首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To develop a high density linkage map in faba bean, a total of 1,363 FBES (Faba bean expressed sequence tag [EST]-derived simple sequence repeat [SSR]) markers were designed based on 5,090 non-redundant ESTs developed in this study. A total of 109 plants of a ‘Nubaria 2’ × ‘Misr 3’ F2 mapping population were used for map construction. Because the parents were not pure homozygous lines, the 109 F2 plants were divided into three subpopulations according to the original F1 plants. Linkage groups (LGs) generated in each subpopulation were integrated by commonly mapped markers. The integrated ‘Nubaria 2’ × ‘Misr 3’ map consisted of six LGs, representing a total length of 684.7 cM, with 552 loci. Of the mapped loci, 47% were generated from multi-loci diagnostic (MLD) markers. Alignment of homologous sequence pairs along each linkage group revealed obvious syntenic relationships between LGs in faba bean and the genomes of two model legumes, Lotus japonicus and Medicago truncatula. In a polymorphic analysis with ten Egyptian faba bean varieties, 78.9% (384/487) of the FBES markers showed polymorphisms. Along with the EST-SSR markers, the dense map developed in this study is expected to accelerate marker assisted breeding in faba bean.  相似文献   

2.
Brown stem rot (BSR) caused by Cadophora gregata f. sp. adzukicola (syn. Phialophora gregata) is a serious soilborne disease of adzuki bean (Vigna angularis) in Japan. Cultivation of resistant cultivars is the most effective disease control method, therefore the selection of resistant lines is a priority for breeders. BSR-resistant adzuki bean lines have been screened in pathogen-infected fields. However, field selection using the pathogen and artificial inoculation methods is time-consuming and labor-intensive. In the present study, we used 105 F3 lines derived from a cross between a BSR-resistant cultivar ‘Syumari’ and a susceptible cultivar ‘Buchishoryukei-1’ for BSR inoculation tests. Amplified fragment-length polymorphism (AFLP) analyses with 1024 primer sets revealed that six fragments were polymorphic between resistance and susceptible bulked groups. Five DNA markers (Pg77, Pg118, Pg138, Pg139 and Pg126) were developed from the nucleotide sequences of polymorphic AFLP markers and their flanking regions. Pg118, which was derived from E-ACT/M-ACT-118, was tightly linked to the resistance gene Pga1 and was converted into a codominant marker for its easier use in marker-assisted selection for adzuki bean BSR resistance. Finally, the applicability of the developed markers for BSR resistance was tested on 32 adzuki bean accessions or cultivars.  相似文献   

3.
Many important apple (Malus × domestica Borkh.) fruit quality traits are regulated by multiple genes, and more information about quantitative trait loci (QTLs) for these traits is required for marker-assisted selection. In this study, we constructed genetic linkage maps of the Japanese apple cultivars ‘Orin’ and ‘Akane’ using F1 seedlings derived from a cross between these cultivars. The ‘Orin’ map consisted of 251 loci covering 17 linkage groups (LGs; total length 1095.3 cM), and the ‘Akane’ map consisted of 291 loci covering 18 LGs (total length 1098.2 cM). We performed QTL analysis for 16 important traits, and found that four QTLs related to harvest time explained about 70% of genetic variation, and these will be useful for marker-assisted selection. The QTL for early harvest time in LG15 was located very close to the QTL for preharvest fruit drop. The QTL for skin color depth was located around the position of MYB1 in LG9, which suggested that alleles harbored by ‘Akane’ are regulating red color depth with different degrees of effect. We also analyzed soluble solids and sugar component contents, and found that a QTL for soluble solids content in LG16 could be explained by the amount of sorbitol and fructose.  相似文献   

