首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A field experiment was condutced in a clay loam soil to study the performance of three Bradyrhizobium japonicum strains; USDA 110, USDA 138 and TAL 379, in relation to their N2-fixing potential and competitiveness on two soybean cultivars (Clark and Calland). Inoculation of soybean cultivars with these strains, either singly or in combination, induced significant increases in plant dry weight, N2 fixation and seed yields. However, no significant differences were found between the rhizobial strains and/or their mixtures in N2 fixation and increased seed yield for both cultivars. The two soybean cultivars gave similar responses to inoculation. No significant differences in seed yield were observed between Clark and Calland cultivars. The interaction between inoculant strain and soybean cultivar was not significant. The competition between strains for nodulation was assessed. Strain USDA 110 was the most competitive, followed by USDA 138. Strain TAL 379 was always less competitive on both cultivars. The incidence of double-strain occupancy of nodules varied from 8% to 40%.  相似文献   

2.
Summary Previous laboratory and greenhouse studies have shown that phages significantly reduce soil populations of homologous rhizobia. Reductions in nodulation and N2 fixation have also been observed. The purpose of the current study was to examine the effect of a phage specific ofBradyrhizobium japonicum USDA 117 on nodulation, nodule occupancy, N2 fixation and soybean growth and yield under field conditions. The phage was inoculated in combination withB. japonicum USDA 117 and/orB. japonicum USDA 110 (resistant strain) into a rhizobia-free sandy loam soil and planted toGlycine max (L.) Merr. Williams. When the phage was applied to soil inoculated withB. japonicum USDA 117 alone, significant reductions in nodule weight and number, shoot weight, foliar N, nitrogenase activity, and seed index were observed. When, however, the soil also contained the non-homologous strain,B. japonicum USDA 110, no significant effects on any of these parameters were found. Nodule occupancy by competing strains ofB. japonicum USDA 110 and USDA 117 was also affected by the phage. In soil which did not contain the phage, 46% and 44% of the identified nodules were occupied by USDA 110 and 117, respectively. When the phage was present in the soil, nodule occupancy byB. japonicum USDA 117 was reduced to 23%, while occupancy byB. japonicum USDA 110 was increased to 71%. These results suggest that nodulation by selected strains of rhizobia can be restricted and nodulation by more effective, inoculated strains can be increased through the introduction of a homologous phage to soils.  相似文献   

3.
Summary Bacteria isolated from the root zones of field-grown soybean plants [Glycine max (L.) Merr.] were examined in a series of glasshouse experiments for an ability to affect nodulation competition among three strains of Bradyrhizobium japonicum (USDA 31, USDA 110, and USDA 123). Inocula applied at planting contained competing strains of B. japonicum with or without one of eleven isolates of rhizosphere bacteria. Tap-root nodules were harvested 28 days after planting, and nodule occupancies were determined for the bradyrhizobia strains originally applied. Under conditions of low iron availability, five isolates (four Pseudomonas spp. plus one Serratia sp.) caused significant changes in nodule occupancy relative to the corresponding control which was not inoculated with rhizosphere bacteria. During subsequent glasshouse experiments designed to verify and further characterize these effects, three fluorescent Pseudomonas spp. consistently altered nodulation competition among certain combinations of bradyrhizobia strains when the rooting medium did not contain added iron. This alteration typically reflected enhanced nodulation by USDA 110. Two of these isolates produced similar, although less pronounced, effects when ferric hydroxide was added to the rooting medium. The results suggest that certain rhizosphere bacteria, particularly fluorescent Pseudomonas spp., can affect nodulation competition among strains of R. japonicum. An additional implication is that iron availability may be an important factor modifying interactions involving the soybean plant, B. japonicum, and associated microorganisms in the host rhizosphere.Paper No. 10648 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7601, USA  相似文献   

