首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The reaction of F with H2 and its isotopomers is the paradigm for an exothermic triatomic abstraction reaction. In a crossed-beam scattering experiment, we determined relative integral and differential cross sections for reaction of the ground F(2P(3/2)) and excited F*(2P(1/2)) spin-orbit states with D2 for collision energies of 0.25 to 1.2 kilocalorie/mole. At the lowest collision energy, F* is approximately 1.6 times more reactive than F, although reaction of F* is forbidden within the Born-Oppenheimer (BO) approximation. As the collision energy increases, the BO-allowed reaction rapidly dominates. We found excellent agreement between multistate, quantum reactive scattering calculations and both the measured energy dependence of the F*/F reactivity ratio and the differential cross sections. This agreement confirms the fundamental understanding of the factors controlling electronic nonadiabaticity in abstraction reactions.  相似文献   

2.
Crim FF 《Science (New York, N.Y.)》2001,293(5537):2014-2015
No chemical reaction can take place without a collision between atoms or molecules. State-of-the-art experimental and theoretical techniques are providing ever more detailed insights into how such collisions proceed. In his Perspective, Crim highlights the report by Lorenz et al., who have succeeded in determining not only the amount but also the sense of rotation of NO molecules after collision with argon atoms. The results can only be explained when subtle quantum mechanical effects are considered.  相似文献   

3.
The differential cross section for the H + D(2) --> HD + D reaction has been measured using a technique called reaction product imaging. In this experiment, a photolytically produced beam of hydrogen (H) atoms crossed a beam of cold deuterium (D(2)) molecules. Product D atoms were ionized at the intersection of the two particle beams and accelerated toward a position-sensitive detector. The ion images appearing on the detector are two-dimensional projections of the three-dimensional velocity distribution of the D atom products. The reaction was studied at nominal center-of-mass collision energies of 0.54 and 1.29 electron volts. At the lower collision energy, the measured differential cross section for D atom production, summed over all final states of the HD(v,J) product, is in good agreement with recent quasi-classical trajectory calculations. At the higher collision energy, the agreement between the theoretical predictions and experimental results is less favorable.  相似文献   

4.
When a hydrogen (H) atom approaches a deuterium (D(2)) molecule, the minimum-energy path is for the three nuclei to line up. Consequently, nearly collinear collisions cause HD reaction products to be backscattered with low rotational excitation, whereas more glancing collisions yield sideways-scattered HD products with higher rotational excitation. Here we report that measured cross sections for the H + D(2) → HD(v' = 4, j') + D reaction at a collision energy of 1.97 electron volts contradict this behavior. The anomalous angular distributions match closely fully quantum mechanical calculations, and for the most part quasiclassical trajectory calculations. As the energy available in product recoil is reduced, a rotational barrier to reaction cuts off contributions from glancing collisions, causing high-j' HD products to become backward scattered.  相似文献   

5.
6.
Theorists have recently made substantial progress in simulating reactive molecule-metal surface scattering but still face major challenges. The grand challenge is to develop an approach that enables accurate predictive calculations of reactions involving electronically excited states with potential curve crossings. This challenge is all the more daunting because collisions involving molecules heavier than H2 may be accompanied by substantial energy exchange with the surface vibrations (phonons), and because an electronic structure approach that allows molecule-surface interaction energies to be computed with chemical accuracy (1 kilocalorie per mole) is not yet available even for the electronic ground state of molecule-metal surface systems.  相似文献   

7.
The transition state region of the F + H(2) reaction has been studied by photoelectron spectroscopy of FH(2)(-). New para and normal FH(2)(-)photoelectron spectra have been measured in refined experiments and are compared here with exact three-dimensional quantum reactive scattering simulations that use an accurate new ab initio potential energy surface for F + H(2). The detailed agreement that is obtained between this fully ab initio theory and experiment is unprecedented for the F + H(2) reaction and suggests that the transition state region of the F + H(2) potential energy surface has finally been understood quantitatively.  相似文献   

