首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial properties and nematode abundance were measured along a gradient of increasing Cu, Cr, and As concentrations (50–1300 mg Cr kg-1) in the top 5 cm of a pasture soil contaminated by runoff of preserving liquor from an adjacent timber-treatment plant. Microbial biomass C and N were significantly (P<0.05) lower in contaminated than uncontaminated soils. The amount of microbial biomass C as a percentage of total organic C declined significantly (r 2 value with Cr 0.726*) with increasing contamination, and the ratio of respired C to biomass C was significantly (P<0.05) higher with contamination. Substrate-induced respiration, microbial biomass P, and denitrification declined (r2 value with Cr 0.601, 0.833*, and 0.709*, respectively) with increasing contamination. Increasing contamination had no effect on prokaryote substrate-induced respiration but eukaryote: eukaryote substrate-induced respiration declined significantly (r 2 value with Cr 0.722*). Accordingly, the ratio of prokaryote substrate-induced respiration increased significantly (r 2 value with Cr 0.799*) with contamination. There was a significant (r 2 value with Cr 0.872*) hyperbolic relationship between sulphatase activity and contamination, with activity declining by approximately 80% at >1000 mg Cr kg-1. Increasing contamination had no effect on basal respiration, dimethyl sulphoxide reduction, and phosphatase, urease, and invertase activities. Numbers of plant-associated nematodes declined significantly (r 2 value with Cr 0.780*) with contamination. On a percentage basis, plant-feeding nematodes predominated in less contaminated soils, whereas bacterial-feeding and predatory nematodes predominated in heavily contaminated soils. The use of the fumigation—incubation procedure for measurement of microbial biomass C in heavy-metal contaminated soils is discussed.  相似文献   

2.
Summary In the existing guidelines for earthworm toxicity testing, mortality is the only test criterion. Mortality is, however, not a very sensitive parameter, and from an ecological point of view growth and reproduction are more important for a proper risk assessment of chemicals in soil. In this study the growth and sexual development of juvenile earthworms were considered as test criteria in a standardized earthworm toxicity test. The effect of Cd, Cu, and pentachlorophenol on the growth and sexual development of juveniles of the species Eisenia andrei was studied in an artificial soil substrate. Two tests with Cd were carried out to study the effects of the mode of application of the food source (cow dung). EC50 (50% effective concentration) values for the effect of Cd, Cu and pentachlorophenol on the growth of E. andrei were 33–96, >100, and >32 mg kg-1 dry soil, respectively, and there was no observed effect at 18–32, 56, and 32 mg kg-1 dry soil, respectively. Sexual development of the earthworms was inhibited at 10 mg Cd kg-1 and 100 mg Cu kg-1 dry soil, but was not affected at the highest pentachlorophenol concentration tested (32 mg kg-1 dry soil). The results were the same whether the food was applied in a hole in the middle of the soil or mixed homogeneously through the soil.  相似文献   

3.
The population abundance of free-living and plant-parasitic nematodes was investigated in a long-term rotation/tillage/stubble management experiment at Wagga Wagga Agricultural Institute, New South Wales (NSW), Australia. The treatments were a combination of two crop rotations: wheat (Triticum aestivum)–wheat and wheat–lupin (Lupinus angustifolius); two tillage systems: conventional cultivation (CC) and direct drill (DD); and two stubble management practices: stubble retention (SR) and stubble burnt (SB). Plots of one of the wheat–wheat treatments received urea at 100 kg N ha−1 during the cropping season. Soil samples from 0–5 and 5–10 cm depths were collected in September (maximum tillering), October (flowering) and December (after harvest), 2001, to analyse nematode abundance. Soil collected in September was also analysed for concentrations of total and labile C, and pH levels.Three nematode trophic groups, namely bacteria-feeders (primarily Rhabditidae), omnivores (primarily Dorylaimidae excluding plant-parasites and predators) and plant-parasites (Pratylenchus spp. and Paratylenchus spp.) were recorded in each soil sample. Of them, bacteria-feeders (53–99%, population range 933–2750 kg−1 soil) dominated in all soil samples. There was no difference in nematode abundance and community composition between the 0–5 cm and 5–10 cm layers of soil. The mean population of free-living and plant-parasitic nematodes varied significantly between the treatments in all sampling months. In most cases, total free-living nematode densities (Rhabditidae and Dorylaimidae) were significantly (P < 0.001) greater in wheat–lupin rotation than the wheat–wheat rotation irrespective of tillage and stubble management practices. In contrast, a greater population of plant-parasitic nematodes was recorded from plots with wheat–wheat than the wheat–lupin rotation. For treatments with wheat–wheat, total plant-parasitic nematode (Pratylenchus spp. and Paratylenchus spp.) densities were greater in plots without N-fertiliser (295–741 kg−1 soil) than the plots with N-fertiliser (14–158 kg−1 soil).Tillage practices had significant (P < 0.05) effects mostly on the population densities of plant-parasitic nematodes while stubble management had significant effects (P < 0.05) on free-living nematodes. However, interaction effects of tillage and stubble were significant (P < 0.01) for the population densities of free-living nematodes only. Population of Rhabditidae was significantly higher in conventional cultivated plots (7244 kg−1 soil) than the direct drilled (3981 kg−1 soil) plots under stubble retention. In contrast, plots with direct drill and stubble burnt had significantly higher populations of Dorylaimidae than the conventional cultivation with similar stubble management practice. No correlations between abundance of free-living nematodes, and concentration of total C and labile C in soil were observed in this study. These results showed that stubble retention contributed for enormous population density of free-living (beneficial) nematodes while conventional cultivation, irrespective of stubble management, contributed for suppressing plant-parasitic nematodes.  相似文献   