4.
Summary Experiments to assess the ability of free-living cells of six strains of soybean rhizobia (Bradyrhizobium japonicum USDA 76, 94, 110, 122, 123, and 135) to denitrify nitrate in five soils showed that although some strains ofB. japonicum have the capacity to rapidly denitrify nitrate in soils under anaerobic conditions, it is unlikely that the numbers of soybean rhizobia commonly found under field conditions are sufficient to significantly influence either the extent or the products of denitrification in soil. It is our general conclusion that the advantages, if any, that the ability to denitrify conveys to rhizobia or to the rhizobia-legume symbiosis are not offset by increased losses of plant-available N when denitrifying strains of rhizobia are present as free-living cells in soil.  相似文献   

5.
Abstract

Cobb and Coker 488, late‐season (maturity group VIII) cultivars of soybean [Glycine max(L.) Merr], were grovn under irrigated and non‐irrigated conditions on a Norfolk loamy sand in a two‐year field experiment. Each cultivar was inoculated withBradyrhizobium japonicumstrains [USDA 3I1b110; Brazil 587; NifTAL 184 and 102 (NifTAL cultures of Brazil 587 and USDA 110, respectively); and North Carolina 1001, 1004, 1005, 1010, and 1029). Drought conditions were present both years, and irrigation significantly increased the overall yield (2.49 vs 1.92 Mg ha‐1). Coker 488 was significantly higher in seed yield than Cobb (2.55 vs 2.02 Mg ha‐1). Strain ofB.japonicumalso affected seed yields. NC1010‐inoculated soybean was significantly higher in seed yield rank than all other soybean at the P<0.01 level, when compared by single degree of freedom contrast (sdfc). The yield ranking of soybean inoculated with NC1001 was significantly lower than soybean inoculated with all other strains, when compared by sdfc (P<0.10). Other strains differed in responses which ranged from good to poor inoculants under specific water management conditions. For instance, under nonirrigated conditions, soybean inoculated with strains ofB.japonicumfrom North Carolina was significantly higher in seed yield than those inoculated with the cultures of USDA 110, B587, or the control, when compared by sdfc (P>0.03, 0.05, 0.06, respectively). Since soybean inoculated with either strain of USDA 110 was generally high in yield rank under irrigated conditions, their response to irrigation was large relative to soybean inoculated with the NC strain (P<0.04). Neither seed nitrogen nor xylem water potential was highly correlated to seed yield. Since seed yield and N content were not highly correlated, the amount of N accumulated in soybean dry mass and that removed in seed were not highly correlated. Thus, the amount of N returned to the soil would be affected by management combinations of late‐season determinate soybean cultivar,B.japonicumstrain, and irrigation  相似文献   

6.
The aim of this study was to assess the comparative efficacy of three arbuscular mycorrhizal fungi (AMF) combined with cultivar specific Bradyrhizobium japonicum (CSBJ) in soybean under greenhouse conditions. Soybean seeds of four cultivars namely JS 335, JS 71-05, NRC 2 and NRC 7 were inoculated with three AM fungi (Glomus intraradices, Acaulospora tuberculata and Gigaspora gigantea) and CSBJ isolates, individually or in combination, and were grown in pots using autoclaved alluvial soil of a non-legume cultivated field of Ajmer (Rajasthan). Assessment of the data on nodulation, plant growth and seed yield revealed that amongst the single inoculations of three AMF, G. intraradices produced the largest increases in the parameters studied followed by A. tuberculata and G. gigantea indicating that plant acted selectively on AMF symbiosis. The dual inoculation with AMF + CSBJ further improved these parameters demonstrating synergism between the two microsymbionts. Among all the dual treatments, G. intraradices + B. japonicum brought about the largest increases in the studied characteristics particularly in seed weight per plant that increased up to 115.19%, which suggested that a strong selective synergistic relationship existed between AMF and B. japonicum. The cv. JS 335 exhibited maximum positive response towards inoculation. The variations in efficacy of different treatments with different soybean cultivars indicate the specificity of the inoculation response. These results provide a basis for selection of an appropriate combination of specific AMF and Bradyrhizobium which could further be utilized for verifying the symbiotic effectiveness and competitive ability of microsymbionts under field conditions of Ajmer region.  相似文献   

