首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic parameters for carcass traits of 1774 field progeny (1281 steers and 493 heifers), and their genetic relationships with feed efficiency traits of their sire population (740 bulls) were estimated with REML. Feed efficiency traits included feed conversion ratio (FCR) and residual feed intake (RFI). RFI was calculated by the residual of phenotypic (RFIphe) and genetic (RFIgen) regression from the multivariate analysis of feed intake on metabolic weight and daily gain. Progeny traits were carcass weight (CWT), rib eye area (REA), rib thickness (RBT), subcutaneous fat, yield estimate (YEM), marbling score (MSR), meat quality grade, meat color, fat color, meat firmness and meat texture. The estimated heritability for CWT (0.70) was high and heritabilities for all the other traits were moderate (ranged from 0.32 to 0.47), except for meat and fat color and meat texture which were low (ranged from 0.02 to 0.25). The high genetic correlation (0.62) between YEM and MSR suggests that simultaneous improvement of high carcass yield and beef marbling is possible. Estimated genetic correlations of RFI (RFIphe and RFIgen) of sires with CWT (− 0.60 and − 0.53) and MSR (− 0.62 and − 0.50) of their progeny were favorably negative indicating that the selection against RFI of sires may have contributed to produce heavier carcass and increase in beef marbling. The correlated responses in CWT, REA and RBT of progeny were higher to selection against RFI than those to selection against FCR of sires. This study provides evidence that selection against RFI is preferred over selection against FCR in sire population for getting better correlated responses in carcass traits of their progeny.  相似文献   

2.
Genetic parameters for feed efficiency traits of 740 Wagyu bulls and growth and carcass traits of 591 of their progeny, and the genetic relationship between the traits of bulls and their progeny were estimated with the residual maximum likelihood procedure. The estimations were made for the test periods of 140 days (77 bulls), 112 days (663 bulls) and 364 days (591 steer progeny). Feed efficiency traits of bulls included feed conversion ratio (FCR), phenotypic residual feed intake (RFIphe) and genetic residual feed intake (RFIgen). Progeny traits were bodyweight at the start of the test (BWS), bodyweight at finish (BWF), average daily gain (ADG), rib eye area (REA), marbling score (MSR), dressing percentage (DRS) and subcutaneous fat thickness (SFT). The estimated heritability for MSR (0.52) was high and for BWS (0.35), BWF (0.40) and ADG (0.30) were moderate, whereas REA, DRS and SFT were low. Positive genetic correlations among BWS, BWF, ADG and SFT and negative genetic correlations between MSR and DRS and between REA and SFT were found. The genetic correlations between residual feed intake (RFIphe and RFIgen) of bulls and bodyweights (BWS and BWF) of their progeny ranged from ?0.27 to ?0.61. Residual feed intake was positively correlated with REA and DRS and negatively correlated with MSR and SFT. No responses in ADG and weakly correlated responses in REA and DRS of progeny were found to select against feed efficiency traits of bulls. The present experiment provides evidence that selection against lower RFI (higher feed efficiency) would be better than selection against lower FCR for getting better correlated responses in bodyweights.  相似文献   

3.
Genetic parameters for the efficiency of gain traits on 380 boars and the genetic relationships with component traits were estimated in 1,642 pigs (380 boars, 868 gilts, and 394 barrows) in 7 generations of a Duroc population. The efficiency of gain traits included the feed conversion ratio (FCR) and residual feed intake (RFI) and their component traits, ADG, metabolic BW (MWT), and daily feed intake (FI). The RFI was calculated as the difference between the actual and expected FI. The expected FI was predicted by the nutritional requirement and by the residual of phenotypic (RFI(phe)) and genetic (RFI(gen)) regressions from the multivariate analysis for FI on MWT and ADG. The means for RFI(phe) and RFI(gen) were close to zero, and the mean for nutritional RFI was negative (-0.11 kg/d). The traits studied were moderately heritable (ranging from 0.27 to 0.53). The genetic and phenotypic correlations between ADG and FI were moderate to high, whereas the genetic correlation between MWT and FI was moderate, and the phenotypic correlation between them was low. The corresponding correlations between RFI(phe) and RFI(gen) were > 0.95, implying that they can be regarded as the same trait. The genetic and phenotypic correlations of FCR with measures of RFI were high but lower than unity. The RFI(phe) was phenotypically independent of its component traits, MWT (r(p) = 0.01) and ADG (r(p) = 0.03). The RFI(gen) was genetically independent of MWT (r(g) = -0.04), whereas there was a weak genetic relationship (r(g) = 0.15) between RFI(gen) and ADG. Residual FI was more heritable than FCR, and the genetic and phenotypic correlations of RFI(phe) and RFI(gen) with FI were positive and stronger than that of FCR with FI. These results provide evidence that RFI(phe) or RFI(gen) should be included in breeding programs for Duroc pigs to make genetic improvement in the efficiency of gain.  相似文献   

