首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 307 毫秒
1.
紫花苜蓿与禾本科牧草混播对土壤酶活性的影响   总被引:1,自引:0,他引:1  
紫花苜蓿(Medicago sativa)与无芒雀麦(Bromus inermis)、草地早熟禾(Poa pratensis)、苇状羊茅(Festuca arundinace)均分别按1:2(记作:A1、B1、C1)、1∶1(A2、B2、C2)和2∶1(A3、B3、C3)比例进行同行混播,以紫花苜蓿单播、相应禾草单播为对照,研究紫花苜蓿与不同多年生禾草混播对土壤酶活性的影响.结果 表明:与苜蓿单播相比,混播提高了0~ 20 cm土层的土壤碱性磷酸酶、蔗糖酶活性;与禾草单播相比混播提高了0~20 cm土层脲酶活性以及20~40 cm土层的脲酶、碱性磷酸酶、蔗糖酶和过氧化氢酶活性.紫花苜蓿+无芒雀麦混播处理土壤脲酶、过氧化氢酶活性以及紫花苜蓿+苇状羊茅混播处理的碱性磷酸酶活性高于其他组合,土壤蔗糖酶活性为0~ 20 cm土层紫花苜蓿+苇状羊茅混播和20~ 40 cm土层紫花苜蓿+草地早熟禾混播处理最高.同组合不同比例处理间,0~20,20~ 40 cm土层A2、B3、C3处理土壤脲酶和过氧化氢酶活性最高,A1、B1、C3处理的土壤蔗糖酶最高;土壤碱性磷酸酶活性为0~20 cm土层C2处理以及20~ 40 cm土层C3处理高于其他比例.  相似文献   

2.
为了探究高寒混播草地最优牧草配置,以上繁草'同德’短芒披碱草(Elymus breviaristatus'Tongde’,A),垂穗披碱草(Elymus nutans,B),'同德’老芒麦(Elymus sibiricus'Tongde’,D),'青牧1号’老芒麦(Elymus sibiricus'Qingmu No1’,E)、下繁草'同德’小花碱茅(Puccinellia distans'Tongde’,C),'青海’草地早熟禾(Poa pratensis L.'Qinghai’,F),'青海’冷地早熟禾(Poa crymophila'Qinghai’,G),'青海’扁茎早熟禾(Poa pratensis var.ancepsGaud.'Qinghai’,H)为试验材料,以种间竞争力(Competition ratio,CR)与相对产量总和(Relative yield total,RYT)为评价方法,测定牧草生物量。结果表明:下繁草竞争力小于上繁草;混播牧草数(Number of mixed herbage,NMH)为2时,B竞争力最强;NMH为3时,存在2种上繁草的组合RYT大于1;单播时C和A生态位宽度最大,混播后杂类草生态位宽度降低,D和E,C重叠度最高,A与F,G,H重叠度最低;高寒混播草地中优选牧草组合有B+E,B+D,E+H,A+C+D,B+C+D,建议慎选牧草组合为C+D,D+E,F+G,F+H,F+G+H。  相似文献   

3.
通过研究甘农2号小黑麦(×Triticosecale W i t t m a c k'G a n n o n g N o.2')与3种箭筈豌豆(Vicia sativa)的最佳混播组分和混播比例,采取裂区设计,主区为混播组分,副区为混播比例.试验测定了3个箭筈豌豆(Vicia sativa)品种绿箭1号('Lvjian No.1')、绿箭2号('Lvjian No.2')、绿箭431('Lvjian 431')与甘农2号小黑麦在不同混播比例(0?100、20?80、30?70、40?60、50?50、60?40、70?30、80?20、100?0)下的生产性能和营养价值.结果表明,混播组分间,绿箭431和甘农2号小黑麦混播时的干草产量较高,营养价值较好,综合评价值最高(0.9416);混播比例间,50?50混播处理混播效果最佳.交互作用表明,绿箭431和甘农2号小黑麦以50?50的比例混播时干草产量最高(11.15 t·hm?2),粗蛋白含量为13.25%,营养适中,综合评价值最高(0.8321),混播效果最好.本研究为甘南高寒牧区禾–豆混播草的科学建植和管理,抗灾保畜、提升草地生产力和生态保障能力提供理论依据.  相似文献   