7.
本文研究了大豆根瘸菌PRC005的接菌量对大豆生长的影响.田间试验结果表明:接菌量在播种后40天和60天没有显著增加根瘤数、根瘤干重、地上部植株干重和植株含氮量.施氮肥处理和较高接菌量处理之间的大豆种子产量差异不显著,与不接菌对照处理相比,施氮肥和较高接菌量两个处理的种子产量显著增加.施氮肥处理没有使植株含氮量增加,并且还妨碍了大豆的结瘸作用.室内盆栽试验结果表明:只有当接菌量高于土著菌数1200倍时,才能显著地提高大豆的结瘤数和植株干重.  相似文献   

8.
Interstrain competitiveness is a key factor affecting the performance of rhizobium inoculant. In the present study five native strains of Bradyrhizobium japonicum, namely SSF 4, SSF 5, SSF 6, SSF 7 and SSF 8, were assessed for their competitiveness in nodulating soybean using serological methods. The strains were inoculated individually or with the type strain USDA 110 at a 1:1 ratio. Nodule occupancy determined by immunofluorescence and dot immunoblot assay revealed that under in vitro conditions SSF 8 is more competitive than USDA 110 whereas the others were less competitive. The competitive ability of these strains was also estimated in pot culture in the field. In red soil both SSF 8 and USDA 110 were equally competitive whereas in black soil SSF 8 competed better than USDA 110 and produced more nodules. In a black soil field trial using a randomized block design, USDA 110 or SSF 8, when inoculated alone, occupied the majority of the nodules and enhanced nodule dry weight and shoot biomass. SSF 8 was more competitive when the strains were co-inoculated. Received: 1 November 1996  相似文献   

9.
Summary A method was developed to improve the colonizing ability of inoculated strains of root-nodule bacteria using aliette (aluminum tris-O-ethyl phosphonate), a basipetally translocated fungicide. Aliette applied to seeds of alfalfa inoculated with an aliette-resistant strain of Rhizobium meliloti increased the numbers of R. meliloti in the rhizosphere after 3 but not 37 days, increased the number of nodules, and with some seed treatments, increased the growth of alfalfa. The enhanced colonization by R. meliloti as a result of seed treatment with aliette lasted for at least 31 days for alfalfa, although plant weights did not increase, Colonization by R. meliloti was further enhanced if seeds and foliage were treated with the fungicide. Coating seeds or sparaying the foliage with aliette also increased the number and weight of nodules and nitrogenase activity in soybeans inoculated with an aliette-resistant strain of Bradyrhizobium japonicum. The stimulation of B. japonicum in the rhizosphere and of nodulation was evident with successive plantings of soybeans if the seeds for each planting were treated with the chemical, but aliette did not increase the yield of inoculated soybeans in the subsequent plantings. With only the seeds of the first planting of inoculated soybeans treated with aliette, the numbers of B. japonicum in the rhizosphere of subsequent plantings were only occasionally greater and the numbers of nodules on the later plantings were not increased. We suggest that root colonization, nodulation, and N2 fixation by Rhizobium and Bradyrhizobium may be enhanced by the use of basipetally translocated antimicrobial compounds together with root-nodule bacteria that are resistant to those compounds.  相似文献   

10.
Summary The relationship between the microbial activity in the soil and the effect of seed inoculation with the rhizopseudomonad strain 7NSK2 was evaluated in a series of pot experiments under greenhouse conditions. The microbial activity in plain soil, as measured by the respiratory activity, was significantly increased by the growth of the plants. Both the respiration rate of the microorganisms and the density of the bacteria and fungi in the bulk soil increased with increasing duration of the plant growth. Upon repeated short-term growth of plants on the same soil, a similar stimulation was noticed.The effect of seed inoculation on the growth of the maize cultivar Beaupré and the barley cultivar Iban was most pronounced in the microbiologically more active soils. The results suggest that the increase of the plant growth by seed inoculation is probably due to the inhibition of deleterious root microorganisms.  相似文献   

