首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
Gas chromatography olfactometry (GCO) was used to determine key aroma compounds of two red wine vinegars. Sensory analysis was performed to choose the best neutralization agent of acetic acid (NaOH or MgO) and to test representativeness of four extracts obtained by different methods (dichloromethane extraction, XAD-2, mixture of XAD-2 and XAD-7, and Extrelut resins extraction). Neutralization with NaOH followed by dichloromethane extraction was selected to extract volatile compounds of vinegars. Key odorant compounds were determined by GCO based on detection frequency with 13 people. In the two red wine vinegars, 13 odors were perceived by at least 70% of the panelists, and 8 compounds among the 13 were identified: acetic acid, 3-methylbutyric acid, 2-phenyl-1-ethanol, 2, 3-butanedione, butyric acid, 2-methylbutyric acid, mixture of 2- and 3-methyl-1-butanol, and two newly identified compounds in vinegar, 3-hydroxy-2-pentanone and 3-(methylthio)-1-propanal. Quantification of all the volatile compounds was performed by GC-FID, and 10 other compounds were identified for the first time in wine vinegar.  相似文献   

2.
"Greek-style" Moroccan black table olives were screened for potent odorants by GC/olfactometry/aroma extract dilution analysis of representative Likens-Nickerson extracts and compared with "Spanish-style" green fruits. ( Z)-3-Hexenal, ( E, E)-2,4-decadienal, ( E, Z)-2,4-decadienal, guaiacol, and methional were found in both green and black olives, but with significant differences in concentration according to the fruit ripening degree (the first was lower and the last two were higher in black fruits). Specific compounds not previously detected in green olives (gamma-deca- and dodecalactones, delta-decalactone, and 2-methyl-3-furanthiol) proved to be, with methional, the strongest odors in black olive extracts. These extracts were also distinguishable from green olive extracts by the presence of new sulfur compounds and fewer terpenes.  相似文献   

3.
To identify the character impact odorant of high-heat skim milk powder (HHSMP), a comparative study using ultrahigh-temperature (UHT) milk was performed. Aroma concentrate was prepared by column adsorption combined with simultaneous distillation-extraction. Aroma extract dilution analysis (AEDA) revealed 58 aroma peaks with flavor dilution (FD) factors ranging from 10 to 3000; from these, 41 compounds were identified and 7 compounds were tentatively identified (FD factor > or = 300). Among these HHSMP and UHT milk components, methyl 2-methyl-3-furyl disulfide and bis(2-methyl-3-furyl) disulfide, which appeared to be generated during the processing of each product, were identified. When the results of the AEDA of both samples were compared, it was considered that the characteristic aroma of HHSMP was not explained by a single compound but instead formed from a mixture of several types of compounds contained in common with the UHT milk. The contribution of these compounds to the aroma of HHSMP was confirmed by an aroma simulation experiment.  相似文献   

4.
Fresh elder flowers (Sambucus nigra L.) were extracted with an aqueous solution containing sucrose, peeled lemon slices, tartaric acid, and sodium benzoate to make elder flower syrup. Aroma compounds emitted from the elder flower syrup were collected by the dynamic headspace technique and analyzed by GC-FID and GC-MS. A total of 59 compounds were identified, 18 of which have not previously been detected in elder flower products. The concentrations of the identified volatiles were measured in five elder cultivars, Allesoe, Donau, Sambu, Sampo, and Samyl, and significant differences were detected among cultivars in the concentration levels of 48 compounds. The odor of the volatiles was evaluated by the GC-sniffing technique. cis-Rose oxide, nerol oxide, hotrienol, and nonanal contributed to the characteristic elder flower odor, whereas linalool, alpha-terpineol, 4-methyl-3-penten-2-one, and (Z)-beta-ocimene contributed with floral notes. Fruity odors were associated with pentanal, heptanal, and beta-damascenone. Fresh and grassy odors were primarily correlated with hexanal, hexanol, and (Z)-3-hexenol.  相似文献   