4.
高寒牧区三种豆科牧草与燕麦混播的试验研究   总被引:21,自引:8,他引:13  
在中国科学院海北高寒草甸生态系统开放实验站进行的燕麦与箭舌豌豆、红豆草、毛苕子 3种豆科牧草混播栽培的试验研究 ,采用正交设计及极差分析方法对混播组合作择优评判。结果表明 :红豆草在年均温 - 1.7℃ ,≥ 5℃积温 10 0 0℃ ,海拔 32 0 0 m的高寒地区可与燕麦建立一年生混播割草地。其产量水平高于毛苕子与燕麦混播的草地而与箭舌豌豆与燕麦混播的草地相当。对豆科牧草种 (A)、混作方式 (B)、混播总密度 (C)和混播比例 (D) 4个因素进行择优组合可提高单位面积牧草产量。 4种试验因素对混播草地牧草产量的效应大小依次为 C>A>D>B。本试验最优组合为 5号组合 (A2 B2 C3 D1)。  相似文献   

5.
紫花苜蓿与3种多年生禾草混播草地的土壤养分特征   总被引:1,自引:0,他引:1  
为了探究紫花苜蓿(Medicago sativa)与不同禾草混播草地的土壤养分分布与积累规律,将紫花苜蓿与无芒雀麦(Bromus inermis)、草地早熟禾(Poa pratensis)、苇状羊茅(Festuca arundinacea)均分别按1∶2、1∶1和2∶1比例进行同行混播,研究混播组合和混播比例对0–20 cm和20–40 cm土层土壤养分特征的影响。结果表明,1)较苜蓿单播,紫花苜蓿与3种多年生禾草混播对浅层(0–20 cm)土壤有机质、速效钾、碱解氮、速效磷、全磷的积累有显著的促进作用(P 0.05)。2) 3种混播组合中,紫花苜蓿+无芒雀麦改善土壤肥力的效果优于其他两种混播组合。0–40 cm土层紫花苜蓿+无芒雀麦更有利于土壤有机质、氮素、磷素养分的积累,而紫花苜蓿+草地早熟禾混播对于钾素的积累效果更明显。3)混播比例的变化对浅层的速效磷、全磷,深层土壤有机质、碱解氮影响显著(P 0.05),增加苜蓿的比例,土壤养分含量增加。3种混播比例中,0–20 cm土层紫花苜蓿+无芒雀麦配比处理1∶1和20–40 cm土层紫花苜蓿+无芒雀麦配比处理2∶1较其他两个比例混播更有利于速效养分的积累;0–20 cm和20–40 cm土层紫花苜蓿+草地早熟禾配比处理1∶2土壤速效钾、全钾含量最高,2∶1土壤碱解氮、全氮、全磷含量最高,而紫花苜蓿+苇状羊茅配比处理2∶1土壤有机质、全氮、全磷、全钾和速效养分含量均高于其他两个比例混播。4)空间分布上,随着土层加深,除草地早熟禾单播和紫花苜蓿+苇状羊茅配比处理土壤全钾出现深层高于浅层现象外,其余所有混播处理土壤养分含量均为浅层高于深层,呈现养分表聚性现象。  相似文献   

6.
沙芦草+胡枝子混播草地的生物量及土壤速效养分   总被引:1,自引:0,他引:1  
采用田间调查取样和室内分析相结合的方法,在宁夏盐池县四墩子试验基地以单播沙芦草(Agropyron mongolicum)、单播达乌里胡枝子(Lespedeza davurica)、同行混播和灌木地同行混播栽培草地为研究对象,研究了不同播种方式对草地生物量和土壤速效养分分布的影响,结果表明,地上生物量表现为同行混播草地单播沙芦草草地灌木地同行混播草地单播达乌里胡枝子草地;随着土层深度的增加,地下生物量和土壤速效养分含量均呈降低的趋势,0-40cm各土层单播达乌里胡枝子草地地下生物量最小;土壤速效氮和速效钾含量均以同行混播草地最低,土壤速效磷含量以灌木地同行混播草地最低,说明混播不利于土壤速效养分的积累。  相似文献   

7.
采用分层取样法研究了两年生单播紫花苜蓿、单播无芒雀麦、隔行混播和同行混播人工栽培草地土壤碳、氮含量及分布状况。结果表明,在牧草生长时期,单播紫花苜蓿草地土壤容重最大,单播无芒雀麦草地容重最小;0~40cm土层土壤有机碳含量以单播紫花苜蓿草地最大,其次为隔行混播草地,二者与单播无芒雀麦草地、同行混播草地间差异达极显著水平(P<0.01);土壤全氮含量为单播无芒雀麦草地最低,其他处理间无显著差异(P>0.05);在0~40cm全剖面,单播紫花苜蓿草地有机碳储量最大,为46.98t/hm2,隔行混播草地次之,为44.77t/hm2,二者显著高于同行混播草地(38.75t/hm2)及单播无芒雀麦草地(36.37t/hm2)(P<0.05)。  相似文献   