11.
In order to select appropriate Bradyrhizobium USDA reference strains for primary grouping of indigenous soybean bradyrhizobia, we systematically constructed phylogenetic trees of 20 USDA strains based on DNA sequence analysis and PCR-restriction fragment length polymorphism (RFLP) targeted to 16S rDNA and the internal transcribed spacer (ITS) region between 16S and 23S rDNAs. The phylogenetic trees of 16S rDNA showed 3 major groups, cluster USDA 110 (USDA 62, 110, 122, 125, and 129), cluster USDA 6 (USDA 4, 6T, 38, 115, 123, 127, 135, and 3622T) and cluster B. elkanii (USDA 31, 46, 61, 76T, 94, and 130), as well as the phylogenetically independent strain USDA 124. The topology of the ITS trees was almost similar to that of 16S rDNA, although the positions of two extra-slow-growing strains, USDA 135 and USDA 3622T were variable among the ITS sequences, PCR-RFLP of the ITS region and 16S rDNA. Only two strains, USDA 110 and USDA 122, harbored hup genes and they fell into the USDA 110 cluster. These results suggest that PCR-RFLP analysis of 16S rDNA and the 16S-23S rDNA ITS region may be useful for the grouping of bradyrhizobia and for the first screening of hup-positive strains. Based on the above results, we propose a minimum set of USDA strains reflecting Bradyrhizobium diversity that includes B. japonicum USDA 6T, B. japonicum USDA 110, B. japonicum USDA 124, and B. elkanii USDA 76T. In addition, an extra-slow-growing strain with the serotype USDA 135 might be necessary for genomic diversity analysis of bradyrhizobia, because their phylogenetic positions were variable.  相似文献   

12.
In acid soil, low pH, reduced availability of nutrients, and toxicity of Al and Mn limit plant growth and the survival and effectiveness of rhizobia. The symbiosis between legumes and rhizobia is particularly sensitive to acid soil stress. A pot experiment evaluated whether Bradyrhizobium japonicum strain growth on acidic agar media would predict ability to colonize the rhizosphere and form effective nodules in acidic soils. Three Indonesian strains of B. japonicum with similar effectiveness at neutral pH in sand culture but with different tolerance of acid soil stress factors in agar media, and an acid-tolerant commercial strain (CB1809) of comparable effectiveness, were tested in three acid soils using the Al tolerant soybean (Glycine max cv PI 416937). At 7 days after inoculation all strains had achieved large rhizosphere populations, but by day 14 the rhizosphere population of the acid-sensitive strain had decreased, while the more acid-tolerant strains increased. The acid-tolerant strains had significantly greater nodulation and symbiotic effectiveness than plants inoculated with the acid-sensitive strain. Laboratory prescreening of B. japonicum for acid, Al and Mn tolerance in acid media successfully identified strains which were symbiotically competent in low pH soils.  相似文献   

13.
We studied the effect of the soil physical properties on soybean nodulation and N2 fixation in the heavy soil of an upland field (UF) and an upland field converted from a paddy field (UCPF) in the Hachirougata polder, Japan. Seeds of the soybean cultivar Ryuho were sown in each field with or without inoculation of Bradyrhizobium japonicum A1017. The soybean plants were sampled at 35 (V3) and 65 (Rl) d after sowing (DAS), and then nodulation and the percentage of N derived from N2 fixation in the xylem sap were determined. The soil physical properties were different between UF and UCPF, especially the air permeability and soil water regime. Nodule growth was restricted in UCPF irrespective of rhizobial inoculation, though rhizobial infection was not inhibited by the unfavorable soil physical conditions. Soybean plant growth was closely related to the nodule mass and N2 fixation activity, and the inoculation of a superior rhizobium strain was effective only at 35 DAS. These results indicate that soybean nodulation and N2 fixation was considerably affected by the physical properties of heavy soil, and that it is important to maintain the N2 fixation activity and inoculate the soybean plants with a superior rhizobium strain at a later growth stage in order to increase soybean production in heavy soil fields.  相似文献   