5.
Cultivar Marion and Evergreen blackberry aromas were analyzed by aroma extract dilution analysis. Sixty-three aromas were identified (some tentatively) by mass spectrometry and gas chromatography-retention time; 48 were common to both cultivars, and 27 have not been previously reported in blackberry fruit. A comparison of cultivars shows that both have comparable compound types and numbers but with widely differing aroma impacts, as measured by flavor dilution (FD) factors. Ethyl 2-methylbutanoate, ethyl 2-methylpropanoate, hexanal, furanones (2,5-dimethyl-4-hydroxy-3-(2H)-furanone, 2-ethyl-4-hydroxy-5-methyl-3-(2H)-furanone, 4-hydroxy-5-methyl-3-(2H)-furanone, 4,5-dimethyl-3-hydroxy-2-(5H)-furanone, and 5-ethyl-3-hydroxy-4-methyl-2-(5H)-furanone), and sulfur compounds (thiophene, dimethyl sulfide, dimethyl disulfide, dimethyl trisulfide, 2-methylthiophene, and methional) were prominent in Evergreen (FD 512-2048). Except for ethyl 2-methylpropanoate, these same compounds were also prominent in Marion, but the FD factors varied significantly (FD 8-256) from Evergreen. The aroma profile of blackberry is complex, as no single volatile was unanimously described as characteristically blackberry.  相似文献   

6.
Aroma-active compounds from a beeflike process flavor, produced by extrusion of enzyme-hydrolyzed vegetable protein (E-HVP), were analyzed using aroma extract dilution analysis. The number of aroma-active compounds and the aroma intensity were increased by the addition of aroma precursors prior to extrusion. The most intense compound was 2-methyl-3-furanthiol having a cooked rice/vitamin-like/meaty aroma note. Several sulfur-containing furans, such as 2-methyl-3-(methylthio)furan, 2-methyl-3-(methyldithio)furan, and bis(2-methylfuryl)disulfide, were detected with high flavor dilution (FD) factors. Some pyrazines, such as 2-ethyl-3,5-dimethylpyrazine, 2,6-diethylpyrazine, and 3,5-diethyl-2-methylpyrazine, also had high FD factors. It is hypothesized that sulfur-containing amino acids and thiamin were important precursors in aroma formation in process flavor from E-HVP.  相似文献   

7.
Eleven odor-active thiols, namely, 2-methyl-1-propene-1-thiol, (Z)-3-methyl-1-butene-1-thiol, (E)-3-methyl-1-butene-1-thiol, (Z)-2-methyl-1-butene-1-thiol, (E)-2-methyl-1-butene-1-thiol, 2-methyl-3-furanthiol, 3-mercapto-2-pentanone, 2-mercapto-3-pentanone, 4-mercapto-3-hexanone, 3-mercapto-3-methylbutyl formate, and 2-methyl-3-thiophenethiol, recently identified in an extract prepared from white sesame seeds, were quantitated in sesame using stable isotope dilution analyses. For that purpose, the following deuterium-labeled compounds were synthesized and used as internal standards in the quantitation assays: [2H6]-2-methyl-1-propene-1-thiol, [2H3]-(E)- and [2H3]-(Z)-2-methyl-1-butene-1-thiol, [2H3]-2-methyl-3-furanthiol, [2H2]-3-mercapto-2-pentanone, [2H3]-4-mercapto-3-hexanone, [2H6]-3-mercapto-3-methylbutyl formate, and [2H3]-2-methyl-3-thiophenethiol. On the basis of the results obtained, odor activity values (OAVs) were calculated as ratio of the concentration and odor threshold of the individual compounds in cooking oil. According to their high OAVs, particularly the 3-methyl-1-butene-1-thiols (OAV: 2400) and the 2-methyl-1-butene-1-thiols (OAV: 960) were identified as the most odor-active compounds in pan-roasted white sesame seeds. These compounds were therefore suggested to be mainly responsible for the characteristic but rather unstable sulfury aroma of freshly pan-roasted white sesame seeds.  相似文献   

8.
An extract from a dry young wine from Maccabeo was studied by aroma extract dilution analysis (AEDA), quantitative gas chromatography, and different sensory studies. In a first study, 53 different aroma compounds were quantified and used to prepare aroma models. 2-Methyl-3-furanthiol (FD = 16) and 4-methyl-4-mercaptopentan-2-one (FD = 2), could not be quantified and were not included in those models, which were not very similar to the original wine. Omission tests did not show the existence of impact compounds. In another set of experiments, selected aroma chemicals were added to the original wine, but in only in two cases (isoamyl acetate and gamma-nonalactone) was a positive effect noted, on banana and citric notes, respectively. After these discouraging results, 4-methyl-4-mercaptopentan-2-one and 2-methyl-3-furanthiol were quantified and included in the models. The concentration of the former was as low as 5 ng x L(-)(1) (odor threshold = 0.8 ng x L(-)(1)); however, its inclusion in the synthetic mixture had a significant effect, making it very close to the original wine. Its role was confirmed by omission tests. Results are briefly discussed.  相似文献   