4.
The yellowing strain of Soybean dwarf virus (SbDV-YS) causes yellowing and yield loss in common bean (Phaseolus vulgaris). The most effective control is achieved through breeding for resistance. An indeterminate climbing cultivar with a white seed coat, ‘Oofuku’, is resistant to SbDV-YS in inoculation tests. We crossed ‘Oofuku’ with an elite cultivar, ‘Taisho-Kintoki’, which is SbDV-YS-susceptible, determinate dwarf with a red-purple seed coat, and performed amplified-fragment-length polymorphism analysis of F3 lines. From nucleotide sequences of the resistant-specific fragments and their flanking regions, we developed five DNA markers, of which DV86, DV386, and DV398 were closely linked to Sdvy-1, a resistance gene. Using the markers, we developed ‘Toiku-B79’ and ‘Toiku-B80’, the near-isogenic lines (NILs) incorporating Sdvy-1 in the background of ‘Taisho-Kintoki’. The NILs had similar growth habit, maturity date and seed shape to those of ‘Taisho-Kintoki’. The quality of boiled beans was also similar, except that the NILs had more seed coat cracking than ‘Taisho-Kintoki’. The NILs showed no SbDV-YS infection in inoculation tests. We suggest that Sdvy-1 is a useful source of SbDV-YS resistance in common bean.  相似文献   

5.
Using an F1 population from a cross between Japanese pear (Pyrus pyrifolia Nakai) cultivars ‘Akiakari’ and ‘Taihaku’, we performed quantitative trait locus (QTL) analysis of seven fruit traits (harvest time, fruit skin color, flesh firmness, fruit weight, acid content, total soluble solids content, and preharvest fruit drop). The constructed simple sequence repeat-based genetic linkage map of ‘Akiakari’ consisted of 208 loci and spanned 799 cM; that of ‘Taihaku’ consisted of 275 loci and spanned 1039 cM. Out of significant QTLs, two QTLs for harvest time, one for fruit skin color, and one for flesh firmness were stably detected in two successive years. The QTLs for harvest time were located at the bottom of linkage group (LG) Tai3 (nearest marker: BGA35) and at the top of LG Tai15 (nearest markers: PPACS2 and MEST050), in good accordance with results of genome-wide association study. The PPACS2 gene, a member of the ACC synthase gene family, may control harvest time, preharvest fruit drop, and fruit storage potential. One major QTL associated with fruit skin color was identified at the top of LG 8. QTLs identified in this study would be useful for marker-assisted selection in Japanese pear breeding programs.  相似文献   

6.
Radish (Raphanus sativus L.) belongs to Brassicaceae family and is a close relative of Brassica. This species shows a wide morphological diversity, and is an important vegetable especially in Asia. However, molecular research of radish is behind compared to that of Brassica. For example, reports on SSR (simple sequence repeat) markers are limited. Here, we designed 417 radish SSR markers from SSR-enriched genomic libraries and the cDNA data. Of the 256 SSR markers succeeded in PCR, 130 showed clear polymorphisms between two radish lines; a rat-tail radish and a Japanese cultivar, ‘Harufuku’. As a test case for evaluation of the present SSRs, we conducted two studies. First, we selected 16 SSRs to calculate polymorphism information contents (PICs) using 16 radish cultivars and four other Brassicaceae species. These markers detected 3–15 alleles (average = 9.6). PIC values ranged from 0.54 to 0.92 (average = 0.78). Second, part of the present SSRs were tested for mapping using our previously-examined mapping population. The map spanned 672.7 cM with nine linkage groups (LGs). The 21 radish SSR markers were distributed throughout the LGs. The SSR markers developed here would be informative and useful for genetic analysis in radish and its related species.  相似文献   

7.
Green stem disorder (GSD) is one of the most serious syndromes affecting soybean (Glycine max) cultivation in Japan. In GSD, stems remain green even when pods mature. When soybean plants develop GSD, seed surfaces are soiled by tissue fluid and seed quality is deteriorated during machine harvesting. We performed quantitative trait locus (QTL) analyses for GSD insensitivity using recombinant inbred lines (RILs; n = 154) derived from a cross between an insensitive line (‘Touhoku 129’) and a sensitive leading cultivar (‘Tachinagaha’) during a 6-year evaluation. Three effective QTLs were detected. The influences of these QTLs were in the following order: qGSD1 (LG_H) > qGSD2 (LG_F) > qGSD3 (LG_L). At these three QTLs, ‘Touhoku 129’ genotypes exhibited more GSD insensitivity than ‘Tachinagaha’ genotypes. The lower incidence of GSD for ‘Touhoku129’ was attributable primarily to these three QTLs because RILs harboring a ‘Touhoku 129’ genotype at the three QTLs exhibited a GSD incidence similar to that of ‘Touhoku 129.’ Although a limitation of this study is that only one mapping population was evaluated, this QTL information and the flanking markers of these QTLs would be effective tools for resolving GSD in soybean breeding programs.  相似文献   