8.
A full quantum dynamical study of the reactions of a hydrogen atom with water, on an accurate ab initio potential energy surface, is reported. The theoretical results are compared with available experimental data for the exchange and abstraction reactions in H + D2O and H + H2O. Clear agreement between theory and experiment is revealed for available thermal rate coefficients and the effects of vibrational excitation of the reactants. The excellent agreement between experiment and theory on integral cross sections for the exchange reaction is unprecedented beyond atom-diatom reactions. However, the experimental cross sections for abstraction are larger than the theoretical values by more than a factor of 10. Further experiments are required to resolve this.  相似文献   

9.
The preferred sense of product molecule rotation (clockwise or counterclockwise) in a bimolecular collision system has been measured. Rotationally inelastic collisions of nitric oxide (NO) molecules with Ar atoms were studied by combining crossed molecular beams, circularly polarized resonant multiphoton ionization probing, and velocity-mapped ion imaging detection. The observed sense of NO product rotation varies with deflection angle and is a strong function of the NO final rotational state. The largest preferences for sense of rotation are observed at the highest kinematically allowed product rotational states; for lower rotational states, the variation with deflection angle becomes oscillatory. Quantum calculations on the most recently reported NO-Ar potential give good agreement with the observed oscillation patterns in the sense of rotation.  相似文献   

10.
Bose-Einstein condensation of cesium atoms is achieved by evaporative cooling using optical trapping techniques. The ability to tune the interactions between the ultracold atoms by an external magnetic field is crucial to obtain the condensate and offers intriguing features for potential applications. We explore various regimes of condensate self-interaction (attractive, repulsive, and null interaction strength) and demonstrate properties of imploding, exploding, and non-interacting quantum matter.  相似文献   

11.
Anion-molecule nucleophilic substitution (S(N)2) reactions are known for their rich reaction dynamics, caused by a complex potential energy surface with a submerged barrier and by weak coupling of the relevant rotational-vibrational quantum states. The dynamics of the S(N)2 reaction of Cl- + CH3I were uncovered in detail by using crossed molecular beam imaging. As a function of the collision energy, the transition from a complex-mediated reaction mechanism to direct backward scattering of the I- product was observed experimentally. Chemical dynamics calculations were performed that explain the observed energy transfer and reveal an indirect roundabout reaction mechanism involving CH3 rotation.  相似文献   

12.
Interactions between particles can be strongly altered by their environment. We demonstrate a technique for modifying interactions between ultracold atoms by dressing the bare atomic states with light, creating an effective interaction of vastly increased range that scatters states of finite relative angular momentum at collision energies where only s-wave scattering would normally be expected. We collided two optically dressed neutral atomic Bose-Einstein condensates with equal, and opposite, momenta and observed that the usual s-wave distribution of scattered atoms was altered by the appearance of d- and g-wave contributions. This technique is expected to enable quantum simulation of exotic systems, including those predicted to support Majorana fermions.  相似文献   

13.
Computational studies of basic chemical processes not only provide numbers for comparison with experiment or for use in modeling complex chemical phenomena such as combustion, but also provide insight into the fundamental factors that govern molecular structure and change which cannot be obtained from experiment alone. We summarize the results of three case studies, on HCO, OH + H(2), and O + C(2)H(2), which illustrate the range of problems that can be addressed by using modern theoretical techniques. In all cases, the potential energy surfaces were characterized by using ab initio electronic structure methods. Collisions between molecules leading to reaction or energy transer were described with quantum dynamical methods (HCO), classical trajectory techniques (HCO and OH + H(2)), and statistical methods (HCO, OH + H(2), and O + C(2)H(2)). We can anticipate dramatic increases in the scope of this work as new generations of computers are introduced and as new chemistry software is developed to exploit these computers.  相似文献   

14.
Studies of the ground and excited states in semiconductor quantum dots containing 1 to 12 electrons showed that the quantum numbers of the states in the excitation spectra can be identified and compared with exact calculations. A magnetic field induces transitions between the ground and excited states. These transitions were analyzed in terms of crossings between single-particle states, singlet-triplet transitions, spin polarization, and Hund's rule. These impurity-free quantum dots allow "atomic physics" experiments to be performed in magnetic field regimes not accessible for atoms.  相似文献   