14.
Summary Potential denitrifying activity and population dynamics of Azospirillum lipoferum (137C) and Bradyrhizobium japonicum (G2sp) inoculated into a -sterilized soil were studied for a period of 3 weeks. The denitrifying enzyme potential of soil inoculated independently with each bacterial species was strongly stimulated by the presence of a plant (Zea mays L.). Simultaneous inoculation of both bacteria also produced a higher denitrifying enzyme potential than simple inoculation. Even with double inoculation, the presence of a plant did not modify the evolution of the activity. The response of the population dynamics to these treatments followed a different pattern. The population dynamics of A. lipoferum was not affected by the presence of the plant or by the presence of B. japonicum. In contrast, the presence of both a plant and of A. lipoferum seemed to promote the growth of B. japonicum.  相似文献   

15.
Summary Three field experiments with wheat were conducted in 1983, 1984, and 1985 in Terra Roxa soil in Paraná, the major Brazilian wheat-growing region, to study inoculation effects of various strains of Azospirillum brasilense and A. amazonense. In all three experiments inoculation with A. brasilense Sp 245 isolated from surface-sterilized wheat roots in Paraná produced the highest plant dry weights and highest N% in plant tops and grain. Grain yield increases with this strain were up to 31 % but were not significant. The application of 60 or 100 kg N ha–1 to the controls increased N accumulation and produced yields less than inoculation with this strain. Another A. brasilense strain from surface-sterilized wheat roots (Sp 107st) also produced increased N assimilation at the lower N fertilizer level but reduced dry weights at the high N level, while strain Sp 7 + Cd reduced dry weights and N% in the straw at both N levels. The A. amazonense strain isolated from washed roots and a nitrate reductase negative mutant of strain Sp 245 were ineffective. Strains Sp 245 and Sp 107st showed the best establishment within roots while strain Cd established only in the soil.  相似文献   

16.
N2 fixation, photosynthesis of whole plants and yield increases in soybeans inoculated with mixed cultures of Bradyrhizobium japonicum 110 and Pseudomonas fluorescens 20 or P. fluorescens 21 as well as Glomus mosseae were found in pot experiments in gray forest soil carried out in a growth chamber. The effects of pseudomonads and vesicular-arbuscular (VA) mycorrhizal fungus on these parameters were found to be the same. Dual inoculation of soybeans with mixed cultures of microorganisms stimulated nodulation, nitrogenase activity of nodules and enhanced the amount of biological nitrogen in plants as determined by the 15N dilution method in comparison to soybeans inoculated with nodule bacteria alone. An increased leaf area in dually infected soybeans was estimated to be the major factor increasing photosynthesis. P. fluorescens and G. mosseae stimulated plant growth, photosynthesis and nodulation probably due to the production of plant growth-promoting substances. Increasing phosphorus fertilizer rates within the range of 5–40 mg P 100 g-1 1:1 (v/v) soil: sand in a greenhouse experiment led to a subsequent improvement in nodulation, and an enhancement of N2 fixation and yield in soybeans dually inoculated with B. japonicum 110 and P. fluorescens 21. These indexes were considerably higher in P-treated plants inoculated with mixed bacterial culture than in plants inoculated with nodule bacteria alone.  相似文献   

17.
The competition with established soil populations of Bradyrhizobium able to nodulate soybean has been one of the major constraints to the introduction of more efficient strains in Cerrados soils. The effects of nodulation establishment and persistence of four serologically distinct strains of Bradyrhizobium japonicum (CPAC 15 and CPAC 7, belonging to serogroups USDA 123 and CB 1,809) and B. elkanii (29 W and SEMIA 587, belonging to serogroups 29 W and 587) were examined. These strains were introduced in a dark-red oxisol, without indigenous populations of soybean bradyrhizobia, and were evaluated for 6 years. The experimental design was a completely randomized block with four replicates. In the first year, besides the inoculation treatments, there was also an uninoculated control. In the second year, the main plots were split into three sub-plots and treatments consisted of an uninoculated control, CPAC 7 and CPAC 15. In the third year, the entire area was inoculated with CPAC 7. In the fourth and sixth years, the plots were planted with soybean without inoculation, and in the fifth year the plots were left fallow. The strains introduced in the first year influenced nodule occupancy by strain CPAC 7 until the third successive growing season. By the fourth and sixth years, as a consequence of the dispersal of strains serologically related to serocluster 123 in the entire experimental area, this serogroup dominated the nodulation, occurring, on average, in more than 50% of the nodules of the treatments where it had never been inoculated.  相似文献   

