首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
In this paper we describe a study of the use of the white blood cell count (wbcc) as a parameter for detecting outbreaks of Classical Swine Fever (CSF). Meta-analysis of the results of challenge experiments revealed that oronasal infection of SPF-pigs with the virulent CSF virus (CSFV) strains Brescia or NL9201 resulted in a significant decrease in the average white blood cell count during the first week after inoculation of the virus. Challenge of conventional finishing pigs and sows with the moderately virulent strain Paderborn also resulted in a significant decrease in the average wbcc. However, this decrease was not observed after inoculation of SPF pigs with the mildly virulent CSFV strains Henken, Zoelen, or Bergen. The usefulness of clinical inspection in combination with wbcc to detect CSF outbreaks in the field was examined using the results of 214 EDTA blood specimens collected from 22 infected herds and 7250 EDTA blood specimens collected from 1450 non-infected herds. Half of the infected herds had been infected with the moderately virulent CSFV strain Venhorst (closely related to strain Paderborn) during the 1997-98 epidemic in the Netherlands. The other half had been infected with the moderately virulent CSFV strain Loraine. Using these data as a starting point, 1000 samples of one to ten specimens were generated by Monte Carlo simulation. These simulated samples and the samples of the non-infected herds were analysed by use of Receiver Operating Characteristic curves. On the basis of that analysis, the optimal number of animals whose wbcc needed to be determined to detect a CSF outbreak was five. With this number of animals, in conjunction with the threshold of 8000 white blood cells per mm3 (meaning that a herd is designated as CSF suspect if one or more of the five specimens has a white blood cell count of 8000 leukocytes/mm3 or less), the test procedure had a herd sensitivity (HSE) of 94.5% and a herd specificity (HSP) of 97.2%). The HSE is defined as the percentage of samples of infected herds with a positive result of the test procedure; HSP is defined as the percentage of uninfected herds with a negative result of the test procedure. We conclude that the wbcc can help the veterinary practitioner to detect outbreaks of CSF caused by (moderately) virulent CSFV strains. However, for the detection of outbreaks caused by mildly virulent CSFV strains, the contribution of the wbcc is doubtful. Development of additional tools that can improve the clinical diagnosis of the veterinary practitioner remains desirable.  相似文献   

2.
Several studies have highlighted the important role of cytokines in disease development of classical swine fever virus (CSFV) infection. In the present study, we examined the kinetics of 7 porcine cytokines in serum from pigs infected with 3 different CSFV strains. Based on the clinical picture in 6-month-old Danish pigs, the strains used for inoculation were classified as being of low (Bergen), low to moderate (Eystrup) and moderate to high (Lithuania) virulence. The cytokines interferon-alpha (INF-α), interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) showed increased levels after CSFV infection with more or less comparable course in the 3 groups. However, the cytokine level peaked with a 2–3 days delay in pigs infected with the low virulent strain compared to those infected with a moderately or highly virulent strain. These findings may indicate that INF-α, IL-8 and TNF-α are involved in the immune response during CSFV infection with strains of different virulence.  相似文献   

3.
Leukopenia, in particular lymphopenia, is a characteristic early event during classical swine fever (CSF). This was the case in both highly virulent (CSF virus (CSFV) strain Brescia) and moderately virulent (CSFV Uelzen) infections. The leukopenia involved leukocyte sub-populations in a disparate manner, with B-lymphocytes, helper T-cells and cytotoxic T-cells being the most affected. Depletion of lymphocyte sub-populations occurred 1-4 days before virus could be detected by RT-PCR in the serum. With the virulent Brescia virus, depletion was evident by 2 days post-infection (p.i.) but not until 3 days p.i. with an equivalent dose of the low virulent Uelzen strain. A lower (1000-fold) dose of the latter virus delayed these kinetics. gammadelta-TCR(+) T-cells were also reduced, but more so with the virulent Brescia infection. The final level of B-and alphabeta-T-cell lymphopenia was similar for all animals, including those infected with the lower virus dose. AnnexinV staining revealed that cell viability was clearly diminished, particularly interesting, considering the clinical differences between infections by Brescia and Uelzen viruses. It was the time p.i. and rate of appearance of dying cells which was more rapid in the virulent Brescia infections. Interestingly, the repeated blood sampling resulted in depletion of some leukocyte populations also in non-infected control animals. Particularly neutrophils and NK cells, and to a lower extent CD4(+), CD8(+) T-lymphocytes and B-lymphocytes were affected. Taken together, the data show that the alphabeta-T-lymphocyte subsets are particularly susceptible to modulation during the acute phase of CSF, being detectable before the onset of viraemia. The pathogenic mechanism therein would involve indirect virus-host interactions, probably originating from the site of primary infection, rather than a direct effect of the virus or viral protein. Furthermore, these characteristics offer an explanation for the retardation of the cellular and humoral immune response observed during classical swine fever.  相似文献   

