus horizons in the microlows, and the vertical and lateral ascending capillary migration of the soil solutions with precipitation of calcium carbonates in the soils of microhighs.  相似文献   

12.
Chemical properties of chernozem-like soils in closed depressions on different relief elements in the northern part of the Tambov Plain differ significantly. The soils with podzolic features in depressions on the watershed have a high acidity and a low degree of base saturation. The soils on the above-floodplain terrace are neutral and saturated with bases. When the degree of moistening increases, the share of magnesium in the total exchangeable bases increases to 30–35%. In the soils of surface flooding under gleyzation conditions, iron is leached from the fine earth, and iron nodules are formed. In the soils formed under the impact of groundwater, iron diffusion is observed in the surface layers. In the podzolic horizons of soils on the watershed, humus acquires a fulvic-humic character. In the soils formed under the impact of groundwater and water stagnation conditions typical for gleyed soils, the Cha: Cfa ratio is higher than 1.  相似文献   

13.
Light gray soils of Tambov oblast mainly develop from sandy and loamy sandy parent materials; these are the least studied soils in this region. Despite their coarse texture, these soils are subjected to surface waterlogging. They are stronger affected by the agrogenic degradation in comparison with chernozems and dark gray soils. Morphology, major elements of water regime, physical properties, and productivity of loamy sandy light gray soils with different degrees of gleyzation have been studied in the northern part of Tambov Plain in order to substantiate the appropriate methods of their management. The texture of these soils changes at the depth of 70–100 cm. The upper part is enriched in silt particles (16–30%); in the lower part, the sand content reaches 80–85%. In the nongleyed variants, middle-profile horizons contain thin iron-cemented lamellae (pseudofibers); in surface-gleyed variants, iron nodules are present in the humus horizon. The removal of clay from the humus horizon and its accumulation at the lithological contact and in pseudofibers promote surface subsidence and formation of microlows in the years with moderate and intense winter precipitation. The low range of active moisture favors desiccation of the upper horizons to the wilting point in dry years. The yield of cereal crops reaches 3.5–4.5 t/ha in the years with high and moderate summer precipitation on nongleyed and slightly gleyed light gray soils and decreases by 20–50% on strongly gleyed light gray soils. On light gray soils without irrigation, crop yields are unstable, and productivity of pastures is low. High yields of cereals and vegetables can be obtained on irrigated soils. In this case, local drainage measures should be applied to microlows; liming can be recommended to improve soil productivity.  相似文献   

14.
Well‐developed placic horizons have been found in subalpine forest soils with large clay contents in Taiwan. We investigated their formation processes in five profiles in a subalpine ecosystem of northeastern Taiwan, using scanning electron microscopy (SEM), energy‐dispersive spectrometry (EDS), electron probe microanalysis (EPMA), differential X‐ray diffraction (DXRD) and chemical extractions. The placic horizons, ranging from 3‐ to 17‐mm thick, always occurred above argillic horizons with abrupt changes in pH and texture between the two horizons. When fully developed, the placic horizons were clearly differentiated between upper and lower sub‐horizons. EDS and chemical extractions revealed that the cementing materials in both were predominantly inorganic Fe oxides. However, contents of aluminosilicates and organically complexed Fe and Al were greater in the lower than in the upper placic sub‐horizon. Results of EPMA indicated that interstitial fine materials in the upper placic sub‐horizon were composed mainly of Fe oxides, whereas Fe oxides were codominant with illuvial clay in the lower sub‐horizon. These analyses identified the migration of Fe and clay as major formation processes in both sub‐horizons. We hypothesize that there is a pedogenic sequence that starts with clay illuviation, followed by podzolization. The resultant textural and permeability differentiation reinforces the tendency to profile episaturation that is already inherent from the heavy rainfall and clayey surface soils. Topsoil Fe is therefore reduced and mobilized, and then illuviated with clay and organically complexed Fe/Al to initiate the lower placic sub‐horizon. The poor permeability of this layer reinforces the moisture conditions in the surface soils, and the further reduction, illuviation and deposition of inorganic Fe to form the upper placic sub‐horizon.  相似文献   

15.
Periodical forest fires are typical natural events under the environmental and climatic conditions of central and southern Yakutia and Transbaikal region of Russia. Strong surface fires activate exogenous geomorphological processes. As a result, soils with polycyclic profiles are developed in the trans-accumulative landscape positions. These soils are specified by the presence of two–three buried humus horizons with abundant charcoal under the modern humus horizon. This indicates that these soils have been subjected to two–three cycles of zonal pedogenesis during their development. The buried pyrogenic humus horizons accumulate are enriched in humus; nitrogen; total and oxalate-extractable iron; exchangeable bases (Са+2 and Mg+2); and the fractions of coarse silt, physical clay (<0.01 mm), and clay (<0.001 mm) particles in comparison with the neighboring mineral horizons of the soil profile. The humus of buried pyrogenic horizons is characterized by the increased content of humic acids, particularly, those bound with mobile sesquioxides (HA-1) and calcium (HA-2) and by certain changes in the type of humus.  相似文献   