4.
The results of a standardized radiological examination of 5231 Hanoverian Warmblood horses were used to investigate heritability of and genetic correlations between prevalent radiographic findings in the equine limbs. Radiographic findings were categorized by joint location and type of visible alterations and analyzed as all-or-none traits. Heritabilities and correlations were estimated multivariately for most prevalent radiographic findings in equine limbs using Residual Maximum Likelihood (REML) and Gibbs Sampling (GS). Linear animal models and linear sire models were used for REML; sire threshold models were used for GS analyses. Heritabilities and residual correlations from linear model analyses were transformed from observed scale to underlying liability scale. Osseous fragments were seen in fetlock joints (OFF) of 23.5% and in hock joints (OFH) of 9.2% of investigated horses. Deforming arthropathy in hock joints (DAH) was diagnosed in 12.0% and pathologic changes in navicular bones (PCN) in 25.8% of investigated horses. Heritabilities differed little between analyses with animal and sire models and with REML and GS. Ranges of heritability estimates were h2 = 0.16–0.44 with REML and h2 = 0.07–0.43 with GS. Genetic correlation estimates were larger in GS than in REML analyses. Additive genetic correlation between OFF and DAH was positive (rg = 0.25 to 0.77). Negative additive genetic correlations were determined between OFF and OFH (rg = − 0.17 to − 0.82), between OFH and DAH (rg = − 0.14 to − 0.81), and between OFH and PCN (rg = − 0.19 to − 0.26). No relevant additive genetic correlations were estimated between PCN and OFF, and between PCN and DAH. The results of the present study indicate that the prevalences of common radiographic findings in the limbs of young riding horses are relevantly influenced by genetics and probably caused by different genes. Genetic correlations between radiological health traits therefore deserve closer attention in horse breeding. The quantitatively most important radiographic findings should be concurrently considered as individual traits in order to provide for general improvement of radiological health of the limbs of young Warmblood riding horses.  相似文献   

5.
Variance components and genetic parameters were estimated using data recorded on 740 young male Japanese Black cattle during the period from 1971 to 2003. Traits studied were feed intake (FI), feed‐conversion ratio (FCR), residual feed intake (RFI), average daily gain (ADG), metabolic body weight (MWT) at the mid‐point of the test period and body weight (BWT) at the finish of the test (345 days). Data were analysed using three alternative animal models (direct, direct + maternal environmental, and direct + maternal genetic effects). Comparison of the log likelihood values has shown that the direct genetic effect was significant (p < 0.05) for all traits and that the maternal environmental effects were significant (p < 0.05) for MWT and BWT. The heritability estimates were 0.20 ± 0.12 for FI, 0.14 ± 0.10 for FCR, 0.33 ± 0.14 for RFI, 0.19 ± 0.12 for ADG, 0.30 ± 0.14 for MWT and 0.30 ± 0.13 for BWT. The maternal effects (maternal genetic and maternal environmental) were not important in feed‐efficiency traits. The genetic correlation between RFI and ADG was stronger than the corresponding correlation between FCR and ADG. These results provide evidence that RFI should be included for genetic improvement in feed efficiency in Japanese Black breeding programmes.  相似文献   