4.
Time of mulching can influence the growth environment and performance of white yam (Dioscorea rotundata Poir). An on-farm trial was conducted during the 1988–1989 and 1989–1990 seasons (October–August) in Nigeria to determine the effect of time of mulching (October–February) on the hydrothermal regime and emergence, growth and tuber yield of white yam. Application of 12.5 mg ha−1 of dry Eupatorium odoratum L. (Syn. Chromolaena odorata L.) mulch on top of the mounds significantly improved soil moisture content of the 15 cm surface layer by 50–120 g kg−1 and decreased the maximum soil temperature by 2–7°C at 15 cm depth in the early growing season (March–April). The emergence and development of yam seedlings were significantly lower in unmulched plots than in mulch-treated plots. Mulching significantly increased tuber yield by about 10–15 mg ha−1 season−1. Plots mulched in October–December were more moist by 20–60 g kg−1 and cooler by 1–3°C, and had 27–44% greater emergence than those mulched in January or February. The number of leaves per plant, vine diameter and leaf area index were also significantly greater in plots mulched in October–December than plots mulched in January or February. Consequently, shoot dry weight was about 28–36% greater in yam mulched in October–December than in yam mulched in February. However, the time of mulching had no effect on soil moisture of the surface layer at the beginning of the rainy season (April), on yam emergence in May and on tuber yield and yield components. Although time of mulching did not significantly affect tuber yield, the increase (10–15%) in the tuber yield of yam mulched in December–February compared to the yam mulched in October or November was considerable. It was concluded that yam planted in October, just before the rain stops, can be mulched in January or February without detrimental effect on emergence, growth and tuber yield.  相似文献   

5.
The effect of harvesting bamboo savanna on the dynamics of soil nutrient pools, N mineralization, and microbial biomass was examined. In the unharvested bamboo site NO inf3 sup- -N in soil ranged from 0.37 to 3.11 mg kg-1 soil and in the harvested site from 0.43 to 3.67 mg kg-1. NaHCO3-extractable inorganic P ranged from 0.55 to 3.58 mg kg-1 in the unharvested site and from 1.01 to 4.22 mg kg-1 in the harvested site. Over two annual cycles, the N mineralization range in the unharvested and harvested sites was 0–19.28 and 0–24.0 mg kg-1 soil month-1, respectively. The microbial C, N, and P ranges were 278–587, 28–64, and 12–26 mg kg-1 soil, respectively, with the harvested site exhibiting higher values. Bamboo harvesting depleted soil organic C by 13% and total N by 20%. Harvesting increased N mineralization, resulting in 10 kg ha-1 additional mineral N in the first 1st year and 5 kg ha-1 in the 2nd year following the harvest. Microbial biomass C, N and P increased respectively by 10, 18, and 5% as a result of bamboo harvesting.  相似文献   