16.
A macro- and micromorphologic study was done on the soils from a stepped sequence of seven dated fluvial terraces in the lower Segre river valley (Lleida, northeast Spain) under a present-day semiarid Mediterranean climate. The soils have evolved from the Holocene through the early Pleistocene, providing an excellent morphostratigraphic framework for evaluating time-dependent factors influencing soil formation in a dry and calcareous environment. Throughout the chronosequence, some properties are regularly age-related specially carbonatation in subsurface horizons. The carbonates occur mainly as micrite, and although microsparite and sparite also appear in the oldest soils, they are replaced by fine-grained calcite by dissolution–reprecipitation processes (micritization process), which is active at present. Some pedological paleofeatures as the presence of sparite and recarbonated argillans in oldest terrace can be interpreted as the reflex of climatic changes during the Quaternary. In spite of this climate variability, the soils display progressive and systematic patterns of carbonate accumulation: on the lowest terraces, the soils do not yet have secondary carbonates but in the beginning Late Pleistocene calcic horizons, with carbonate pendents, are developed; these pendents increase its thickness with age although pendent growth rates decreases from Late Pleistocene to Middle Pleistocene. In the middle of the Late Pleistocene, calcic horizons evolved to petrocalcic horizons, which increase its thickness in the Middle and specially in Early Pleistocene. The presence of calcic and petrocalcic horizons is the primary basis for soil classification. This criterion is applicable not only to the soils of the lower Segre river basin, but also to many soils throughout the semiarid Mediterranean region.  相似文献   

17.
Earlier studies showed considerable differences in the properties of automorphic loamy soils developing under middle-taiga vegetation in Western Siberia and on the Russian Plain. It was found that the soils without clear features of textural differentiation are common in Western Siberia. In particular, they are represented by cryometamorphic gleyzems. In this study, we analyze the properties of a cryometamorphic gleyzem in the Vakh area (the Khanty-Mansi Autonomous Okrug). The distribution pattern of clay minerals in the soil profile is analyzed in relation to the specific features of the soil hydrothermic regime. In the upper mineral horizons, the clay fraction is enriched in minerals of the group of soil chlorites and somewhat depleted of labile phyllosilicates. In the cryometamorphic horizon and in the underlying permafrost, the degree of crystallization of the clay minerals somewhat decreases. An even distribution pattern of aluminum oxide in the soil profile is explained by the increased content of Al in the clay fraction from the upper horizons combined with the loss of Al from the coarse fractions (as judged from data on the bulk elemental composition of clay-free samples). These features can be explained by the specificity of the hydrothermic regime of the cryometamorphic gleyzems with late thawing of the soil profile and frequent phase transitions of soil water in the upper humus and middle-profile cryometamorphic horizons.  相似文献   

18.
The Late Holocene stage of forest pedogenesis has been studied on the interfluves along river valleys in the forest-steppe zone of the Central Russian Upland. The development of gray forest soils from the former chernozems as a result of the Late Holocene advance of forest vegetation over steppes is discussed. It is argued that the climatic conditions of the Subatlantic period were unstable, so that multiple alternation of forest and steppe vegetation communities took place. This specified a complex character of soil evolution upon contrasting substitution of forest pedogenesis for steppe pedogenesis. On the interfluves near the natural drainage network (balkas, ravines, and steep slopes of river valleys), the climate-driven dynamics of forest and steppe vegetation with corresponding changes in the character of pedogenesis could take place during the entire Holocene, which is reflected in a lower thickness of humus profiles and deeper leaching of carbonates from chernozems of the Early Iron Age in comparison with their analogues formed under steppe cenoses in central parts of the interfluves. Two variants of the evolution of gray forest soils can be suggested: the pulsating evolution typical of balkas and interfluves near river valleys and the continuous progressive evolution typical of automorphic (plakor) positions in central parts of the interfluves.  相似文献   

19.
This investigation was carried out to determine the influence of the use of soils on their morphological structure and properties. Three soil types (i.e. Haplic Phaeozem derived from loess, Orthic Luvisol derived from loess and Orthic Luvisol derived from sandy loam) were involved. In each soil unit, profiles lying at a small distance from one another were taken for detailed examination. The main difference between the soils within each unit was the use to which they were put. The following soils were selected for evaluation: (A) soil from natural forest habitat; (B) soil cultivated in farms with a very low level of mechanisation; (C) soil cultivated in farms which had been completely mechanised for many years; (D) soil used for many years in a vegetable garden, similar to hortisol.

In the selected profiles the morphological features, soil structure in all genetic horizons, granulometric composition, humus content, pH, density, air and water capacity and air permeability were analysed.

It was found that the transition from forest soil management to agricultural use leads not only to the formation of an arable-humus horizon and to changes in structure but also to changes of the physico-chemical properties of soils. Soils under agricultural use manifest a lower level of acidification than forest soils, as well as a different distribution of organic matter. In all agricultural soils, increased compaction of humus horizons was observed, compared with the corresponding horizons of forest soils, as well as changes in other physical features. The use of heavy machines over many years in field operations results in increased density of the soil and deterioration of soil structure. This effect is greater in soils with low colloids and organic matter contents.  相似文献   


20.
Microprobe and x-ray diffraction studies of clay coatings in leached soils derived from loess Point analyses of Si, Al, K, Mg, Ca, Fe, Mn, as well as of Zn and Pb of clay coatings in soil thin sections from illuvial horizons of four leached soils were carried out using an electron microprobe (EMA). The K, Mg, Si, and Al content, the Si/Al-molar ratio of coatings and XRD-analyses indicate that the clay coatings consist mainly of illitic clay minerals. This suggests either a mineral-specific displacement of illite or the formation of illitic clay coatings from migrated smectite or expanded illite (“illitization”) through subsequent K uptake. The clay coatings show, with the exception of Fe, Mn, Zn and Pb, only little variation in their chemical composition within the same horizon. Between the horizons of the investigated soils, however, distinct differences in the total element content, especially in the K content may occur. The strong vertical variation of the K content in clay coatings in some horizons is probably due to acidic conditions and lateral infiltration which lead to an increased weathering of illite and the depletion of K. The EMA results show that Pb is predominantly bound in Fe-Mn-Oxide coatings on the surface of clay minerals or in Fe-Mn-Oxide precipitates within clay coatings. Microanalyses of K depleted clay coatings indicate on the other hand an increased fixation of Zn in expanded illites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号