6.
Our objective was to estimate genetic parameters for feed intake, feeding behavior, and ADG in composite ram lambs ((1/2) Columbia, (1/4) Hampshire, (1/4) Suffolk). Data were collected from 1986 to 1997 on 1,239 ram lambs from approximately 11 to 17 wk of age at the U.S. Meat Animal Research Center near Clay Center, NE. Feeding equipment consisted of an elevated pen with an entrance chute that permitted access to the feeder by only one ram lamb at a time, with disappearance of feed measured by an electronic weighing system. Ram lambs were grouped 11 per pen from 1986 to 1989, and nine per pen from 1990 to 1997. Data were edited to exclude invalid feeding events, and approximately 80% of the data remained after edits were applied. Traits analyzed were daily feed intake (DFI), event feed intake (EFI), residual feed intake (RFI), daily feeding time (DFT), event feeding time (EFT), number of daily feeding events (DFE), and ADG. Feed intake traits of DFI and EFI had estimated heritabilities of 0.25 and 0.33, respectively, whereas estimated heritability of RFI was 0.11. Heritability estimates for feeding behavior traits, including DFT, EFT, and DFE, ranged from 0.29 to 0.36. Average daily gain had an estimated heritability of 0.26. Genetic correlations were positive between all pairs of traits, except for RFI and ADG, and that estimate was essentially zero. Phenotypic correlations were generally similar to genetic correlations. Genetic correlations were large (0.80) between DFI and ADG, intermediate between DFI and RFI (0.61) and between DFT and DFE (0.55), and low (0.17 to 0.31) for the other pairs of traits, with the exception of RFI and ADG (-0.03). Genetic correlations between behavioral traits were greater than correlations between behavioral traits and measures of feed intake or ADG; however, selection for ADG and/or feed intake would be expected to cause some changes in feeding behavior.  相似文献   

7.
提高猪饲料效率的测定与选择   总被引:1,自引:0,他引:1  
为提高猪饲料效率的选择,本试验测定一些与猪饲料效率相关的生产性状并进行遗传评估。方法:测定60头军牧1号白猪后备公猪的采食量、体增重、背膘厚等生产性状,用猪剩余采食量(RFI)和饲料转化率(FCR)作为评价饲料效率的两个指标,并对其遗传参数进行评估。结果:测定期内军牧1号公猪群体FCR均值为2.61,RFI的标准差为77.52。RFI与FCR的遗传力分别是0.35、0.33,RFI与ADFI(日采食量)、ADG(日增重)、BF(背膘厚)的遗传相关分别是0.89、0.12、-0.05,FCR与ADFI、ADG、BF的遗传相关分别是0.55、-0.65、-0.11。结论:军牧1号白猪品种内饲料效率存在较大的遗传差异,由于RFI与ADG遗传相关很低,因此用RFI作为选择性状可有效提高猪的饲料效率。  相似文献   

8.
Records on 514 bulls from the sire population born from 1978 to 2004, and on 22,099 of their field progeny born from 1997 to 2003 with available pedigree information (total number = 124,458) were used to estimate genetic parameters for feed intake and energy efficiency traits of bulls and their relationships with carcass traits of field progeny. Feed intake and energetic efficiency traits were daily feed intake, TDN intake, feed conversion ratio (FCR), TDN conversion ratio (TDNCR), residual feed intake (RFI), partial efficiency of growth, relative growth rate, and Kleiber ratio. Progeny carcass traits were carcass weight (CWT), yield estimate, ribeye area, rib thickness, subcutaneous fat thickness (SFT), marbling score (MSR), meat color standard (MCS), fat color standard (FCS), and meat quality grade. All measures of feed intake and energetic efficiency were moderately heritable (ranged from 0.24 to 0.49), except for partial efficiency of growth and relative growth rate, which were high (0.58) and low (0.14), respectively. The phenotypic and genetic correlations between FCR and TDNCR were >or=0.93. Selection for Kleiber ratio will improve all of the energetic efficiency traits with no effect on feed intake measures (daily feed intake and TDN intake). The genetic correlations of FCR, TDNCR, and RFI of bulls with most of the carcass traits of their field progeny were favorable (ranged from -0.24 to -0.72), except with fat color standard (no correlation), MCS, and SFT. Positive (unfavorable) genetic correlations of MCS with FCR, TDNCR, and RFI (0.79, 0.70, and 0.51, respectively) were found. The SFT was negatively genetically correlated with FCR and TDNCR (-0.32 and -0.20, respectively); however, the genetic correlation between RFI and SFT was not significantly different from zero (r(g) = -0.08 +/- 0.12). Favorable correlated responses in CWT, yield estimate, ribeye area, rib thickness, MSR, and meat quality grade would be predicted for selection against any measure of energetic efficiency. The correlated responses in CWT and MSR of progeny were greater for selection against RFI than for selection against any other energetic efficiency trait. Results of this study indicate that RFI should be preferred over other measures of energetic efficiency to include in selection programs.  相似文献   