8.
从混播牧草地上部分生长效率与种间竞争格局、地下部分根系构型与生物固氮效率角度出发,将不同混播群体结构(行距+同行/异行/异行阻隔)作为燕麦+箭筈豌豆型草地混播优势的影响因素,利用盆栽试验分析和比较混播牧草在不同混播群体结构中地上部、地下部因素对混播优势的相对贡献,以及不同混播群体结构氮素固定、转移和利用效率对混播系统生态功能的贡献,以期明确豆禾混播草地的种间竞争过程及其混播优势产生的机理。结果表明,1)豆禾异行混播+15 cm行距处理(Y_(15))的混播群体结构具有较佳的产量优势,燕麦的竞争率和侵占力均高于与之混播的箭筈豌豆;2)豆禾同行混播+15 cm行距处理(T_(15))和Y_(15)均具有较高的应用生物固氮量、转氮率及豆科牧草对草地氮产量的贡献率;3)牧草产量与牧草叶片初始荧光(F_o)和单位面积捕获光能(TR_o/CS_o)均呈显著的正相关(P0.05);牧草产量与根系形态特征参数和根系构型均呈极显著正相关(P0.01);4)地上部和地下部因素对燕麦+箭筈豌豆混播系统混播优势的相对贡献分别为21.64%和78.36%,综合体现为地下部分贡献远大于地上部分。  相似文献   

9.
采用分层取样法研究了两年生单播紫花苜蓿、单播无芒雀麦、隔行混播和同行混播人工栽培草地土壤有机碳氧化稳定性和化学结合形态。结果表明,在牧草生长时期,0~40 cm土壤有机碳含量以单播紫花苜蓿草地最高,其次为隔行混播草地,二者与单播无芒雀麦草地、同行混播草地间差异极显著 (P<0.01);有机碳氧化稳定系数以隔行混播草地最大(1.27),同行混播草地次之(1.16),二者与单播紫花苜蓿草地(0.99),单播无芒雀麦草地(0.94)间差异极显著 (P<0.01),说明混播有利于土壤有机碳的稳定;有机碳化学结合方式上均以铁铝键结合为主,各处理不同层次铁铝键结合有机碳均极显著高于钙键结合有机碳(P<0.01)。  相似文献   

10.
邵春慧  徐强  史志强  杜文华  田新会 《草地学报》2022,30(10):2791-2801
为筛选适合于夏河农牧交错区小黑麦(Secale cereale L.)与豆科牧草的混播组合及比例,以及在不同肥力条件下生产性能的差异,本试验研究了'甘农2号’小黑麦('Gannong No. 2’ Triticale variety)与3种豆科牧草('加拿大’饲用豌豆('Canadian’ forage peas)、'青海’箭筈豌豆('Qinghai’ common vetch)和'绿箭1号’箭筈豌豆('Lvjian No.1’ common vetch))不同比例(100∶0,80∶20,70∶30,60∶40,50∶50,40∶60,30∶70,20∶80,0∶100)混播时的生产性能。结果表明:土壤肥力对小黑麦和豆科牧草混播草地的草产量有显著影响;土壤贫瘠条件下,'甘农2号’小黑麦与'绿箭1号’箭筈豌豆以50∶50的比例混播时干草产量最高(13.97 t·hm-2);土壤肥力状况较好时,'甘农2号’小黑麦与'青海’箭筈豌豆以80∶20的比例混播时,干草产量最高(16.45 t·hm-2)。该研究对于提高夏河农牧交错区禾-豆混播的生产性能具有重要意义。  相似文献   