8.
Fusarium head blight (FHB) is an important disease of wheat (Triticum aestivum L.). The aim of this study was to determine the effects of quantitative trait locus (QTL) regions for resistance to FHB and estimate their effects on reducing FHB damage to wheat in Hokkaido, northern Japan. We examined 233 F1-derived doubled-haploid (DH) lines from a cross between ‘Kukeiharu 14’ and ‘Sumai 3’ to determine their reaction to FHB during two seasons under field conditions. The DH lines were genotyped at five known FHB-resistance QTL regions (on chromosomes 3BS, 5AS, 6BS, 2DL and 4BS) by using SSR markers. ‘Sumai 3’ alleles at the QTLs at 3BS and 5AS effectively reduced FHB damage in the environment of Hokkaido, indicating that these QTLs will be useful for breeding spring wheat cultivars suitable for Hokkaido. Some of the QTL regions influenced agronomic traits: ‘Sumai 3’ alleles at the 4BS and 5AS QTLs significantly increased stem length and spike length, that at the 2DL QTL significantly decreased grain weight, and that at the 6BS QTL significantly delayed heading, indicating pleiotropic or linkage effects between these agronomic traits and FHB resistance.  相似文献   

9.
In Chinese cabbage (Brassica rapa), the clubroot resistance (CR) genes Crr1 and Crr2 are effective against the mild Plasmodiophora brassicae isolate Ano-01 and the more virulent isolate Wakayama-01, but not against isolate No. 14, classified into pathotype group 3. ‘Akiriso’, a clubroot-resistant F1 cultivar, showed resistance to isolate No. 14. To increase the durability of resistance, we attempted to identify the CR locus in ‘Akiriso’. CR in ‘Akiriso’ segregated as a single dominant gene and was linked to several molecular markers that were also linked to CRb, a CR locus from cultivar ‘CR Shinki’. We developed additional markers around CRb and constructed partial genetic maps of this region in ‘Akiriso’ and ‘CR Shinki’. The positions and order of markers in the genetic maps of the two cultivars were very similar. The segregation ratios for resistance to isolate No. 14 in F2 populations derived from each of the two cultivars were also very similar. These results suggest that the CR locus in ‘Akiriso’ is CRb or a tightly linked locus. The newly developed markers in this study were more closely linked to CRb than previously reported markers and will be useful for marker-assisted selection of CRb in Chinese cabbage breeding.  相似文献   

10.
Rice brown spot (BS), caused by Bipolaris oryzae, causes yield loss and deterioration of grain quality. Using single-nucleotide polymorphism (SNP) markers, we conducted quantitative trait locus (QTL) analysis of BS resistance in backcross inbred lines (BILs) from a cross between an American rice cultivar, ‘Dawn’ (resistant), and ‘Koshihikari’ (susceptible). Four QTLs for BS resistance were detected in a three-year field evaluation, and ‘Dawn’ contributed the resistance alleles at all QTLs. The QTL with the greatest effect, qBSR6-kd, explained 15.1% to 20.3% of the total phenotypic variation. Although disease score and days to heading (DTH) were negatively correlated in all three years, qBSR6-kd was located near a QTL for DTH at which the ‘Dawn’ allele promoted heading. Another BS resistance QTL (qBSR3.1-kd) was unlinked to the QTLs for DTH. Therefore, these two QTLs are likely to be useful for breeding BS-resistant varieties without delaying heading. The other two BS resistance QTLs (qBSR3.2-kd and qBSR7-kd) were located near DTH QTLs at which the ‘Dawn’ alleles delayed heading. The QTLs reported here will be good candidates for developing BS-resistant cultivars.  相似文献   