9.
Residual feed intake (RFI) has been proposed as an index for determining beef cattle energetic efficiency. Although the relationship of RFI with feed conversion ratio (FCR) is well established, little is known about how RFI compares to other measures of efficiency. This study examined the phenotypic relationships among different measures of energetic efficiency with growth, feed intake, and ultrasound and carcass merit of hybrid cattle (n = 150). Dry matter intake, ME intake (MEI), ADG, metabolic weight (MWT), and FCR during the test averaged 10.29 kg/d (SD = 1.62), 1,185.45 kJ/(kg0.75 x d) (SD = 114.69), 1.42 kg/d (SD = 0.25), 86.67 kg0.75 (SD = 10.21), and 7.27 kg of DM/kg of gain (SD = 1.00), respectively. Residual feed intake averaged 0.00 kg/d and ranged from -2.25 kg/d (most efficient) to 2.61 kg/d (least efficient). Dry matter intake (r = 0.75), MEI (r = 0.83), and FCR (r = 0.62) were correlated with RFI (P < 0.001) and were higher for animals with high (>0.5 SD) RFI vs. those with medium (+/-0.5 SD) or low (<0.5 SD) RFI (P < 0.001). Partial efficiency of growth (PEG; energetic efficiency for ADG) was correlated with RFI (r = -0.89, P < 0.001) and was lower (P < 0.001) for high- vs. medium- or low-RFI animals. However, RFI was not related to ADG (r = -0.03), MWT (r = -0.02), relative growth rate (RGR; growth relative to instantaneous body size; r = -0.04), or Kleiber ratio (KR; ADG per unit of MWT; r = -0.004). Also, DMI was correlated (P < 0.01) with ADG (r = 0.66), MWT (r = 0.49), FCR (r = 0.49), PEG (r = -0.52), RGR (r = 0.18), and KR (r = 0.36). Additionally, FCR was correlated (P < 0.001) with ADG (r = -0.63), PEG (r = -0.83), RGR (r = -0.75), and KR (r = -0.73), but not with MWT (r = 0.07). Correlations of measures of efficiency with ultrasound or carcass traits generally were not different from zero except for correlations of RFI, FCR, and PEG, respectively, with backfat gain (r = 0.30, 0.20, and -0.30), ultrasound backfat (r = 0.19, 0.21, and -0.25), grade fat (r = 0.25, 0.19, and -0.27), lean meat yield (r = -0.22, -0.18, and 0.24), and yield grade (r = 0.28, 0.24, and -0.25). These phenotypic relationships indicate that, compared with other measures of energetic efficiency, RFI should have a greater potential to improve overall production efficiency and PEG above maintenance, and lead to minimal correlated changes in carcass merit without altering the growth and body size of different animals.  相似文献   

10.
The objectives of this work were to investigate alternative selection criteria for milk yield traits in the Valle del Belice sheep breed, which are either corrected for lactation length or not affected by lactation length, to estimate genetic parameters for these alternative selection criteria and to compare the estimated breeding values. The genetic correlations show that corrected milk yield (CMY), maximum test-day yield (MTY) and milk yield at hundred days (MYH), are moderately or weakly correlated with lactation length (LL) (rg = 0.58, 0.16 and 0.39, respectively). Higher genetic correlation was found between total milk yield (TMY) and LL (rg = 0.73). Rank correlations between selection criteria for estimated breeding values for the entire data set were above 0.90 for CMY vs. TMY and CMY vs. MYH and were similar for rams and ewes. Very low were the rank correlations for LL vs. MTY and LL vs. MYH in comparison with 0.75 for LL vs. TMY. Under high selection intensity, rank correlations between breeding values from CMY vs. TMY, CMY vs. MYH and MTY vs. MYH were lower, ranging from 0.53 to 0.75, but higher than all other contrasts between selection criteria. The general results obtained in this study show that MYH is a selection criterion that could improve the genetic evaluation in the Valle del Belice dairy sheep.  相似文献   