11.
河西地区豆禾混播草地生产性能对刈割高度与施肥的响应   总被引:1,自引:0,他引:1  
刈割和施肥是豆禾混播草地生产过程中极为重要的田间管理措施,合理的留茬高度和氮磷配施模式可以有效提高混播草地的生产性能。为探究不同留茬高度和施肥模式对多年生豆禾混播草地产量与品质的影响,在河西走廊地区以紫花苜蓿、无芒雀麦和长穗偃麦草1∶1∶1建植的第3年豆禾混播草地为试验对象,利用裂区试验设计,以留茬高度为主区,设置5 cm(A1)、8 cm(A2)、11 cm(A3)3个留茬高度,施肥模式为副区,设置不施肥CK(B1)、单施磷肥:150 kg P2O5·hm-2(B2)、低氮高磷:75 kg N·hm-2+225 kg P2O5·hm-2(B3)、氮磷平衡:150 kg N·hm-2+150 kg P2O5·hm-2(B4)、单施氮肥:150 kg N·hm-2(B5)、高氮低磷:225 kg N·hm-2+75 kg P2O5·hm-2(B6)6个施肥模式,在混播草地中豆科牧草初花期进行刈割,施肥方式为第1茬刈割后追施。结果表明:以A3B3(11 cm留茬高度和75 kg N·hm-2+225 kg P2O5·hm-2的施肥模式)处理组合全年产量最高(19626 kg·hm-2);A2B2(8 cm留茬高度和150 kg P2O5·hm-2的施肥模式)处理组合全年产量最低(14342 kg·hm-2)。提高留茬高度会在一定程度上降低紫花苜蓿整体品质,提高禾本科牧草整体品质。增施氮肥的同时减施磷肥可有效提高牧草粗蛋白含量和相对饲用价值(RFV),施用量过高会使牧草粗蛋白含量和相对饲用价值下降,最合理的氮磷配施模式为150 kg N·hm-2+150 kg P2O5·hm-2。综合产量和品质的结果来看,适当的磷肥施用量可以显著提高牧草营养品质。利用TOPSIS综合评价模型对混播草地产量及各混播组分营养品质进行整体评价后得出:8 cm的留茬高度以及施150 kg N·hm-2+150 kg P2O5·hm-2的氮磷为适宜在河西走廊地区紫花苜蓿+无芒雀麦+长穗偃麦草混播草地利用的留茬高度与施肥模式的组合。  相似文献   

12.
为探究不同施磷量对滴灌紫花苜蓿根际土壤微环境及干草产量的影响,试验设置4个施磷(P2O5)梯度:0(P0),50(P1),100(P2)和150 kg·hm-2(P3),采用滴灌模式随水滴施,测定紫花苜蓿根际土壤微生物数量、酶活性、土壤理化性质及干草产量,并进行综合分析.结果表明,紫花苜蓿根际土壤真菌、放线菌数量及脲酶...  相似文献   

13.
张永亮  于铁峰  郝凤  高凯 《草业学报》2020,29(11):91-101
氮磷钾施量、豆禾混播比例是影响混播草地产量和肥料利用效率的关键因素,分析不同氮磷钾组合与混播比例下牧草产量和氮磷钾利用效率,为豆禾混播草地高产栽培管理提供科学依据。以紫花苜蓿+无芒雀麦混播草地为对象,采用2个间行混播比例(豆禾比2:2和1:2)和7个氮磷钾组合[N280P150K0(A1),N350P100K360(A2),N140P300K300(A3),N420P250K120(A4),N70P50K60(A5),N210P0K240(A6)和N0P200K180(A7)]进行田间试验。结果表明,全年豆禾总产量以A2处理最高(11.68 t·hm-2),极显著(P<0.01)高于其他处理;A1处理禾草产量(3.80 t·hm-2)极显著(P<0.01)高于其他处理;A2处理苜蓿产量(8.60 t·hm-2)极显著(P<0.01)高于A1,A5,A6,A7处理;缺氮(A7)处理全年禾草及豆禾总产量最低。氮肥及氮钾互作与豆禾产量、氮钾互作与苜蓿产量显著相关(P<0.05)。禾草、苜蓿及豆禾NPK偏生产力和吸收率随着NPK施量增加而逐渐下降,A5处理极显著(P<0.01)高于其他处理。缺钾(A1)和低钾(A5)处理苜蓿N利用率明显降低,缺磷(A6)和高磷(A3)处理禾草、苜蓿及豆禾K利用率明显下降。豆禾2:2混播全年苜蓿产量及豆禾总产量极显著(P<0.01)高于1:2混播。豆禾2:2混播苜蓿NPK偏生产力、吸收量和吸收率、豆禾NPK偏生产力、N吸收量和吸收率极显著高于1:2混播,禾草NPK偏生产力、吸收量和吸收率极显著(P<0.01)低于1:2混播。综合考虑牧草产量及养分利用效率,豆禾2:2间行混播,氮磷钾施量以N 140 kg·hm-2,P2O5 100 kg·hm-2,K2O 120 kg·hm-2较适宜。  相似文献   