11.
There is increasing evidence that global warming affects the development of rice. High temperatures during ripening increase the ratio of undesirable chalky grains followed by deteriorating grain appearance quality. In order to detect quantitative trait loci (QTLs) controlling the occurrence of white-back and basal-white chalky grains of brown rice, QTL analysis was performed using recombinant inbred lines derived from a cross between two strains, ‘Tsukushiroman’ (sensitive to heat stress) and ‘Chikushi 52’ (tolerant of heat stress). The F7 and F8 lines were exposed to heat stress during the ripening period in two locations, Fukuoka and Kagoshima, in Japan. QTLs for white-back grains and basal-white grains were detected on chromosomes 1, 3, and 8, and those for basal-white grains were detected on chromosomes 2, 3, and 12. QTLs on chromosome 8 for white-back grains were shared in the plants grown in both locations. Near-isogenic lines (NILs), which harbored a segment from ‘Chikushi 52’ on chromosome 8 with the genetic background of ‘Tsukushiroman’, showed relatively lower ratios of white-back grains than ‘Tsukushiroman’. Therefore, insertion of the ‘Chikushi 52’ genomic region of the QTL on chromosome 8 can improve the quality of rice when it is grown under heat stress conditions.  相似文献   

12.
Insertion-deletion (indel) polymorphisms, such as simple sequence repeats, have been widely used as DNA markers to identify QTLs and genes and to facilitate rice breeding. Recently, next-generation sequencing has produced deep sequences that allow genome-wide detection of indels. These polymorphisms can potentially be used to develop high-accuracy polymerase chain reaction (PCR)-based markers. Here, re-sequencing of 5 indica, 2 aus, and 3 tropical japonica cultivars and Japanese elite cultivar ‘Koshihikari’ was performed to extract regions containing large indels (10–51 bp) shared by diverse cultivars. To design indel markers for the discrimination of genomic regions between ‘Koshihikari’ and other diverse cultivars, we subtracted the indel regions detected in ‘Koshihikari’ from those shared in other cultivars. Two sets of indel markers, KNJ8-indel (shared in eight or more cultivars, including ‘Khao Nam Jen’ as a representative tropical japonica cultivar) and C5-indel (shared in five to eight cultivars), were established, with 915 and 9,899 indel regions, respectively. Validation of the two marker sets by using 23 diverse cultivars showed a high PCR success rate (≥95%) for 83.3% of the KNJ8-indel markers and 73.9% of the C5-indel markers. The marker sets will therefore be useful for the effective breeding of Japanese rice cultivars.  相似文献   

13.
Development of kunitz trypsin inhibitor (KTI)-free soybean is crucial for soy-food industry as the heat inactivation employed to inactivate the anti-nutritional factor in regular soybean incurs extra cost and affects protein solubility. In the presented work, a null allele of KTI from PI542044 was introgressed into cultivar ‘JS97-52’ (recurrent parent) through marker assisted backcrossing. Foreground selection in BC1F2, BC2F2 and BC3F2 was carried out using the null allele-specific marker in tandem with SSR marker Satt228, tightly linked with a trypsin inhibitor Ti locus. Background selection in null allele-carrying plants through 106 polymorphic SSR markers across the genome led to the identification of 9 KTI-free lines exhibiting 98.6% average recurrent parent genome content (RPGC) after three backcrosses, which otherwise had required 5–6 backcrosses through conventional method. Introgressed lines (ILs) were free from KTI and yielded at par with recurrent parent. Reduction of 68.8–83.5% in trypsin inhibitor content (TIC) in ILs compared to the recurrent parent (‘JS97-52’) was attributed to the elimination of KTI.  相似文献   