11.
The purpose of this study was to estimate genetic parameters for ADG, backfat thickness and loin eye area (LEA), and measures of feed intake and efficiency for purebred Large White boars born from 1990 to 1997. Boars from 60% of the litters were culled at weaning based on a maternal breeding value (index) of the dam, and remaining boars (n = 26,706) were grown to 100 d of age. Selection of boars for individual pen testing was based on a combination of growth and maternal indices. Boars were fed a corn-soybean meal diet that was 1.14% lysine, 19% protein, and 3,344 kcal/kg ME for approximately 77 d. Boars were weighed at the beginning and end of the test, and feed intake was recorded. Daily feed intake (DFI), ADG, and feed:gain ratio (FG) were computed. Four measures of residual feed intake (RFI) were estimated as the difference between actual feed intake and that predicted from models that included 1) initial test age and weight and test ADG (RFI1); 2) initial test age and weight, test ADG, and backfat (RFI2); 3) initial test age and weight, test ADG, and LEA (RFI3); and 4) initial test age and weight, test ADG, backfat, and LEA (RFI4). Genetic parameters were estimated using an animal model and single- or multiple-trait DFREML procedures. Models included fixed effects of contemporary groups and initial test age as a covariate and random animal and litter effects. Heritability estimates for test ADG, DFI, FG, backfat, LEA, RFI1, RFI2, RFI3, and RFI4 were .24, .23, .16, .36, .24, .17, .11, .15, and .10, respectively. Genetic correlations between ADG and backfat, ADG and LEA, ADG and DFI, and ADG and FG were .37, .36, .82, and -.32, respectively. Genetic correlations between ADG and measures of residual feed intake ranged from .11 to .18. Genetic correlations of backfat with LEA, DFI, and FG were -.27, .64, and .40, respectively. Genetic correlations of backfat with RFI measures were higher when backfat was not included in the estimation of RFI. Genetic correlations for LEA with DFI and FG were 0 and -.52, respectively. Genetic correlations for LEA with RFI measures were all negative and ranged from -.31 to -.51. Genetic correlations indicate that selection for reduced RFI could be made without adversely affecting ADG. Backfat should also decrease, and LEA should increase. The amount of change in backfat or LEA would depend on the measure of RFI used.  相似文献   

12.
A data set based on 50 studies including feed intake and utilization traits was used to perform a meta‐analysis to obtain pooled estimates using the variance between studies of genetic parameters for average daily gain (ADG); residual feed intake (RFI); metabolic body weight (MBW); feed conversion ratio (FCR); and daily dry matter intake (DMI) in beef cattle. The total data set included 128 heritability and 122 genetic correlation estimates published in the literature from 1961 to 2012. The meta‐analysis was performed using a random effects model where the restricted maximum likelihood estimator was used to evaluate variances among clusters. Also, a meta‐analysis using the method of cluster analysis was used to group the heritability estimates. Two clusters were obtained for each trait by different variables. It was observed, for all traits, that the heterogeneity of variance was significant between clusters and studies for genetic correlation estimates. The pooled estimates, adding the variance between clusters, for direct heritability estimates for ADG, DMI, RFI, MBW and FCR were 0.32 ± 0.04, 0.39 ± 0.03, 0.31 ± 0.02, 0.31 ± 0.03 and 0.26 ± 0.03, respectively. Pooled genetic correlation estimates ranged from ?0.15 to 0.67 among ADG, DMI, RFI, MBW and FCR. These pooled estimates of genetic parameters could be used to solve genetic prediction equations in populations where data is insufficient for variance component estimation. Cluster analysis is recommended as a statistical procedure to combine results from different studies to account for heterogeneity.  相似文献   