14.
为利用草地群落光谱参数来评价氮磷施肥效应,本研究以安塞纸坊沟流域内白羊草(Bothriochloa ischaemum)群落为研究对象,测定计算不同氮磷添加[N处理:0(N0),25(N25),50(N50)和100(N100) kg N·hm-2·a-1;P处理(以P2O5计):0(P0),20(P20),40(P40)和 80(P80) kg P2O5·hm-2·a-1]的草地群落光谱特征,同步测定草地群落地上生物量和盖度并计算群落多样性指数。结果表明:施氮显著增大群落地上生物量和盖度,施磷显著增加盖度,氮磷添加对群落多样性无显著影响;氮磷添加后,光谱在“蓝谷”,“绿峰”和“红谷”处的反射率均显著降低;单施氮对红边参数无显著影响,单施磷显著增大红边斜率及面积;植被指数在施氮或施磷后均显著增大,且磷添加的增幅大于氮。总体研究表明,施氮和施磷对草地生物量和盖度的影响不同,施磷能有效提高白羊草群落盖度和群体光合能力,N50P40处理提升群落光合能力最强。  相似文献   

15.
氮磷肥配施对羊草干草产量、养分吸收及品质影响   总被引:2,自引:0,他引:2  
以中科2号羊草(Leymus chinensis ‘Zhongke No.2’)为材料,系统分析了氮磷肥配施对干草产量、品质及养分吸收的影响.结果表明:增施氮肥羊草产草量显著增加(P<0.05),以120 kg·hm-2 P2O5为肥底、施用120 kg·hm-2 N时产草量最高,较对照增产1.5倍;氮、磷、钾吸收量随氮磷肥施用量的增加均呈现先增加后减少趋势,适当增施磷肥促进氮素的吸收,增施氮肥促进磷素的吸收,钾吸收量对氮肥响应显著;氮磷肥合理配施有效增加羊草粗蛋白含量,降低粗纤维和无氮浸出物含量,以120 kg·hm-2 P2O5为肥底、施用90 kg·hm-2 N时羊草品质最优,且经济效益较对照增收1.48倍,建议同类地区推广施用.  相似文献   

16.
为探讨江淮地区紫花苜蓿季节性栽培体系中氮磷肥供应对干物质产量及再生的影响,试验设置4个磷(P2O5)水平处理(0、50、100、150 kg·hm-2)及4个氮(N)水平处理(0、60、120、180 kg·hm-2),研究了干物质产量及产量构成因子、地上部氮磷含量及累积量、再生6和12 d的生长量等指标对氮磷肥投入的响应。结果表明:1)施用氮肥及磷肥均显著促进了紫花苜蓿的生长。在低磷供应条件下,干物质产量随供氮量的增加而增加;在高磷条件下,适宜生长的最优施氮量为120 kg·hm-2。对不同施氮处理而言,饲草干物质产量均随施磷量的增加显著增加。2)干物质产量与地上部氮含量、地上部氮累积量、地上部磷累积量间存在显著正相关关系。3)氮磷肥施用可以促进植株残茬再生,0、50、100、150 kg·hm-2磷处理下适宜残茬再生所需的施氮量分别为180、120、120、60 kg·hm-2。刈割6 d后残茬的再生芽芽长及叶面积、刈割12 d后叶面积均与再生生物量间存在显著正相关关系。可见,江淮地区紫花苜蓿季节性栽培体系中施用磷肥可在一定程度上减少氮肥的用量。当磷肥施用量分别为0、50、100、150 kg·hm-2时,适宜生长及再生的氮肥推荐用量分别为180、120、120、60 kg·hm-2。江淮地区紫花苜蓿季节性栽培体系中推荐年施磷量及施氮量分别为100及120 kg·hm-2,研究结果可为紫花苜蓿季节性栽培技术中的肥料管理提供理论依据。  相似文献   

17.
施用氮肥对人工羊草草地产量及养分吸收的影响   总被引:1,自引:0,他引:1  
为研究施氮对人工羊草草地产量及养分吸收的影响,以中科2号羊草(Leymus chinensis ‘Zhongke No.2’)为材料,设置5个氮肥处理水平,测定不同生育期羊草氮、磷、钾养分含量以及干草产量。结果表明:施用氮肥可以显著提高羊草产量,施用量以133.8 kg·hm-2最为适宜,羊草产量为13134.7 kg·hm-2,每千克纯氮增产55.5 kg;施用氮肥可以提高羊草氮、磷、钾吸收量。  相似文献   