4.
The clinical diagnosis of classical swine fever (CSF) still caused problems to the veterinarians during the last decade. The primary CSF outbreak was often detected too late and, meanwhile, the virus had spread. Consequently, the recent classical swine fever virus isolates (CSFV) were suspected to be of low virulence. The purpose of the study was to quantify the virulence of four recent CSFV by evaluating the clinical and pathological signs caused by different CSFV. Pigs of the same breed and age group were inoculated intranasally with CSFV from recent epidemics in European Union (EU) member states. The CSFV used are registered in the data base of the EU Reference Laboratory for CSF and belong to different genotypes: 2.1, 2.2 and 2.3 respectively. Clinical signs of CSF were evaluated by using a score system suggested previously (Mittelholzer et al., 2000: Vet. Microbiol. 74, 293). For the evaluation of pathological lesions, a new pathological score was introduced. The four CSFV tested here were classified as moderately virulent in general, although one CSFV may cause different clinical courses, ranging from highly virulent to avirulent. This indicates the importance of additional factors in the host animal for virulence. Differences in the clinical and pathological signs between these four recent CSFV were rather minor, emphasizing that the genetic typing of CSFV is absolutely essential. Differences towards former CSFV (e.g. reference virus strain Alfort 187) were more pronounced, especially regarding the onset and duration of the disease, the occurrence of skin haemorrhages and pathological lesions of kidney, subcutis and serosae. It is concluded that clinical diagnosis of CSF is rather difficult in pigs up to 14 days post-CSFV infection using these four CSFV, emphasizing the need for careful differential diagnosis and the laboratory investigation for CSF at an early stage.  相似文献   

5.
To study the replication of classical swine fever virus (CSFV) in cell culture, kinetics of viral plus-strand RNA synthesis, of viral structural and non-structural protein expression as well as of secreted and cell-associated infectious virus were determined. Highly virulent, moderately virulent and avirulent strains that were tested in standardized animal experiments to confirm their virulence were used to search for in vitro parameters allowing the differentiation of strains according to their virulence. No significant qualitative or quantitative differences were found between the strains studied when either RNA replication or protein synthesis were investigated. However, the ratio of cell-associated virus versus secreted virus proved to be considerably lower for the highly virulent strains when compared to avirulent or moderately virulent strains. These data suggest that highly virulent strains of CSFV can be distinguished in cell culture from strains with reduced virulence.  相似文献   

6.
7.
The ability to discriminate between various classical swine fever virus (CSFV) strains and isolates is a prerequisite for following the spread of the virus after an outbreak. To determine the relatedness between Russian CSFV isolates from different geographical regions, three fragments of the viral genome (5' NTR, the variable region of the E2 gene and a fragment of the NS5B gene) were sequenced and used for genetic typing. Thirty-one field isolates were obtained from CSF outbreaks which occurred between 1994 and 1999. In addition, three attenuated strains were included in the study, namely the LK and CS vaccine strains, and the moderately virulent 238H isolate. The vaccine strains have been used in Russia for more than 30 years. Our results showed that all field isolates are in subgroup 1.1 together with Alfort 187 and with the highly virulent strain Shimen. In contrast, the CS and LK vaccine strains belong to subgroup 1.2. While there is no evidence for the reversion of the two vaccine strains to wild type, it is feasible that the highly virulent Shimen strain, which has been used as a challenge strain for many years, contributed to field strain generation. The Russian field isolates from the 1990s can be distinguished from the CSF virus isolates which occurred in the EU Member States in the same decade, as here all outbreaks were caused by CSF viruses belonging to subgroup 2.  相似文献   