13.
The objectives of this study were to determine the fraction of additive genetic variance explained by the SNP from the Illumina Bovine3K chip; to compare the ranking of animals evaluated with genomic-polygenic, genomic, and polygenic models; and to assess trends in predicted values from these 3 models for residual feed intake (RFI), daily feed intake (DFI), feed conversion ratio (FCR), and postweaning BW gain (PWG) in a multibreed Angus-Brahman cattle population under subtropical conditions. Data consisted of phenotypes and genotypes from 620 bulls, steers, and heifers ranging from 100% Angus to 100% Brahman. Phenotypes were collected in a GrowSafe automated feeding facility (GrowSafe Systems, Ltd., Airdrie, Alberta, Canada) from 2006 to 2010. Variance components were estimated using single-trait genomic-polygenic mixed models with option VCE (Markov chain Monte Carlo) of the program GS3. Fixed effects were contemporary group (year-pen), age of dam, sex of calf, age of calf, Brahman fraction of calf, and heterozygosity of calf. Random effects were additive SNP, animal polygenic, and residual effects. Genomic predictions were computed using a model without polygenic effects and polygenic predictions with a model that excluded additive SNP effects. Heritabilities were 0.20 for RFI, 0.31 for DFI, 0.21 for FCR, and 0.36 for PWG. The fraction of the additive genetic variance explained by SNP in the Illumina 3K chip was 15% for RFI, 11% for DFI, 25% for FCR, and 15% for PWG. These fractions will likely differ in other multibreed populations. Rank correlations between genomic-polygenic and polygenic predictions were high (0.95 to 0.99; P < 0.0001), whereas those between genomic-polygenic and genomic predictions were low (0.65 to 0.74; P < 0.0001). Genomic-polygenic, genomic, and polygenic predictions for all traits tended to decrease as Brahman fraction increased, indicating that calves with greater Brahman fraction were more efficient but grew more slowly than calves with greater Angus fraction. Predicted SNP values were small for all traits, and those above and below 0.2 SNP SD were in multiple chromosomes, supporting the contention that quantitative traits are determined by large numbers of alleles with small effects located throughout the genome.  相似文献   

14.
A major proportion of the costs of pork production is related to feed. The feed conversion rate (FCR) or residual feed intake (RFI) is thus commonly included in breeding programmes. Feeding behaviour traits do not directly have economic value but, if correlated with production traits, can be used as auxiliary traits. The aim of this study was to estimate the heritability of feeding behaviour traits and their genetic correlations with production traits in the Finnish Yorkshire pig population. The data were available from 3,235 pigs. Feeding behaviour was measured as the number of visits per day (NVD), time spent in feeding per day (TPD), daily feed intake (DFI), time spent feeding per visit (TPV), feed intake per visit (FPV) and feed intake rate (FR). The test station phase was divided into five periods. Estimates of heritabilities of feeding behaviour traits varied from 0.17 to 0.47. Strong genetic correlations were obtained between behaviour traits in all periods. However, only DFI was strongly correlated with the production traits. Interestingly, a moderate positive genetic correlation was obtained between FR and backfat thickness (0.1–0.5) and between FR and average daily gain (0.3–0.4), depending on the period. Based on the results, there is no additional benefit from including feeding‐related traits other than those commonly used (FCR and RFI) in the breeding programme. However, if correlated with animal welfare, the feeding behaviour traits could be valuable in the breeding programme.  相似文献   

15.
Data on 380 Duroc boars from seven generations, and 1026 Landrace pigs (341 boars and 685 gilts) from six generations were used to estimate genetic parameters for daily gain (DG), backfat thickness (BF), metabolic weight (MWT), daily feed intake (FI), feed conversion ratio (FCR) and residual feed intake (RFI). Two measures of RFI were estimated as the difference between actual feed intake and that predicted from models that included initial test age and weight and DG (RFI1); and initial test age and weight, DG and BF (RFI2). Heritability estimates for DG, MWT and FI were moderate for both breeds. BF estimates were high for both the breeds. The measures of feed efficiency (FCR and RFI) were moderately heritable. Genetic correlations of BF with measures of RFI were stronger when BF was not included in the estimation of RFI (0.40 and 0.46 for Duroc and Landrace, respectively (for RFI1), compared with 0.05 and 0.06 for Duroc and Landrace, respectively (for RFI2)). Genetic correlations of MWT with measures of RFI were all negative and low. Genetic and phenotypic correlations between DG and measures of RFI were close to zero, which indicated that selection for reduced RFI could be made without adversely affecting DG. BF should also decrease, and MWT should increase under selection for reduced RFI. The reduction in BF would depend on the measure of RFI used.  相似文献   