6.
The CO2 efflux from loamy Haplic Luvisol and heavy metal (HM) uptake by Zea mays L. were studied under increased HM contamination: Cd, Cu, and Ni up to 20, 1000, and 2500 mg kg−1 soil, respectively. Split-root system with contrasting HM concentrations in both soil halves was used to investigate root-mediated HM translocation in uncontaminated soil zones. To separate root-derived and soil organic matter (SOM)-derived CO2 efflux from soil, 14CO2 pulse labeling of 15-, 25-, and 35-days-old plants was applied. The CO2 evolution from the bare soil was 10.6 μg C–CO2 d−1 g−1 (32 kg C–CO2 d−1 ha−1) and was not affected by HM (except 2500 mg Ni kg−1). The average CO2 efflux from the soil with maize was about two times higher and amounted for about 22.0 μg C–CO2 d−1 g−1. Portion of assimilates respired in the rhizosphere decreased with plant development from 6.0 to 7.0% of assimilated C for 25-days-old Zea mays to 0.4–2.0% for 45-days-old maize. The effect of the HM on root-derived 14CO2 efflux increased with rising HM content in the following order: Cd < Cu < Ni. In Cu and Ni contaminated soils, shoot and root dry matter decreased to 70% and to 50% of the uncontaminated control, respectively. Plants contained much more HM in the roots than in the shoots. A split-root system with contrasting HM concentrations allowed to trace transport of mobile forms of HM by roots from contaminated soil half into the uncontaminated soil half. The portion of mobile HM forms in the soil (1 M NH4NO3 extract) increased with contamination and amounted to 9–16%, 2–6% and 1.5–3.5% for Cd, Cu, and Ni, respectively. Corresponding values for the easily available HM (1 M NH4OAc extract) were 22–52%, 1–20% and 5–8.5%. Heavy metal availability for plants decreased in the following order: Cd > Cu ≥ Ni. No increase of HM availability in the soil was found after maize cultivation.  相似文献   

7.
This study was carried out to investigate the levels of copper (Cu) contamination in coffee fields in Kilimanjaro and Arusha regions, Tanzania, to increase the database on the contamination of soils by Cu-based fungicides in coffee fields. Surface (0–20 cm deep) soil samples were collected from different farms in Kilimanjaro and Arusha regions. Coffee, banana, and bean plant samples were collected from the locations of soil sampling. Soil and plant samples were analyzed at the Department of Soil Science, Sokoine University of Agriculture, Morogoro, Tanzania. It was found that the calcium chloride (CaCl2)–extractable Cu was less than the detection limit of flame atomic absorption spectrometry. Diethylenetriaminepentaacetic acid (DTPA)–extractable (24 to 366 mg Cu kg?1 soil) and aqua regia–extractable (80 to 806 mg Cu kg?1 soil) Cu levels were high enough to raise environmental alarm (based on European Union guidelines) in the Cu fungicide–treated soils as compared with natural Cu levels in untreated soils (1 to 12 mg Cu kg?1 soil for DTPA and 22 to 32 mg Cu kg?1 soil for aqua regia–extractable Cu). Coffee, banana, and bean plants grown on soils contaminated by Cu fungicides had varied concentrations of Cu that were greater than the concentrations of Cu in the plants collected from the uncontaminated soils. Stepwise regression analysis carried out to investigate the relationships between the soil properties and the concentrations of Cu in plants revealed a significant (P = 0.01) positive relationship (R2 = 0.4) between organic carbon and the concentration of Cu in banana leaves. Aqua regia–extractable Cu was positively correlated (P = 0.03, R2 = 0.4) with the concentrations of Cu in banana leaves. For bean leaves, electrical conductivity (EC) had a positive significant (P = 0.01) relationship (R2 = 0.56) with the concentrations of Cu in the plants. It is recommended that further research be carried out to investigate the dynamics and bioavailability of Cu for the different crops interplanted in the coffee fields.  相似文献   

8.
The aim of this study was to investigate temporal and spatial patterns of denitrification enzyme activity (DEA) and nitrous oxide (N2O) fluxes in three adjacent riparian sites (mixed vegetation, forest and grass). The highest DEA was found in the surface (0–30 cm) soil and varied between 0.7±0.1 mg N kg–1 day–1 at 5°C and 5.9±0.4 mg N kg–1 day–1 at 15°C. There was no significant difference (P >0.05) between the DEA in the uppermost (0–30 cm and 60–90 cm) soil depths under different vegetation covers. In the two deepest (120–150 cm and 180–210 cm) soil depths the DEA varied between 0.0±0.0 mg N kg–1 day–1 at 5°C and 4.4±0.9 mg N kg–1 day–1 at 15°C and was clearly associated with the accumulation of buried organic carbon (OC). Two threshold values of OC were observed before DEA started to increase significantly, namely 5 and 25 g OC kg–1 soil at 10–15°C and 5°C, respectively. In the three riparian sites N2O fluxes varied between a net N2O uptake of –0.6±0.4 mg N2O-N m–2 day–1 and a net N2O emission of 2.5±0.3 mg N2O-N m–2 day–1. The observed N2O emission did not lead to an important pollution swapping (from water pollution to greenhouse gas emission). Especially in the mixed vegetation and forest riparian site highest N2O fluxes were observed upslope of the riparian site. The N2O fluxes showed no clear temporal trend.  相似文献   