18.
试验旨在检测牦牛乳铁蛋白(lactoferrin,LF)基因多态性,评估基因突变对牦牛乳品质性状的影响,以期丰富牦牛重要经济性状的分子遗传研究。应用PCR-SSCP方法,检测甘南牦牛、西藏牦牛和天祝白牦牛LF基因5'UTR和内含子4突变,结合甘南牦牛乳品质测定,评估基因突变对其乳品质性状的影响。结果表明,牦牛LF基因5'UTR检测到c.-568 G>A的突变,等位基因A1和基因型A1B1频率最高,为优势等位基因和基因型;内含子4检测到c.499+56 C>A突变,基因型A2B2频率最高,为优势基因型,等位基因A2为甘南牦牛和天祝白牦牛优势等位基因,而B2为西藏牦牛优势等位基因;各类群牦牛检测区域多态信息含量(PIC)介于0.25~0.50,属中度多态。关联分析表明,甘南牦牛LF基因突变影响部分胎次甘南牦牛乳品质性状,其中5'UTR第2胎基因型A1A1和A1B1个体无脂固体物质百分含量显著高于B1B1个体(P<0.05);内含子4第3胎基因型A2B2和B2B2个体乳脂率显著高于A2A2型个体(P<0.05),第4胎基因型B2B2个体的乳脂率显著低于A2A2和A2B2型个体(P<0.05)。以上结果表明,甘南牦牛、西藏牦牛和天祝白牦牛LF基因存在多态性,甘南牦牛LF基因5'UTR、内含子4突变分别影响无脂固体物质含量和乳脂率,可以作为潜在的分子遗传标记。  相似文献   

19.
黄淮海地区紫花苜蓿氮磷钾肥料效应与推荐施肥量研究   总被引:1,自引:0,他引:1  
为高产优质苜蓿草地施肥提供科学依据,2016-2017年选择黄淮海地区苜蓿生产的典型区域沧州为试验点,以该地区当家苜蓿品种中苜3号(Medicago sativa L.‘zhongmu No.3’)为试验材料,采用"3414"二次回归最优设计试验方案,研究N,P,K肥配施对紫花苜蓿当年干草产量和营养成分的影响。结果表明,影响中苜3号苜蓿干草产量高低顺序为磷肥>钾肥>氮肥。处理3(N1P2K2)即施N 5.00 kg·hm-2,施P2O5 60.00 kg·hm-2,施K2O 180.00 kg·hm-2时获得最高产量23 657.9 kg·hm-2。14个处理组合中,处理7(N2P3K2)粗蛋白含量最高,为22.45%,处理6(N2P2K2)粗蛋白含量最低,为16.87%。酸性洗涤纤维含量最低的处理3(N1P2K2),为34.14%,中性洗涤纤维的含量最低的处理7(N2P3K2),为51.27%。处理7(N2P3K2)相对饲用价值最高,为111.36。综合分析,处理7(N2P3K2)的初花期营养价值较高。根据产量模型分析,中苜3号苜蓿施N 4.10 kg·hm-2,施P2O5 48.47 kg·hm-2,施K2O 270.00 kg·hm-2时可获得最高产量23 918.2 kg·hm-2。  相似文献   

20.
施肥对苏丹草产草量和氮磷钾养分吸收的影响   总被引:9,自引:3,他引:6  
研究施肥措施对苏丹草产草量以及对氮磷钾养分吸收的影响。结果表明:推荐施肥能显著提高产草量,比习惯施肥增产28.2%,比对照区增产150.0%。各处理的干物质日积累量均在出苗后第38~62d达最大值,分别为335.6、322.9和213.8 kg/hm2/d。在试验条件下,每生产1t苏丹草鲜草,推荐施肥需吸收N 2.59 kg、P2O50.65 kg和K2O 3.13 kg,其N:P2O5:K2O=1:0.25:1.21;习惯施肥需吸收N 2.56 kg、P2O50.76 kg和K2O 3.30 kg,其N:P2O5:K2O=1:0.30:1.29;对照区需吸收N 2.39 kg、P2O50.98 kg和K2O 3.06 kg,其N:P2O5:K2O=1:0.41:1.28。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号