14.
Black spot disease, which is caused by the Japanese pear pathotype of the filamentous fungus Alternaria alternata (Fries) Keissler, is one of the most harmful diseases in Japanese pear cultivation. We mapped a gene for susceptibility to black spot disease in the Japanese pear (Pyrus pyrifolia Nakai) cultivar ‘Kinchaku’ (Aki gene) at the top of linkage group 11, similar to the positions of the susceptibility genes Ani in ‘Osa Nijisseiki’ and Ana in ‘Nansui’. Using synteny-based marker enrichment, we developed novel apple SSR markers in the target region. We constructed a fine map of linkage group 11 of ‘Kinchaku’ and localized the Aki locus within a 1.5-cM genome region between SSR markers Mdo.chr11.28 and Mdo.chr11.34. Marker Mdo.chr11.30 co-segregated with Aki in all 621 F1 plantlets of a ‘Housui’ × ‘Kinchaku’ cross. The physical size of the Aki region, which includes three markers (Mdo.chr11.28, Mdo.chr11.30, and Mdo.chr11.34), was estimated to be 250 Kb in the ‘Golden Delicious’ apple genome and 107 Kb in the ‘Dangshansuli’ Chinese pear genome. Our results will help to identify the candidate gene for susceptibility to black spot disease in Japanese pear.  相似文献   

15.
Male sterility is one of the reproductive isolation systems in plants and quite useful for F1 seed production. We previously identified three independent quantitative trait loci (QTLs) for male sterility of cultivated strawberry, Here, we identified the specific subgenomes in which these QTLs are located by QTL-seq approach. QTLs qMS4.1, qMS4.2, and qMS4.3 were mapped separately in subgenomes Fvb4-4, Fvb4-3, and Fvb4-1, respectively, in ‘Camarosa’ genome assembly v. 1.0.a1. Candidate regions of qMS4.1 and qMS4.3 were clearly detected around 12–26 Mb in Fvb4-4 and 12–14 Mb in Fvb4-1, respectively; those of qMS4.2 were fragmented in Fvb4-3, which suggests that some scaffolds were incorrectly assembled in Fvb4-3. qMS4.3 was mapped to chr4X1 of ‘Reikou’ genome assembly r2.3, and qMS4.1 and qMS4.2 were both mapped to chr4Av, which indicates that differentiation of the subgenomes in which both QTLs are located was insufficient in ‘Reikou’ r2.3. Although ‘Camarosa’ genome assembly v. 1.0.a1 is an unphased map, which merges homologous chromosomes into one sequence, ‘Reikou’ genome assembly r2.3 is a phased map, which separates homologous chromosomes. QTL mapping to different reference genomes clearly showed the specific features of each reference genome, and that using different kinds of reference map could accelerate fine mapping and map-based cloning of certain genes of cultivated strawberry.  相似文献   

16.
The radish displays great morphological variation but the genetic factors underlying this variability are mostly unknown. To identify quantitative trait loci (QTLs) controlling radish morphological traits, we cultivated 94 F4 and F5 recombinant inbred lines derived from a cross between the rat-tail radish and the Japanese radish cultivar ‘Harufuku’ inbred lines. Eight morphological traits (ovule and seed numbers per silique, plant shape, pubescence and root formation) were measured for investigation. We constructed a map composed of 322 markers with a total length of 673.6 cM. The linkage groups were assigned to the radish chromosomes using disomic rape-radish chromosome-addition lines. On the map, eight and 10 QTLs were identified in 2008 and 2009, respectively. The chromosome-linkage group correspondence, the sequence-specific markers and the QTLs detected here will provide useful information for further genetic studies and for selection during radish breeding programs.  相似文献   

17.
Boiled seed hardness is an important factor in the processing of soybean food products such as nimame and natto. Little information is available on the genetic basis for boiled seed hardness, despite the wide variation in this trait. DNA markers linked to the gene controlling this trait should be useful in soybean breeding programs because of the difficulty of its evaluation. In this report, quantitative trait locus (QTL) analysis was performed to reveal the genetic factors associated with boiled seed hardness using a recombinant inbred line population developed from a cross between two Japanese cultivars, ‘Natto-shoryu’ and ‘Hyoukei-kuro 3’, which differ largely in boiled seed hardness, which in ‘Natto-shoryu’ is about twice that of ‘Hyoukei-kuro 3’. Two significantly stable QTLs, qHbs3-1 and qHbs6-1, were identified on chromosomes 3 and 6, for which the ‘Hyoukei-kuro 3’ alleles contribute to decrease boiled seed hardness for both QTLs. qHbs3-1 also showed significant effects in progeny of a residual heterozygous line and in a different segregating population. Given its substantial effect on boiled seed hardness, SSR markers closely linked to qHbs3-1, such as BARCSOYSSR_03_0165 and BARCSOYSSR_03_0185, could be useful for marker-assisted selection in soybean breeding.  相似文献   