8.
Classical swine fever (CSF) is a severe multi-systemic disease that can affect both domestic pigs and wild boar. Past outbreaks in European wild boar involved high-virulent CSF virus (CSFV) strains and were mostly self-limiting. In these cases, morbidity and mortality rates were high in the affected regions. In contrast, endemic infections have been observed in several European wild boar populations in recent decades. Morbidity and mortality rates were much lower despite the fact that outbreaks were still detected via diseased or fallen animals. The virus strains involved were mostly classified as genotype 2.3 strains of moderate virulence causing age-dependent disease outcomes. The mechanisms leading to the establishment and perpetuation of endemicity are still not fully understood, but the factor "moderate virulence" seems to be of considerable importance. In this study, we aim to clarify whether the perception of declined 'CSF severity' could hypothetically reflect the adaptation of an initially high-virulent virus or whether this might be better explained as a misinterpretation of observations. A mechanistic eco-epidemiological model was employed to follow up a highly virulent strain of CSFV introduced into large connected wild boar populations. In the model, the virulence of the CSF virus is represented by case mortality and life expectancy after lethal infection. Allowing for small stochastic variation, these two characteristics of the virus are passed on with every new simulated infection that occurs. Model analysis revealed a decrease from high to moderate case mortality within a few years of simulated perpetuation of the virus. The resulting mortality corresponded to the level where the population average of the infectious period and the basic reproduction number of the disease were maximal. This shift in virulence was sufficient to prolong virus circulation considerably beyond the epidemic phase of the simulated outbreaks. Alternative mechanistic explanations for the decrease in disease severity in a CSF-affected wild boar population were evaluated in the light of the simulation experiments and the available epidemiological or virological evidence. In conclusion, the current virus isolates of subgroup 2.3 might be the ideally adapted variants of the CSF virus for long-term perpetuation in wildlife and indeed may have evolved (once) during past outbreaks in large populations. A repeated perception of a declining severity of disease pattern during the course of a CSF outbreak, however, favours the explanation based on monitoring and detection biases rather than repeated observation of selection against highly virulent virus during the time of virus perpetuation.  相似文献   

9.
本实验以来自广西梧州、博自和北海地区的3株猪瘟野毒和中国标准石门株病毒、疫苗毒为材料,研究其在宿主体内和体外PK-15细胞中增殖的基本特性和差异.结果显示,广西的一部分毒株很可能在毒力和生长特性上已经发生了一些变异.本实验用免疫酶实验检测PK-15细胞中的猪瘟病毒抗原,发现其主要存在于细胞的核膜以及内质网和高尔基体富集的区域.  相似文献   

10.
Host-virus interactions play an important role for the clinical outcome of classical swine fever virus (CSFV) infections in pigs. Strain virulence, host characteristics and environment are all factors that markedly influence disease severity. We tested CSFV strains of varying virulence in an experimental set-up, reducing the influence of host and environmental factors. Thus, weaner pigs were inoculated with one of 4 CSFV strains in order to compare the pathogenesis for a 3-week-period after infection. CSFV strains selected were 2 new and 2 previously characterized. None of these strains had been tested in Danish outbred pigs before. Clinical observations grouped the infected pigs into two different categories reflecting either non-specific, mainly gastro-intestinal, problems, or severe disease including high fever within the first week after inoculation. Gross-pathological findings varied between strains, however, lymphoid atrophy and growth retardation represented a consistent finding for all 4 strains. Virus distribution, viral load and in particular virus persistence differed, but supported present practice that recommends lymphoid tissue, most optimal tonsil and lymph nodes, as target material to be applied for early laboratory diagnosis. The present study demonstrated constraints associated with early detection of infections with CSFV strains of low virulence. Since neither clinical symptoms nor pathological lesions observed with these strains constituted characteristic signs of CSF, the risk of neglecting a CSF suspicion is immediate. Therefore, topical information on new outbreaks and continuous enhancement of an efficient surveillance system is of great importance to prevent further spread of CSF within the pig population.  相似文献   

11.
The virulence of two isolates of the classical swine fever virus (CSFV) was studied in experimentally infected wild boars of different ages. The isolates, originating from wild boars shot in Mecklenburg-Western Pomerania (isolate '1829-NVP') and in Rhineland-Palatinate (isolate '11722-WIL'), belong to the genetic subgroup 2.3 Rostock. Clinical picture, transient viraemia, virus excretion and gross lesions at necropsy as well as a failure of virus detection at the end of the experiment revealed that this virus subtype was only moderately virulent. Whereas one subadult wild boar and both 7-week-old wild boar piglets infected intranasally became sick and died, only one of three 8-week-old animals which survived after contact infection remained CSFV positive until the end of the experiment [34 days post infection (dpi)], although neutralizing antibodies were present. This underlines the role of young boars in CSF epidemics. The isolate '11722-WIL' was shed by an infected adult wild boar and was transmitted to susceptible piglets. Interestingly, all animals which became sick and died also were found to be infected with a secondary pathogen. Therefore, we assume that after infection with moderately virulent CSFV simultaneous infections with other pathogens may be important for the clinical course and the outcome of the disease as well as for a spread of the virus in field.  相似文献   