9.
In vineyards, the long-term use of copper fungicides has increased soil Cu concentrations that can adversely affect the number and activities of soil microorganisms. To better understand this phenomenon and to ameliorate such harmful effects, an incubation experiment was carried out with a sandy loam and a sandy soil to which increasing rates of CuSO4 were added. By this treatment, the basal soil respiration (7-55%) and decomposition of added vine branches (46-86%) was inhibited. At the application rate of 500 mg Cu kg?1, soil microbial biomass-C was inhibited (7-66%) in the sandy soil and stimulated (2-10%) in the sandy loam soil. The specific respiration rate was a reliable indicator for Cu stress, and it increased with time and higher Cu concentrations before lime and compost applications. Total number of bacteria and streptomycetes were also strongly inhibited. Fungal population was significantly more tolerant to copper toxicity than the bacteria. A stimulation of fungal population at a dose of 500 mg Cu kg?1 in both soils was observed. A criterion such as “stimulation” lasting for more than 60 days can also be used as indication of Cu contamination of soils. The order of inhibition (on day 125) at a dose of 500 mg Cu kg?1 soil was as follows: A. sandy loam soil (pH> 7.0) — fungi < biomass-C < basal soil respiration < bacteria < streptomycetes; B. sandy soil (pH< 6.0) — fungi < basal soil respiration < biomass-C < bacteria < streptomycetes. The application of lime increased soil recovering ability at a moderate rate (for CO2 production – 22-70% and for biomass-C- 39-156%), but the combination of lime and compost significantly increased soil resiliency (for CO2 production- 16-518% and for biomass-C- 103-693%). The soil resiliency assessed by number of bacteria in compost treatments was 30-120% in sandy loam soil and 92-700% in the sandy soil. Compost and lime application increased the number of streptomycetes from 52 to 500% in sandy loam soil and from 100 to 700% in sandy loam soil. Fungal population was less increased in sandy soil as compared to sandy loam soil. The ecological dose higher than 5% inhibition of microbial processes and microorganisms appears to be suitable to assess Cu contamination of soils. CO2 production, biomass-C and specific respiration rate were less sensitive indicators as compared to streptomycetes and bacteria. It appears that compost application effectively promoted the recovery of soil microbial activity and soil fertility of Cu contaminated soils.  相似文献   

10.
Soils of a forest ecosystem in Berlin (West) are highly polluted by Pb and less polluted by Cd and Cu. Pb levels in earthworm species depend primarily on soil type and only secondarily on the distance from a highway crossing the forest. The dominating species Lumbricus rubellus and Dendrobaena octaedra show different body burdens especially of Cd. Liming the forest soils decreases the Pb concentrations significantly. Only in D. octaedra has body weight been found to be related to Pb; Pb has been increased from 50 mg kg–1 in small to 250 mg kg–1 in large specimens; Cu has been regulated at a more or less constant absolute level (about 0.4 pg per specimen). This species obviously regulates or accumulates the three metals in different ways. Centipedes as predators of earthworms in the sites show markedly less pollution of Pb and Cd (about 2.5 and 0.6 mg kg–1) than the worms, but higher concentrations of the essential Cu (about 40 mg kg–1). The use of earthworms as indicators of heavy metal pollution should take into account the biology of the various species, the soil type, the type and amount of organic matter as well as chemical parameters such as pH value or basic anions.  相似文献   