18.
Fusarium head blight (FHB), caused by Fusarium graminearum, is a serious disease of wheat (Triticum aestivum L.) associated with contamination by the mycotoxin deoxynivalenol (DON). The FHB-resistant wheat cultivar ‘Sumai 3’ has been used extensively around the world. The existence of variation in FHB resistance among ‘Sumai 3’ accessions has been discussed. In this study, genetic variation among ‘Sumai 3’ accessions collected from six countries were identified using SSR markers; our results demonstrate unique chromosome regions in Sumai 3-AUT and Sumai 3-JPN (‘Sumai 3’ accessions from Austria and Japan, respectively). Field evaluation indicated strong resistance to FHB in Sumai 3-AUT. The polymorphic rate (number of polymorphic markers/number of available markers × 100) based on a DArT array was 12.5% between the two ‘Sumai 3’ accessions. Genotyping for DNA markers flanking FHB-resistant quantitative trait loci (QTLs) revealed genetic variations for the QTL regions on 5AS and 2DS; however, no variation was observed for the QTL regions on 3BS and 6B. Thus, the variation in FHB resistance among ‘Sumai 3’ accessions in the field is due to genetic diversity.  相似文献   

19.
Fruit nutritional and flavor components are important targets for breeding new cultivars of tomato (Solanum lycopersicum L.). We developed 108 recombinant inbred lines (the K39 RILs) in the F6 generation from a cross between two phenotypically different breeding lines, K03 and K09. A linkage map was constructed using 172 genome-wide simple sequence repeat markers, 3 single-nucleotide polymorphism markers, and 2 phenotypic markers. The K39 RIL map consists of 12 linkage groups (LGs) and covers a genetic distance of 1089 cM. We measured the fruit soluble solids content (SSC), titratable acidity (TA), glutamic acid content (GLU), and lycopene content (LYC) of each line in four generations (F6, F8, F10, F11), β-carotene content (CAR) in two generations, and pH in one generation. By composite interval mapping that considered yearly variations in components as non-genetic effects, we detected three quantitative trait loci (QTLs) for SSC, four for TA, two for CAR, and one each for GLU, LYC, and pH. Among them, we found two QTLs for TA in LGs 6 and 11, those for GLU and LYC were candidates for novel QTLs. QTLs detected in this study were clustered in five LGs, but we observed no apparent trade-off relationships among the QTLs in each LG. Being derived from an intra-specific cross of tomato breeding materials, these QTLs can be used in practical breeding for improving fruit quality with low risk of linkage drag.  相似文献   

20.
A few linkage maps of tea have been constructed using pseudo-testcross theory based on dominant marker systems. However, dominant markers are not suitable as landmark markers across a wide range of materials. Therefore, we developed co-dominant SSR markers from genomic DNA and ESTs and constructed a reference map using these co-dominant markers as landmarks. A population of 54 F1 clones derived from reciprocal crosses between ‘Sayamakaori’ and ‘Kana-Ck17’ was used for the linkage analysis. Maps of both parents were constructed from the F1 population that was taken for BC1 population. The order of most of the dominant markers in the parental maps was consistent. We constructed a core map by merging the linkage data for markers that detected polymorphisms in both parents. The core map contains 15 linkage groups, which corresponds to the basic chromosome number of tea. The total length of the core map is 1218 cM. Here, we present the reference map as a central core map sandwiched between the parental maps for each linkage group; the combined maps contain 441 SSRs, 7 CAPS, 2 STS and 674 RAPDs. This newly constructed linkage map can be used as a basic reference linkage map of tea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号