15.
We present a combined experimental and theoretical investigation of formaldehyde (H2CO) dissociation to H2 and CO at energies just above the threshold for competing H elimination. High-resolution state-resolved imaging measurements of the CO velocity distributions reveal two dissociation pathways. The first proceeds through a well-established transition state to produce rotationally excited CO and vibrationally cold H2. The second dissociation pathway yields rotationally cold CO in conjunction with highly vibrationally excited H2. Quasi-classical trajectory calculations performed on a global potential energy surface for H2CO suggest that this second channel represents an intramolecular hydrogen abstraction mechanism: One hydrogen atom explores large regions of the potential energy surface before bonding with the second H atom, bypassing the saddle point entirely.  相似文献   

16.
Bimolecular reactions in Earth's atmosphere are generally assumed to proceed between reactants whose internal quantum states are fully thermally relaxed. Here, we highlight a dramatic role for vibrationally excited bimolecular reactants in the oxidation of acetylene. The reaction proceeds by preliminary adduct formation between the alkyne and OH radical, with subsequent O(2) addition. Using a detailed theoretical model, we show that the product-branching ratio is determined by the excited vibrational quantum-state distribution of the adduct at the moment it reacts with O(2). Experimentally, we found that under the simulated atmospheric conditions O(2) intercepts ~25% of the excited adducts before their vibrational quantum states have fully relaxed. Analogous interception of excited-state radicals by O(2) is likely common to a range of atmospheric reactions that proceed through peroxy complexes.  相似文献   

17.
Xiao C  Xu X  Liu S  Wang T  Dong W  Yang T  Sun Z  Dai D  Xu X  Zhang DH  Yang X 《Science (New York, N.Y.)》2011,333(6041):440-442
Quantum dynamical theories have progressed to the stage in which state-to-state differential cross sections can now be routinely computed with high accuracy for three-atom systems since the first such calculation was carried out more than 30 years ago for the H + H(2) system. For reactions beyond three atoms, however, highly accurate quantum dynamical calculations of differential cross sections have not been feasible. We have recently developed a quantum wave packet method to compute full-dimensional differential cross sections for four-atom reactions. Here, we report benchmark calculations carried out for the prototypical HD + OH → H(2)O + D reaction on an accurate potential energy surface that yield differential cross sections in excellent agreement with those from a high-resolution, crossed-molecular beam experiment.  相似文献   

18.
A recently designed single-crystal surface calorimeter has been deployed to measure the energy difference between two solid surface structures. The clean Pt{100} surface is reconstructed to a stable phase in which the surface layer of platinum atoms has a quasi-hexagonal structure. By comparison of the heats of adsorption of CO and of C(2)H(4) on this stable Pt{100}-hex phase with those on a metastable Pt{100}-(1x1) surface, the energy difference between the two clean phases was measured as 20 +/- 3 and 25 +/- 3 kilojoules per mole of surface platinum atoms.  相似文献   

19.
Feng M  Zhao J  Petek H 《Science (New York, N.Y.)》2008,320(5874):359-362
The atomic electron orbitals that underlie molecular bonding originate from the central Coulomb potential of the atomic core. We used scanning tunneling microscopy and density functional theory to explore the relation between the nearly spherical shape and unoccupied electronic structure of buckminsterfullerene (C60) molecules adsorbed on copper surfaces. Besides the known pi* antibonding molecular orbitals of the carbon-atom framework, above 3.5 electron volts we found atomlike orbitals bound to the core of the hollow C60 cage. These "superatom" states hybridize like the s and p orbitals of hydrogen and alkali atoms into diatomic molecule-like dimers and free-electron bands of one-dimensional wires and two-dimensional quantum wells in C60 aggregates. We attribute the superatom states to the central potential binding an electron to its screening charge, a property expected for hollow-shell molecules derived from layered materials.  相似文献   

20.
The H + H(2) exchange reaction constitutes an excellent benchmark with which to test dynamical theories against experiments. The H + D(2) (vibrational quantum number v = 0, rotational quantum number j = 0) reaction has been studied in crossed molecular beams at a collision energy of 1.28 electron volts, with the use of the technique of Rydberg atom time-of-flight spectroscopy. The experimental resolution achieved permits the determination of fully rovibrational state-resolved differential cross sections. The high-resolution data allow a detailed assessment of the applicability and quality of quasi-classical trajectory (QCT) and quantum mechanical (QM) calculations. The experimental results are in excellent agreement with the QM results and in slightly worse agreement with the QCT results. This theoretical reproduction of the experimental data was achieved without explicit consideration of geometric phase effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号