11.
Background, Aims and Scope  Phytoremediation is a promising means for the treatment of heavy metal contamination. Although several species have been identified as hyperaccumulators, most studies have been conducted with only one metal. Experiments were conducted to investigate the ability of Helianthus annuus and Thlaspi caerulescens to simultaneously uptake Cd, Cr and Ni. Materials and Methods  The efficiency of plants grown in a sandy-loam soil was investigated. The ability of two EDTA concentrations (0.1 and 0.3 g kg−1) for enhancing the phytoremediation of Cd, Cr and Ni at two different metal concentrations (24.75 mg kg−1 and 90 mg kg−1) was studied. Results   Thlaspi hyperaccumulated Ni with 0.1 g kg−1 EDTA. When the EDTA dosage was increased to 0.3 g kg−1, Thlaspi was able to hyperaccumulate both Ni and Cr. Since Thlaspi is a low-biomass plant, it was considered insufficient for full-scale applications. Helianthus annuus hyperacummulated Cr (with 0.1 g kg−1 EDTA) and Cd (0.3 g kg−1 EDTA). Discussion  When the contamination was 8.25 mg kg−1 per metal, the total metal uptake was 10–25% (1.35 to 2.12 mg) higher and had the same uptake selectivity (Cr>>Cd>Ni) for both EDTA levels. It was hypothesized that complexation with EDTA interfered with Ni translocation. For these experiments, the optimal results were obtained with the H. annuus-0.1 g kg−1 EDTA combination. Conclusions  Although the use of EDTA did increase the amount of metal that could be extracted, care should be taken during in-situ field applications. Chelators can also increase the amount of metals that are leached past the root zone. Metal leaching and subsequent migration could lead to ground water contamination as well as lead to new soil contamination. Recommendations and Perspectives  Additional research to identify the optimal EDTA dosage for field applications is warranted. This is necessary to ensure that the metals do not leach past the root zone. Identification of a plant that can hyperaccumulate multiple metals is critical for phytoremediation to be a viable remediation alternative. In addition to being able to hyperaccumulate multiple metals, the optimal plant must be fast growing with sufficient biomass to sequester the heavy metals.  相似文献   

12.
Soil contamination by heavy metals is a problem in agricultural irrigation systems.To assess the accumulation and sources of heavy metals in the Yongji irrigation district of the Hetao area,Inner Mongolia,China,195 soil samples from 39 sites(0–100 cm)were collected,and Zn,Cu,Pb,Cr,and Cd concentrations were analyzed.The mean concentrations were 107.17,32.48,12.31,53.53,and 0.22 mg kg-1,respectively,with no significant differences between soil depths(P>0.05).Concentrations of Zn,Cu,and Cd were higher than the background levels,with moderate accumulation;the contamination factor(CF)values were 1.9,1.7,and 1.9,respectively,and the geoaccumulation index(Igeo)was>0.Concentrations of Pb and Cr were lower than,or close to,the background levels(CF<1,Igeo<0),indicating that they originated from a natural source.The monomial potential ecological risk index(Eri)for Zn,Cu,Pb,and Cr was low;Eri for Cd was 55.73,implying a moderate risk.The grade of potential ecological risk index of the five heavy metals(RI)was low,declining from south to north.The studied soils were contaminated with Zn,Cu,and Cd;principal component(PC)analysis implicated the enrichment of Cd and partial Cu(high loading in PC 2)was related to agricultural activities;Zn and partial Cu,closely associated with PC 3,may have originated from irrigation water from the Yellow River.Future agricultural development should focus on fertilizer and pesticide application and the quality of irrigation water.  相似文献   