12.
The phenotypic changes in circulating leukocytes in swine fever influenced by classical swine fever virus (CSFV) infection with different strain virulence was studied in piglets. The phenotypic differences were measured by monoclonal antibodies specific for porcine differentiation antigens. The pattern of phenotypic change varied with the virulence of CSFV. Infection with virulent, but not the attenuated strain of CSFV resulted in the dramatic early loss of CD8-bearing T lymphocytes from the circulation. A similar trend was also seen in the gammadelta T-cell compartment following infection with the highly virulent strain, Washington. The loss of circulating B-lymphocytes was consistent with the failure to generate neutralising antibody. These observations contrasted the finding that the number of leukocytes expressing the CD4 surface antigen increased in piglets infected with CSFV. These data provide preliminary information on the potential range of leukocyte changes produced in piglets following infection with CSFV.  相似文献   

13.
为有效鉴别猪瘟病毒强毒株(Shimen)与弱毒疫苗株(HCLV),根据GenBank上已发表的猪瘟病毒囊膜糖蛋白E2基因高度保守区设计一对特异性引物,在其跨越区内部有Shimen株独有的限制性内切酶Bgl Ⅱ酶切位点,采取酶切RT-PCR产物的方法鉴别Shimen株和疫苗株,同时对该方法的特异性和敏感性进行检测。结果表明,应用该方法从Shimen株和疫苗株中均能扩增出一条大小为750 bp的特异性片段,疫苗株的RT-PCR产物不能被Bgl Ⅱ酶切,Shimen株的RT-PCR产物则被酶切为大小分别为520和230 bp的两条带。此方法可扩增猪瘟病毒的E2基因保守片段,对病毒RNA的最小检出量为3.96×10-4 μg/mL。采用此方法检查了30例临床疑似猪瘟病料,结果3例感染猪瘟病毒强毒,21例为猪瘟弱毒疫苗株,其他为猪瘟阴性。  相似文献   

14.
Several routes contribute to the spread of classical swine fever (CSF) during outbreaks of this disease. However, for many infected herds in recent epidemics, no route of virus introduction could be indentified. To obtain more insight into the relative importance of secretions and excretions in transmission of CSF virus, a model was developed. This model quantified the daily transmission probabilities from one infectious pig to one susceptible pig, using quantitative data on: (a) virus excretion by infected pigs, (b) survival of virus in the environment and (c) virus dose needed to infect susceptible pigs. Furthermore, the model predicted the relative contribution of secretions and excretions to this daily probability of infection of a susceptible pig. Three virus strains that differed in virulence were evaluated with the model: the highly virulent strain Brescia, the moderately virulent strain Paderborn and the low virulent strain Zoelen. Results suggest that it is highly probable that susceptible pigs in contact with Brescia or Paderborn infected pigs will be infected. For a pig in contact with a Zoelen infected pig, infection is less likely. When contact with blood is excluded, the predicted overall probability of infection was only 0.08 over the entire infectious period. The three strains differed in the relative contribution of secretions and excretions to transmission, although blood had a high probability of causing infection of a susceptible pig when in contact with a pig infected with any strain. This supports the statement that during outbreaks, control measures should ideally be based on the characteristics of the specific virus strain involved, which implies the development of strain-specific measures.  相似文献   

15.
16.
The conventional C-strain vaccine induces early protection against classical swine fever (CSF), but infected animals cannot be distinguished from vaccinated animals. The CP7_E2alf marker vaccine, a pestivirus chimera, could be a suitable substitute for C-strain vaccine to control CSF outbreaks. In this study, single oral applications of CP7_E2alf and C-strain vaccines were compared for their efficacy to induce protection against a CSF virus (CSFV) challenge with the moderately virulent Bas-Rhin isolate, in pigs as early as two days post-immunization. This work emphasizes the powerful potential of CP7_E2alf vaccine administered orally by a rapid onset of partial protection similar to that induced by the C-strain vaccine. Furthermore, our results revealed that both vaccinations attenuated the effects induced by CSFV on production of the pig major acute phase protein (PigMAP), IFN-α, IL-12, IL-10, and TGF-β1 cytokines. By this interference, several cytokines that may play a role in the pathogeny induced by moderately virulent CSFV strains were revealed. New hypotheses concerning the role of each of these cytokines in CSFV pathogeny are discussed. Our results also show that oral vaccination with either vaccine (CP7_E2alf or C-strain) enhanced CSFV–specific IgG2 production, compared to infection alone. Interestingly, despite the similar antibody profiles displayed by both vaccines post-challenge, the production of CSFV-specific IgG1 and neutralizing antibodies without challenge was lower with CP7_E2alf vaccination than with C-strain vaccination, suggesting a slight difference in the balance of adaptive immune responses between these vaccines.  相似文献   