9.
3-Methyl- and 5-methyl-2-(1-pyrrolidinyl)-2-cyclopenten-1-one were recently identified as intense cooling compounds in roasted dark malt. To gain more insights into the molecular requirements of these compounds for imparting a cooling sensation, 26 cyclic alpha-keto enamine derivatives were synthesized, and their physiological cooling activities were evaluated. Any modification of the amino moiety, the carbocyclic ring size, or incorporation of additional methyl groups led to a significant increase of the cooling threshold. Insertion of an oxygen atom into the 2-cyclopenten-1-one ring, however, increased the cooling activity, e.g., the cooling threshold of the 5-methyl-4-(1-pyrrolidinyl)-3(2H)-furanone was found to be 16-fold below the threshold concentration determined for the 3-methyl-2-(1-pyrrolidinyl)-2-cyclopenten-1-one. Shifting the oxygen atom from the 4- into the 5-position of the cyclopentenone ring resulted in a even more drastic increase in cooling activity, e.g., the 4-methyl-3-(1-pyrrolidinyl)-2(5H)-furanone exhibited the strongest cooling effect at the low oral threshold concentration of 0.02-0.06 mmol/L, which is 35-fold below the value determined for (-)-menthol. In contrast to the minty smelling (-)-menthol, most of the alpha-keto enamines were found to be virtually odorless but impart a sensation of "cooling" to the oral cavity as well as to the skin, thus illustrating that there is no physiological link between cooling activity and mint-like odors.  相似文献   

10.
Twenty-six Streptomyces spp. were screened for their volatile production capacity on yeast starch agar. The volatile organic compounds (VOCs) were concentrated on a porous polymer throughout an 8-day growth period. VOCs were analyzed by gas chromatography with flame ionization detection and identified or characterized by gas chromatography-mass spectrometry. A total of 120 VOCs were characterized by retention index and mass spectra. Fifty-three compounds were characterized as terpenoid compounds, among which 18 could be identified. Among the VOCs were alkanes, alkenes, alcohols, esters, ketones, sulfur compounds, and isoprenoid compounds. Among the most frequently produced compounds were isoprene, acetone, 1-butanol, 2-methyl-1-propanol, 3-methyl-3-buten-1-ol, 3-methyl-1-butanol, 2-methyl-1-butanol, cyclopentanone, dimethyl disulfide, dimethyl trisulfide, 2-phenylethanol, and geosmin. The relationship between the excretion of geosmin and the production of spores was examined for one isolate. A good correlation between headspace geosmin and the number of spores was observed, suggesting that VOCs could be used to indicate the activity of these microorganisms in heterogeneous substrates.  相似文献   

11.
The aroma-active and off-flavor compounds of cooked rainbow trout (Oncorhynchus mykiss) were analyzed by sensory and instrumental analyses. Sensory analysis shows that the aromatic extract obtained by vacuum steam distillation was representative of rainbow trout odor. To obtain more information on odorants of volatile compounds, analyses were conducted on two gas chromatography columns of different polarities (DB-5 and DB-Wax). The results of the gas chromatography-olfactometry analysis showed that 38 odorous compounds were perceived when the DB-5 column was used and 36 with the DB-Wax column. Of these, 31 with the DB-5 and 28 with the DB-Wax were identified. (E)-2-Nonenal, 2-ethyl-1-hexanol, 2-methylisoborneol, geosmin, 2-methylnaphthalene, and 8-heptadecene were described as off-flavor compounds by the sniffing assessors. The most powerful off-flavor compounds identified in the extract were 2-methylisoborneol and geosmin, which were described as strong musty and earthy odors, respectively.  相似文献   