13.
Effects of two tillage treatments, tillage (T) with chisel plough and no-till (NT), were studied under un-drained and drained soil conditions. Soil physical properties measured were bulk density (ρb), total porosity (ƒt), water stable aggregates (WSA), geometric mean diameter (GMD), mean weight diameter (MWD), organic carbon (OC) and total N concentrations in different aggregate size fractions, and total OC and N pools. The experiment was established in 1994 on a poorly drained Crosby silt loam soil (fine mixed, mesic, Aeric Ochraqualf) near Columbus, Ohio. In 2007, soil samples were collected (0–10, 10–20, and 20–30 cm) from all treatments and separated into six aggregate size classes for assessing proportions of macro (5–8, 2–5, 1–2, 0.5–1, 0.25–0.5) and micro (<0.25 mm) aggregates by wet sieving. Tillage treatments significantly (P ≤ 0.05) influenced WSA, MWD, and GMD. Higher total WSA (78.53 vs. 58.27%), GMD (0.99 vs. 0.68 mm), and MWD (2.23 vs. 0.99 mm) were observed for 0–10 cm depth for NT than T treatments. Relative proportion of macro-aggregates (>0.25-mm) was also more in NT than T treatment for un-drained plots. Conversely, micro-aggregates (<0.25-mm) were more in T plots for both drained and un-drained treatments. The WSA, MWD and GMD decreased with increase in soil depth. The OC concentration was significantly higher (P ≤ 0.05) in NT for un-drained (P ≤ 0.01) treatment for all soil depths. Within macro-aggregates, the maximum OC concentrations of 1.91 and 1.75 g kg−1 in 1–2 mm size fraction were observed in NT for un-drained and drained treatments, respectively. Tillage treatments significantly (P < 0.01) affected bulk density (ρb), and total porosity (ft) for all soil depths, whereas tillage × drainage interaction was significant (P < 0.01) for 10–20 and 20–30 cm depths. Soil ρb was negatively correlated (r = −0.47; n = 12) with OC concentration. Tillage treatments significantly affected (P ≤ 0.05) OC pools at 10–20 cm depth; whereas drainage, and tillage × drainage significantly (P ≤ 0.05) influenced OC pools for 0–10 cm soil layer. The OC pool in 0–10 cm layer was 31.8 Mg ha−1 for NT compared with 25.9 Mg kg−1 for T for un-drained treatment. In comparison, the OC pool was 23.1 Mg ha−1 for NT compared with 25.2 Mg ha−1 for T for the drained plots. In general, the OC pool was higher in NT system, coupled with un-drained treatment than in drained T plots. The data indicate the importance of NT in improving the OC pool.  相似文献   

14.
Bader  J. L.  Gonzalez  G.  Goodell  P. C.  Pillai  S. D.  Ali  A. S. 《Water, air, and soil pollution》1999,109(1-4):263-276
Chromium-containing industrial effluents are primarily responsible for environmental contamination by toxic and highly mobile, hexavalent chromium. The dilution plate-count method, using media amended with Cr(VI) at concentrations ranging from 0 to 1000 mg L-1, was used to compare the sizes of Cr(VI)-resistant bacterial populations from a soil contaminated with 25 100 mg kg-1 total Cr [12 400 mg kg-1 Cr(VI)] to those isolated from a slightly contaminated soil (99.6 mg kg-1 total Cr) and two other soils without any history of Cr contamination. Bacterial populations resistant to 500 mg L-1 Cr(VI) were isolated from all soils except the heavily contaminated soil. To determine whether Cr-resistant bacterial populations were indigenous to both the contaminated and the uncontaminated soils, enrichment cultures containing Cr(VI) at concentrations ranging from 0 to 1000 mg L-1 were employed. Bacterial populations, as high as 105 (colony forming units) CFU g-1 soil, tolerant of 500 mg L-1 Cr(VI) were isolated from all soils within 48 h of enrichment suggesting that the presence of aerobic Cr(VI)-resistant bacterial populations is unrelated to contamination levels or contamination history. However, identification of these resistant bacteria using fatty acid profiles was unsuccessful suggesting that these populations may have unique characteristics. Fungal colonies resistant to 1000 mg L-1 Cr(VI) were routinely isolated from both uncontaminated and contaminated soils. The results suggest that Cr-resistant microorganisms may be present in soils, even those with no history of Cr contamination.  相似文献   

15.
土法炼锌区大气沉降Pb、Zn、Cd及其对土壤质量的影响   总被引:6,自引:0,他引:6  
Dust emissions from smelters, as a major contributor to heavy metal contamination in soils, could severely influence soil quality. Downwind surface soils within 1.5 km of a zinc smelter, which was active for 10 years but ceased in 2000, in Magu Town, Guizhou Province, China were selected to examine Pb, Zn, and Cd concentrations and their fractionation along a distance gradient from a zinc smelter, and to study the possible effects of Pb, Zn, and Cd accumulation on soil microorganisms by comparing with a reference soil located at a downwind distance of 10 km from the zinc smelter. Soils within 1.5 km of the zinc smelter accumulated high levels of heavy metals Zn (508 mg kg-1), Pb (95.6 mg kg-1), and Cd (5.98 mg kg-1) with low ratios of Zn/Cd (59.1--115) and Pb/Cd (12.4--23.4). Composite pollution indices (CPIs) of surface soils (2.52--15.2) were 3 to 13 times higher than the reference soils. In metal accumulated soils, exchangeable plus carbonate-bound fractions accounted for more than 10% of the total Zn, Pb, and Cd. The saturation degree of metals (SDM) in soils within 1.5 km of the smelter (averaging 1.25) was six times higher than that of the reference soils (0.209). A smaller soil microbial biomass was found more frequently in metal accumulated soils (85.1--438 μg C g-1) than in reference soils (497 μg C g-1), and a negative correlation (P < 0.01) of soil microbial biomass carbon to organic carbon ratio (Cmic/Corg) with SDM was observed. Microbial consumption of carbon sources was more rapid in contaminated soils than in reference soils, and a shift in the substrate utilization pattern was apparent and was negatively correlated with SDM (R = -0.773, P < 0.01). Consequently, dust deposited Pb, Zn, and Cd in soils from zinc smelting were readily mobilized, and weredetrimental to soil quality mainly in respect of microbial biomass.  相似文献   