18.
The survival of different strains of Rhizobium japonicum was evaluated in three soils with two matric- and three osmotic-induced moisture potentials. Both drying and added NaCl significantly decreased populations. Strains CC 709 and USDA 110 were less affected by the matric- or osmotic-induced desiccation than strains CB 1809 and USDA 123. The survival of CC 709 and USDA 110 at 2 weeks with 0.7% added NaCI was 33 and 46% of initial counts in soils undergoing drying, and 70 and 69% in soils maintained at the 30kPa (0.3 bar) potential. Comparable survivals of CB 1809 and USDA 123 were 15 and 18% and 56 and 59%, respectively. The soil with the greatest clay and organic C contents maintained the highest populations during desiccation. Turbidity measurements indicated similar rates of growth of the four strains at a water activity (Aw) of 0.999 in yeast mannitol broth (YMB). When the YMB was adjusted with glycerol to lower water activities, strains CC 709 and USDA 110 consistently showed greater growth than did strains CB 1809 and USDA 123. No growth of CB 1809 and USDA 123 was observed at an (Aw) of 0.975. Water adsorption isotherms of freeze-dried cells showed that the more desiccation-susceptible strains (CC 709 and USDA 110) retained greater amounts of water at a given relative vapor pressure than did the two more tolerant strains.  相似文献   

19.
The present study was conducted to isolate and characterize rhizobial strains from root nodules of cultivated legumes, i.e. chickpea, mungbean, pea and siratro. Preliminary characterization of these isolates was done on the basis of plant infectivity test, acetylene reduction assay, C-source utilization, phosphate solubilization, phytohormones and polysaccharide production. The plant infectivity test and acetylene reduction assay showed effective root nodule formation by all the isolates on their respective hosts, except for chickpea isolate Ca-18 that failed to infect its original host. All strains showed homology to a typical Rhizobium strain on the basis of growth pattern, C-source utilization and polysaccharide production. The strain Ca-18 was characterized by its phosphate solubilization and indole acetic acid (IAA) production. The genetic relationship of the six rhizobial strains was carried out by random amplified polymorphic DNA (RAPD) including a reference strain of Bradyrhizobium japonicum TAL-102. Analysis conducted with 60 primers discriminated between the strains of Rhizobium and Bradyrhizobium in two different clusters. One of the primers, OPB-5, yielded a unique RAPD pattern for the six strains and well discriminated the non-nodulating chickpea isolate Ca-18 from all the other nodulating rhizobial strains. Isolate Ca-18 showed the least homology of 15% and 18% with Rhizobium and Bradyrhizobium, respectively, and was probably not a (Brady)rhizobium strain. Partial 16S rRNA gene sequence analysis for MN-S, TAL-102 and Ca-18 strains showed 97% homology between MN-S and TAL-102 strains, supporting the view that they were strains of B. japonicum species. The non-infective isolate Ca-18 was 67% different from the other two strains and probably was an Agrobacterium strain.  相似文献   

20.
在5个大豆品种[Glycine max(L.)Merr.]上分别接种12个大豆根瘤菌菌株[其中1株快生型(Rhizobium Japonicum)其余11株均为慢生型(Bradyrhizobium japonicum)]和一个土壤上清液样品;接种后28天和48天分别测定各处理的单株结瘤数、单株根瘤鲜重、单株茎叶干重、单株茎叶含氮量以及28天至48天单株茎叶的氮积累量。结果表明,不同根瘤菌菌株对上述5个指标的影响,不论在28天或48天都有差异(P=0.01);而不同大豆品种对上述5个指标的影响,28天时无差异而48天都表现出差异(P=0.01);并且28天和48天的茎叶含氮量有品种×菌株相互作用效应外,而其他指标均没有品种×菌株相互作用效应。参试菌株以22—10、USDA123,Tal377,E84,USDA110固氮效率较高,大豆品种以绥83—495在结瘤、固氮方面表现较优良。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号