12.
The aroma extract dilution analysis method was used to detect the impact odorants of Bordeaux Cabernet Sauvignon and Merlot wines extracts, as well as those of the extracts of the corresponding Cabernet Sauvignon juice and dry yeasts used for its fermentation. The wines and the yeasts were extracted using dichloromethane, and the juice was extracted using Amberlite XAD-2. Structural identification of the impact odorants using gas chromatography-mass spectrometry and atomic emission detection (sulfur acquisition) was achieved after enrichment of these extracts by silica gel and Affi-Gel 501 chromatography. The same odorants (with the exception of dimethyl sulfide among 48) were detected in both wine extracts, with about the same flavor dilution (FD) factors. The 18 impact odorants detected in the Cabernet Sauvignon juice and dry yeast extracts were also found in the wine extracts. The odorants with the highest FD factors were 3-(methylsulfanyl)propanal, (E,Z)-nona-2, 6-dienal, and decanal in the juice extract, 2-methyl-3-sulfanylfuran, 3-(methylsulfanyl)propanal, 2-/3-methylbutanoic acids, and phenylethanal in the dry yeast extract, and 2-/3-methylbutanols, 2-phenylethanol, 2-methyl-3-sulfanylfuran, acetic acid, 3-(methylsulfanyl)propanal, 2-/3-methylbutanoic acids, beta-damascenone, 3-sulfanylhexan-1-ol, Furaneol, and homofuraneol in the wine extracts. Determination of the odor thresholds of some of these impact odorants was carried out.  相似文献   

13.
A detailed investigation of the basic fraction of a CO2 extract of ambrette seeds (Abelmoschus moschatus) revealed a total of 58 nitrogen-containing compounds. The identification of these compounds was carried out by GC-MS and NMR. All the identified nitrogen-containing compounds are reported here for the first time in ambrette seeds. Among these are 27 pyrazine derivatives and 12 pyridines, including the tentative identification of four new natural compounds, 1-(6-ethyl-3-hydroxypyridin-2-yl)ethanone (1), 1-(3-hydroxy-5,6-dimethylpyridin-2-yl)ethanone (2), 1-(3-hydroxy-6-methylpyridin-2-yl)ethanone (3), and 1-(3-hydroxy-5-methylpyridin-2-yl)ethanone (4). The odor of the basic fraction was assumed to be due to these pyrazines and pyridines and also the presence of seven thiazoles. The odors described suggest that these N-compounds contribute to what is described in perfumery terms as the "natural and rounded" character of the ambrette extract.  相似文献   

14.
Experiments were designed to demonstrate the actual contribution of yeast in the formation of the primary aroma during the vinification of neutral grapes. Ruché was chosen as the model wine to study because of its unique fragrance. A yeast strain specific for Ruché was selected using a new and rapid isolation method for red wines. The results of this study can be summarized as follows: Skins from nonaromatic white or red grapes apparently contain most of the primary aroma compounds that are revealed in the must only after contact with yeast cells under defined conditions. Similar results were obtained with the pulp and seeds fractions; however, the olfactory notes, although well characterized, differed from those obtained with skins alone. Clarification, filtration, and centrifugation of the pulp and seed fractions or sonification of the skins produce different and well-characterized olfaction notes during the contact with yeast. The primary aroma of nonaromatic white and red grapes contained in the skins can be revealed within 24-48 h of yeast contact in a synthetic nutrient medium (SNM). The primary aroma precursors extracted from the skins with methanol, water-saturated butanol, or aqueous buffer at pH 3.2, concentrated and eluted from a C18 resin column, can be transformed to the free form wine aroma markers within 6 h of contact with yeast cells in SNM. By contrast, prolonged maceration of the skins in aqueous alcoholic buffer at pH 3.2 or 1.1, at 50 or 70 degrees C did not release primary odors typical of wine. The individual primary aroma compounds, identified by GC-MS analysis in Ruché wine samples or in Ruché skin-yeast-SNM samples, could not explain the complexity of the typical Ruché wine odor. Only odors common to many wine varieties were identified by GC-olfactometry analysis.  相似文献   

15.
Volatile compounds in cod fillets packed in Styrofoam boxes were analyzed during chilled storage (0.5 degrees C) by gas chromatography (GC)-mass spectrometry and GC-olfactometry to screen potential quality indicators present in concentrations high enough for detection by an electronic nose. Photobacterium phosphoreum dominated the spoilage bacteria on day 12 when the fillets were rejected by sensory analysis. Ketones, mainly 3-hydroxy-2-butanone, were detected in the highest level (33%) at sensory rejection, followed by amines (TMA) (29%), alcohols (15%), acids (4%), aldehydes (3%), and a low level of esters (<1%). The electronic nose's CO sensor showed an increasing response with storage time coinciding with the production of ethanol and 2-methyl-1-propanol that were produced early in the storage, followed by the production of 3-methyl-1-butanol, 3-methyl-butanal, 2,3-butandiol, and ethyl acetate. Lipid-derived aldehydes, like hexanal and decanal, were detected in similar levels throughout the storage time and contributed to the overall sweet odors of cod fillets in combination with other carbonyls (3-hydroxy-2-butanone, acetaldehyde, 2-butanone, 3-pentanone, and 6-methyl-5-heptene-2-one).  相似文献   