16.
We established a field trial to assess the impacts on soil biological properties of application of heavy metal-spiked sewage sludge, with the aim of determining toxicity threshold concentrations of heavy metals in soil. Plots were treated with sludges containing increasing concentrations of Cu, Ni and Zn in order to raise the metal concentrations in the soil by 0-200 mg Cu kg−1, 0-60 mg Ni kg−1 and 0-400 mg Zn kg−1, and were then cultivated and sown in ryegrass-clover pasture and monitored annually for 6 years. All biological properties measured (soil basal respiration, microbial biomass C, and sulphatase enzyme activities), except phosphatase activity, increased in all plots over the duration of the experiment. Consequently, it was only possible to assess effects of heavy metals across time if, each year, all data for each metal were normalised by expressing them as percentages of the activities measured in an un-sludged control plot. When this was done, no significant effects of increasing heavy-metal concentrations on basal respiration, microbial biomass C or respiratory quotient (qCO2) were observed, although total Cu and soil solution Cu were significantly negatively related to microbial biomass C when it was expressed as a proportion of soil total C. None of the properties measured were affected by increasing Ni concentrations. Phosphatase and sulphatase activities were significantly negatively related to increasing Zn concentrations, but not usually to increasing Cu unless they were expressed as a proportion of total C. A sigmoidal dose-response model was used to calculate EC20 and EC50 values using the normalised data, but generally, the model parameters had very large 95% confidence intervals and/or the fits to the model had small R2 values. The factors primarily responsible for confounding these results were site and sample variations not accounted for by the normalisation process and the absence of any data points at metal concentrations beyond the calculated EC50 values. In the few instances where reasonable EC20 values could be calculated, they were relatively consistent across properties, e.g., EC20 for total Zn and phosphatase (330 mg kg−1), total Zn and sulphatase (310 mg kg−1), and EC20 for total Cu and sulphatase (140 mg kg−1) and total Cu and microbial biomass C (140 mg kg−1), when both sulphatase and microbial biomass C were expressed as a proportion of total C. Our results suggest that Cu and Zn at the upper concentrations used in this experiment were possibly having adverse effects on some soil biological properties. However, much higher metal concentrations will be needed to accurately calculate EC20 and EC50 and this may not be easily achievable without many applications of sewage sludge, even if the sludge is spiked with heavy metals.  相似文献   

17.
Foliar Cd and Zn concentrations in Salix, Populus and Zea mays grown on freshwater tidal marshes were assessed. Soil metal concentrations were elevated, averaging 9.7 mg Cd kg?1 dry soil, 1100 mg Zn kg?1 dry soil and 152 mg Cr kg?1 dry soil. Cd (1.1–13.7 mg kg?1) and Zn (192–1140 mg kg?1) concentrations in willows and poplars were markedly higher than in maize on impoldered tidal marshes (0.8–4.8 mg Cd kg?1 and 155–255 mg Zn kg?1). Foliar samples of maize were collected on 90 plots on alluvial and sediment‐derived soils with variable degree of soil pollution. For soil Cd concentrations exceeding 7 mg Cd kg?1 dry soil, there was a 50% probability that maize leaf concentrations exceeded public health standards for animal fodder. It was shown that analysis of foliar samples of maize taken in August can be used to predict foliar metal concentrations at harvest. These findings can therefore contribute to anticipating potential hazards arising from maize cultivation on soils with elevated metal contents.  相似文献   