17.
Classical swine fever (CSF) causes major losses in pig farming, with various degrees of disease severity. Efficient live attenuated vaccines against classical swine fever virus (CSFV) are used routinely in endemic countries. However, despite intensive vaccination programs in these areas for more than 20 years, CSF has not been eradicated. Molecular epidemiology studies in these regions suggests that the virus circulating in the field has evolved under the positive selection pressure exerted by the immune response to the vaccine, leading to new attenuated viral variants. Recent work by our group demonstrated that a high proportion of persistently infected piglets can be generated by early postnatal infection with low and moderately virulent CSFV strains. Here, we studied the immune response to a hog cholera lapinised virus vaccine (HCLV), C-strain, in six-week-old persistently infected pigs following post-natal infection. CSFV-negative pigs were vaccinated as controls. The humoral and interferon gamma responses as well as the CSFV RNA loads were monitored for 21 days post-vaccination. No vaccine viral RNA was detected in the serum samples and tonsils from CSFV postnatally persistently infected pigs for 21 days post-vaccination. Furthermore, no E2-specific antibody response or neutralising antibody titres were shown in CSFV persistently infected vaccinated animals. Likewise, no of IFN-gamma producing cell response against CSFV or PHA was observed. To our knowledge, this is the first report demonstrating the absence of a response to vaccination in CSFV persistently infected pigs.  相似文献   

18.
Depletion in the number of lymphocytes and viral persistence are thought to be the most important outcomes of classical swine fever virus (CSFV) infection. To define the change in peripheral blood mononuclear cells (PBMC) and virus replication in leukocytes after CSFV infection, 8-week old pigs were infected with the LPC vaccine strain or virulent CSFV (HCV-YL strain). Changes in the relative number of PBMCs were analyzed by flow cytometry. The results showed a significant increase in the relative percentage of monocytes in PBMCs during acute CSFV infection of naive pigs (p < 0.05). Monocyte frequencies were not changed in LPC-vaccinated pigs and control pigs. There was also a significant decrease in the number of IgM+ cells (p < 0.05) and a slight decrease in the number of CD4+ lymphocytes after 5 days of infection. There was no change in the frequency of CD8+ lymphocytes in PBMCs after infection. To define which subpopulation of PBMCs was the target for CSFV infection, PBMC populations from CSFV infected pigs were separated and stained for virus antigen expression. Alveolar macrophages (AM) were also studied. The results showed that CSFV replicated in all PBMC subpopulations: CD4+, CD8+, and IgM+ lymphocytes, and monocytes as well as AMs. However, virus antigen expression was more intense in monocytes and AMs. The infection of lymphocytes may, therefore, contribute to the depletion in their numbers after infection and lead to defective antibody production during virulent CSFV infection.  相似文献   

19.
CP7_E2alf is a promising marker vaccine candidate against classical swine fever (CSF). To better understand the mechanisms of protection, cytokine and isotype-specific antibody profiles were investigated in CP7_E2alf vaccinated pigs before and after challenge with the highly virulent CSFV strain “Koslov” at 14 days or 6 months post-vaccination. The interference of vaccination with CSFV pathogeny-related cytokine responses, previously described following a moderately virulent challenge, was confirmed. However, the levels of additional cytokines, TNF-α and IL-6, were significantly attenuated by vaccination following highly virulent challenge. This vaccine interference with cytokine response was not dependent on the immunization route or the consequence of competition between vaccine and challenge strain. Interestingly, IFN-γ enhancement and persistent high IgG2 levels suggested an important role of cell-mediated immunity in long-term protection against CSFV induced by CP7_E2alf vaccination. IgA production also revealed a stimulation of mucosal immunity, especially after oral administration of the vaccine.  相似文献   

20.
Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), which causes significant economic losses to the pig industry worldwide. The E2 glycoprotein of CSFV is the main target for neutralizing antibodies. This study was aimed to develop a recombinant human adenovirus type 5 expressing the CSFV E2 gene (rAdV-E2) and evaluate its efficacy in rabbits and pigs. The results showed that the rabbits and the pigs immunized with the rAdV-E2 developed high-level CSFV-specific neutralizing antibodies. The rAdV-E2-immunized rabbits were protected from fever induced by infection with C-strain, which is pathogenic to the rabbit, and the rAdV-E2-immunized pigs were protected from lethal challenge with highly virulent Shimen strain. This indicates that the recombinant adenovirus can be an attractive candidate vaccine for preventing CSF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号