16.
Sensory evaluation was used to identify flavor precursors that are critical for flavor development in cooked chicken. Among the potential flavor precursors studied (thiamin, inosine 5'-monophosphate, ribose, ribose-5-phosphate, glucose, and glucose-6-phosphate), ribose appears most important for chicken aroma. An elevated concentration (added or natural) of only 2-4-fold the natural concentration gives an increase in the selected aroma and flavor attributes of cooked chicken meat. Assessment of the volatile odor compounds by gas chromatography-odor assessment and gas chromatography-mass spectrometry showed that ribose increased odors described as "roasted" and "chicken" and that the changes in odor due to additional ribose are probably caused by elevated concentrations of compounds such as 2-furanmethanethiol, 2-methyl-3-furanthiol, and 3-methylthiopropanal.  相似文献   

17.
18.
Microorganisms collected from sediments of Ho-Tsin River in southern Taiwan were used in this study. The ability to dechlorinate hexachlorobenzene (HCB) was induced by enrichmentincubation in yeast extract amended culture and acclimation withHCB. Addition of lactate or replacement of yeast extract by lactate did not enhance the dechlorination ability. With strong electron capturing capability, denitrifying bacteria resulted incomplete inhibition of dechlorination in the mixed culturecontained nitrate. In the culture amended with sulfate, sulfate reducing bateria shared electrons and nutrient with HCB-dechlorinating consortium but grabbed more electrons when treated with vancomycin. Results from multi-factors tests indicate that the influences of factors on dechlorination werecomplicated. Dechlorinating microbes, electron suppliers, sulfatereducing bacteria and denitrifying bacteria, all possibly caused a great effect on dechlorination.  相似文献   

19.
During storage of raw coffee beans (green coffee) atypical odors may develop, which are suggested to influence the aroma of particularly the coffee beverage. To gain insight into the aroma compounds responsible for such odor changes, a comparative aroma extract dilution analysis was applied on unstored, raw Arabica coffee beans from Colombia (water content=11.75%) and on the same beans with a water content of 13.5%, which were stored for 9 months at 40 degrees C. In combination with the flavor dilution (FD) factors, the results of the identification experiments showed strong increases in (E)-beta-damascenone (cooked apple-like), 2-methoxy-4-vinylphenol (clove-like), and methyl 2-methyl- and methyl 3-methylbutanoate (fruity), whereas others, such as the earthy smelling 3-isopropyl-2-methoxypyrazine as well as 2-phenylethanol and 3-methoxyphenol, remained unchanged during storage. In addition, the previously unknown coffee odorant 2-methoxy-5-vinylphenol (intense smoky odor) increased significantly during storage. Quantitative measurements performed on raw coffee samples stored at various temperatures, water contents, and oxygen availabilities indicated that the significant increase of, in particular, the methyl esters of 2- and 3-methylbutanoic acid were responsible for the pronounced and fruity odor quality perceived in the stored green coffee, whereas the higher concentrations of 2-methoxy-4-vinylphenol and 2-methoxy-5-vinylphenol led to the more pronounced smoky, clove-like odor quality. On the basis of the results obtained, in particular the reduction of the water content in combination with lower temperatures can be suggested to avoid aroma changes in raw coffee beans caused by storage.  相似文献   

20.
Aroma of fresh oysters Crassostrea gigas: composition and aroma notes   总被引:3,自引:0,他引:3  
In contrast to many foods, very little is known about the aroma of fresh oysters. This study deals with the relationship between extracted volatiles of oysters and their olfactory properties. Nearly 50 volatiles were identified: most of them were principally related to fatty acid oxidation (86%) and particularly to n-3 polyunstaturated fatty acid oxidation (66%). Only one volatile arose from amino acid degradation. Panelists detected 42 odors by sniffing. Among them, only 12 odors were definitely attributed to identified volatile. These odors were green/sulfur/crustacean, mushroom/citrus, and marine/cucumber notes and were attributed to dimethyl sulfide, 1-penten-3-one, hexanal, (2,4)-E,E-heptadienal, 1-octen-3-one, 1-octen-3-ol, 6-methyl-5-hepten-3-one, octanal, (E,Z)-2,6-nonadienal, (E)-2-octenal, and decanal, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号