16.
Genetic parameters for feed efficiency traits of 380 boars and growth and carcass traits of 1642 pigs (380 boars, 868 gilts and 394 barrows) in seven generations of Duroc population were estimated. Feed efficiency traits included the feed conversion ratio (FCR), and nutritional (RFI(nut)), phenotypic (RFI(phe)) and genetic (RFI(gen)) residual feed intake. Growth and carcass traits were the age to reach 105-kg body weight (A105), loin eye muscle area (EMA), backfat (BF), intra-muscular fat (IMF) and meat tenderness. The mean values for RFI(phe) and RFI(gen) were close to zero and for RFI(nut) was negative. All the measures of feed efficiency were moderately heritable (h(2) = 0.31, 0.38, 0.40 and 0.27 for RFI(nut), RFI(phe), RFI(gen) and FCR respectively). The heritabilities for all growth and carcass traits were moderate (ranged from 0.37 to 0.45), except for BF, which was high (0.72). The genetic correlations of RFI(phe) and RFI(gen) with A105 were positive and high. Measures of RFI were correlated negatively with EMA. BF was more strongly correlated with measures of RFI (r(g) > or = 0.73) than with FCR (r(g) = 0.52). Selection for daily gain, EMA, BF and IMF caused favourable genetic changes in feed efficiency traits. Results of this study indicate that selection against either RFI(phe) or RFI(gen) would give a similar correlated response in carcass traits.  相似文献   

17.
Feed intake and efficiency of growth are economically important traits of beef cattle. This study determined the relationships of daily DMI, feed:gain ratio [F:G, which is the reciprocal of the efficiency of gain (G:F) and therefore increases as the efficiency of gain decreases and vice versa, residual feed intake (RFI), and partial efficiency of growth (efficiency of ADG, PEG) with growth and carcass merit of beef cattle. Residual feed intake was calculated from phenotypic regression (RFIp) or genetic regression (RFIg) of ADG and metabolic BW on DMI. An F1 half-sib pedigree file containing 28 sires, 321 dams, and 464 progeny produced from crosses between Alberta Hybrid cows and Angus, Charolais, or Alberta Hybrid bulls was used. Families averaged 20 progeny per sire (range = 3 to 56). Performance, ultrasound, and DMI data was available on all progeny, of which 381 had carcass data. Phenotypic and genetic parameters were obtained using SAS and ASREML software, respectively. Differences in RFIp and RFIg, respectively, between the most and least efficient steers (i.e., steers with the lowest PEG) were 5.59 and 6.84 kg of DM/d. Heritabilities for DMI, F:G, PEG, RFIp, and RFIg were 0.54 +/- 0.15, 0.41 +/- 0.15, 0.56 +/- 0.16, 0.21 +/- 0.12, and 0.42 +/- 0.15, respectively. The genetic (r = 0.92) and phenotypic (r = 0.97) correlations between RFIp and RFIg indicated that the 2 indices are very similar. Both indices of RFI were favorably correlated phenotypically (P < 0.001) and genetically with DMI, F:G, and PEG. Residual feed intake was tendentiously genetically correlated with ADG (r = 0.46 +/- 0.45) and metabolic BW (r = 0.27 +/- 0.33), albeit with high SE. Genetically, RFIg was independent of ADG and BW but showed a phenotypic correlation with ADG (r = -0.21; P < 0.05). Daily DMI was correlated genetically (r = 0.28) and phenotypically (r = 0.30) with F:G. Both DMI and F:G were strongly correlated with ADG (r > 0.50), but only DMI had strong genetic (r = 0.87 +/- 0.10) and phenotypic (r = 0.65) correlations with metabolic BW. Generally, the phenotypic and genetic correlations of RFI with carcass merit were not different from zero, except genetic correlations of RFI with ultrasound and carcass LM area and carcass lean yield and phenotypic correlations of RFI with backfat thickness (P < 0.01). Daily DMI had moderate to high phenotypic (P < 0.01) and genetic correlations with all the ultrasound and carcass traits. Depending on how RFI technology is applied, adjustment for body composition in addition to growth may be required to minimize the potential for correlated responses to selection in cattle.  相似文献   

18.
Most studies on feed efficiency in beef cattle have focused on performance in young animals despite the contribution of the cow herd to overall profitability of beef production systems. The objective of this study was to quantify, using a large data set, the genetic covariances between feed efficiency in growing animals measured in a performance-test station, and beef cow performance including fertility, survival, calving traits, BW, maternal weaning weight, cow price, and cull cow carcass characteristics in commercial herds. Feed efficiency data were available on 2,605 purebred bulls from 1 test station. Records on cow performance were available on up to 94,936 crossbred beef cows. Genetic covariances were estimated using animal and animal-dam linear mixed models. Results showed that selection for feed efficiency, defined as feed conversion ratio (FCR) or residual BW gain (RG), improved maternal weaning weight as evidenced by the respective genetic correlations of -0.61 and 0.57. Despite residual feed intake (RFI) being phenotypically independent of BW, a negative genetic correlation existed between RFI and cow BW (-0.23; although the SE of 0.31 was large). None of the feed efficiency traits were correlated with fertility, calving difficulty, or perinatal mortality. However, genetic correlations estimated between age at first calving and FCR (-0.55 ± 0.14), Kleiber ratio (0.33 ± 0.15), RFI (-0.29 ± 0.14), residual BW gain (0.36 ± 0.15), and relative growth rate (0.37 ± 0.15) all suggest that selection for improved efficiency may delay the age at first calving, and we speculate, using information from other studies, that this may be due to a delay in the onset of puberty. Results from this study, based on the estimated genetic correlations, suggest that selection for improved feed efficiency will have no deleterious effect on cow performance traits with the exception of delaying the age at first calving.  相似文献   