18.
This study aimed at investigating the effects of agricultural exploitation on desert soil organic C, N and P, and soil aggregation. Four land uses were assessed: (1) 5-year wheat (Triticum aestivum L.)/barley (Hordeum vulgare L.) + 5-year maize (Zea mays L.); (2) 5-year wheat/barley + 5-year alfalfa (Medicago sativa L.); (3) 6-year wheat/barley + 4-year acacia (Robinia pseudoacacia L.) and (4) uncultivated desert soil. The desert soil contained total organic C (TOC) of 3.1, 3.7 and 4.2 g kg−1 and particulate organic C (POC) of 0.6, 0.7 and 0.8 g kg−1 at 0–10, 10–20 and 20–30 cm depths, respectively. The soil TOC concentration was increased by 32–68% under wheat–maize rotation and by 27–136% under wheat–acacia at 0–20 cm depth, and by 48% under wheat–alfalfa only at 0–10 cm depth. This contrasted with an increase in the soil POC concentration by 143–167% at depth 0–20 cm under wheat–maize and by 217%, 550% at depth 0–10 cm under wheat–alfalfa and wheat–acacia, respectively. The desert soil had 13 Mg ha−1 TOC stock and 2 Mg ha−1 POC stock at depth 0–30 cm, whereas crop rotations increased the soil TOC stock by 30–65% and POC stock by 200–350%. Over the 10-year period, the rates of TOC accumulation were 0.6, 0.3, 0.8 Mg ha−1 year−1 and the rates of POC accumulation were 0.4, 0.4 and 0.7 Mg ha−1 year−1 under wheat–maize, wheat–alfalfa and wheat–acacia rotations, respectively. At 0–30 cm depth, total soil N was increased by 61–64% under wheat–maize and wheat–acacia, but total soil P was reduced by 38% under wheat–alfalfa. A significant improvement in clay stability but not in aggregate water-stability was observed in cultivated soils. The results showed a significant increase in soil organic C pool but unimproved macro-aggregation of the desert soil after 10 years of cultivation.  相似文献   

19.
Summary A greenhouse study was conducted to examine the residual effects of sewage sludge on soybean Glycine max (L.) Merr., nodulation, and N fixation. Nodulating and nonnodulating isolines of Clark soybean were grown to the R2 stage in soils (Typic Paleudults) obtained from plots where heat-treated sludge had been applied in 1976 at rates equal to 0, 56,112, and 224 Mg ha–1 high (7.0) and low (6.2) soil pH regimes were established by CaCO3 additions. Sludge and soil pH treatments resulted in clearly defined differences in metal uptake by soybean shoots. Plant Zn, Cd, and Ni concentrations were greater on pH 6.2, sludge-amended soil than on the pH 7.0, amended soil. At low soil pH, soybean Zn and Cd concentrations, respectively, increased from 41 and 0.19 mg kg–1 (control) to 120 and 0.58 mg kg–1 at the 224 Mg hat sludge rate. At the high soil pH and 224 hg hat sludge rate, Zn and Cd concentrations were 45 and 0.15 mg kg–1, respectively.Symbiotic N fixation provided 90% of the total N accumulation. Total N accumulation, shoot N concentration, dry matter, and N fixation by nodulating soybeans exhibited a significant linear increase with sludge rate. Total N accumulation, dry matter, and N fixation were significantly greater at high soil pH. For high and low soil pH, respectively, N fixation increased from 422 and 382 mg N per plant (control) to 614 and 518 mg N per plant at the 224 Mg ha–1 sludge rate. While soybean nodulation also increased linearly on sludge-amended soil, a significant rate times pH interaction for nodule number indicated that nodulation was less strongly enhanced by sludge at low soil pH.  相似文献   

20.
Small‐arms firing ranges are an important source of metal contaminants in the ecosystems located near these facilities, owing to the constant fall and alteration of the ammunition remnants on the soil, particularly in nearby berms. The objectives of this study were to analyse the pollution of chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) in rifle/pistol shooting range soils, to estimate their availability and to evaluate the influence of the ammunition used. The concentrations of Pb, Zn, Cu, Cr and Ni range from 55 to 6·309, 34 to 264, 19 to 98, 40 to 79 and 11 to 33 mg kg−1, respectively. The moderate acidity and organic matter content favour the availability of Pb, followed by Cu > Zn > Ni > Cr. The values of different contamination indexes (Igeo, pollution index and integrated pollution index) suggest that Pb soil contamination is moderate to heavy, especially in the berm area and moderate for Cu and Zn. Lead ammunition is the main source of pollution, but another one was identified owing to the concentrations of Fe, Cr and Ni detected. Further studies are needed to verify their long‐term potential adverse effects. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号