19.
Interest in selection for improved feed efficiency is increasing, but before any steps are taken toward selecting for feed efficiency, correlations with other economically important traits must first be quantified. The objective of this study was to quantify the genetic associations between feed efficiency measured during performance testing and linear type traits, BW, live animal value, and carcass traits recorded in commercial herds. Feed efficiency data were available on 2,605 bulls from 1 performance test station. There were between 10,384 and 93,442 performance records on type traits, BW, animal value, or carcass traits from 17,225 commercial herds. (Co)variance components were estimated using linear mixed animal models. Genetic correlations between the muscular type traits in commercial animals and feed conversion ratio (-0.33 to -0.25), residual feed intake (RFI; -0.33 to -0.22), and residual BW gain (RG; 0.24 to 0.27) suggest that selection for improved feed efficiency should increase muscling. This is further evidenced by the genetic correlations between carcass conformation of commercial animals and feed conversion ratio (-0.46), RFI (-0.37), and residual BW gain (0.35) measured in performance-tested animals. Furthermore, the genetic correlations between RFI and both ultrasonic fat depth and carcass fat score (0.39 and 0.33, respectively) indicated that selection for improved RFI will result in leaner animals. It can be concluded from the genetic correlations estimated in this study that selection for feed efficiency will have no unfavorable effects on the performance traits measured in this study and will actually lead to an improvement in performance for some traits, such as muscularity, animal price, and carcass conformation. Conversely, this suggests that genetic selection for traits such as carcass quality, muscling traits, and animal value might also be indirectly selecting for more efficient animals.  相似文献   

20.
The objective of this experiment was to examine the effect of castration technique on daily feed intake (DFI), daily water intake (DWI), growth performance, residual feed intake (RFI), and inflammatory response in weaned beef calves. Seventy-five beef calves (214 ± 3.2 kg; 200 ± 26 d of age) were housed in a GrowSafe 4000 feed intake facility 7 d post weaning (15 calves/pen). Calves were offered a total mixed ration (TDN = 67.3% and CP = 12.2%, DM = 89%) for ad libitum consumption. On d 0, calves were assigned to 1 of 5 treatments (n = 15 calves/treatment): 1) steers castrated surgically pre-weaning (52 d of age; CON); 2) intact bulls (BULL); 3) bulls castrated by the Callicrate Bander on d 0 (No-Bull Enterprises LLC.; BAN); 4) bulls castrated by the Henderson Castrating Tool on d 0 (Stone Mfg & Supply Co.; HEN); and 5) bulls castrated surgically utilizing an emasculator on d 0 (SUR). Average daily gain, DFI, and DWI were recorded over 84 d. Blood was collected from a sub-sample of calves (n = 45) on d 0, 2, 6, 9, 12, and 15 relative to castration. Castration decreased (P = 0.06) ADG for castrates compared with CON from d 0 to 14 but not d 0 to 84. Daily feed intake and DWI were similar (P > 0.10) among treatments during d 0 to 84. Gain:feed was not affected by castration technique; however, RFI tended (P = 0.09) to be negative for CON and BULL compared with castrates on d 0 to 14 but not d 0 to 84. Acute phase protein analyses indicated that surgical castration (SUR or HEN) elicited a short-term inflammatory response in calves, whereas calves castrated with BAN elicited a delayed response. Calves castrated pre-weaning had improved d 0 to 14 ADG, feed intake, and inflammation response compared with calves castrated at weaning. Banding elicited a delayed negative response in ADG, DWI, and inflammation. In weaned calves, castration method did not affect performance, DFI, DWI, or inflammatory response during the 84-d trial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号