首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identity of phytoplasmas detected in strawberry plants with green petal (SGP) and lethal yellows (SLY) diseases was determined by RFLP analysis of the 16S rRNA gene and adjacent spacer region (SR). RFLP and sequence comparisons indicated that the phytoplasmas associated with SGP and SLY were indistinguishable and were most closely related to ' Candidatus Phytoplasma australiense', the phytoplasma associated with Australian grapevine yellows, papaya dieback and Phormium yellow leaf diseases. This taxon lies within the aster yellows strain cluster. Primers based on the phytoplasma tuf gene, which amplify only members of the AY strain cluster, amplified a DNA product from the SGP and SLY phytoplasmas. Primers deduced from the 16S rRNA/SR of P. australiense that amplify only members of this taxon amplified rDNA sequences from the SGP and SLY phytoplasmas. Primers that selectively amplify members of the faba bean phyllody (FBP) phytoplasma group, the most commonly occurring phytoplasma group in Australia, did not amplify rDNA from the SGP and SLY phytoplasmas.  相似文献   

2.
The genetic relatedness of phytoplasmas associated with dieback (PDB), yellow crinkle (PYC) and mosaic (PM) diseases in papaya was studied by restriction fragment length polymorphism (RFLP) analysis of the 16S rRNA gene and 16S rRNA/23S rRNA spacer region (SR). RFLP and SR sequence comparisons indicated that PYC and PM phytoplasmas were identical and most closely related to members of the faba bean phyllody strain cluster. By comparison the PDB phytoplasma was most closely related to Phormium yellow leaf (PYL) phytoplasma from New Zealand and the Australian grapevine yellows (AGY) phytoplasma from Australia. These three phytoplasmas cluster with the stolbur and German grapevine yellows (VK) phytoplasmas within the aster yellows strain cluster. Primers based on the phytoplasma tuf gene, which amplify gene products from members of the AY strain cluster, also amplified a DNA product from the PDB phytoplasma but not from either the PYC or PM phytoplasmas. Primers deduced from the 16S rRNA/SR selectively amplified rDNA sequences from the PDB and AGY phytoplasmas but not from other members of the stolbur strain cluster. Similarly, primers designed from 16S rRNA/SR amplified rDNA from the PYC and PM phytoplasmas but not from the PDB phytoplasma. These primers may provide for more specific detection of these pathogens in epidemiological studies.  相似文献   

3.
Aster yellows group phytoplasmas were reclassified by analysis of the 16S rRNA gene sequence, their phylogeny and the presence of interoperon heterogeneity. Nine phytoplasmas were classified into subgroups 16SrI-B and 16SrI-D using the 16S rRNA gene sequence. Then, based on the presence of interoperon heterogeneity, subgroup 16SrI-B phytoplasmas were differentiated into three subunits as 16SrI-B(a): mulberry dwarf, sumac witches’ broom and porcelain vine witches’ broom; 16SrI-B(b): angustata ash witches’ broom and Japanese spurge yellows; and 16SrI-B(c): onion yellow dwarf, water dropwort witches’ broom and hare’s ear yellow dwarf phytoplasma.  相似文献   

4.
ABSTRACT In the spring of 2000, an aster yellows (AY) epidemic occurred in carrot crops in the Winter Garden region of southwestern Texas. A survey revealed that vegetable crops, including cabbage, onion, parsley, and dill, and some weeds also were infected by AY phytoplasmas. Nested polymerase chain reaction (PCR) and restriction fragment length polymorphism analysis of PCR-amplified phytoplasma 16S rDNA were employed for the detection and identification of phytoplasmas associated with these crops and weeds. Phytoplasmas belonging to two subgroups, 16SrI-A and 16SrI-B, in the AY group (16SrI), were predominantly detected in infected plants. Carrot, parsley, and dill were infected with both subgroups. Onion and three species of weeds (prickly lettuce, lazy daisy, and false ragweed) were predominantly or exclusively infected by subgroup 16SrI-A phytoplasma strains, while cabbage was infected by subgroup 16SrI-B phytoplasmas. Both types of phytoplasmas were detected in three leafhopper species, Macrosteles fascifrons, Scaphytopius irroratus, and Ceratagallia abrupta, commonly present in this region during the period of the epidemic. Mixed infections were very common in individual carrot, parsley, and dill plants and in individual leafhoppers. Sequence and phylogenetic analyses of 16S rDNA and ribosomal protein (rp) gene sequences indicated that phytoplasma strains within subgroup 16SrI-A or subgroup 16SrI-B, detected in various plant species and putative insect vectors, were highly homogeneous. However, based on rp sequences, two rpI subgroups were identified within the subgroup 16SrI-A strain cluster. The majority of subgroup 16SrI-A phytoplasma strains were classified as rp subgroup rpI-A, but phytoplasma strains detected in one onion sample and two leafhoppers (M. fascifrons and C. abrupta) were different and classified as a new rp subgroup, rpI-N. The degree of genetic homogeneity of the phytoplasmas involved in the epidemic suggested that the phytoplasmas came from the same pool and that all three leafhopper species may have been involved in the epidemic. The different phytoplasma population profiles present in various crops may be attributed to the ecological constraints as a result of the vector-phytoplasma-plant three-way interaction.  相似文献   

5.
Wang K  Hiruki C 《Phytopathology》2001,91(6):546-552
ABSTRACT This paper describes the identification and differentiation of phytoplasmas by a highly sensitive diagnostic technique, DNA heteroduplex mobility assay (HMA). Closely related phytoplasma isolates of clover proliferation (CP), potato witches'-broom (PWB), and alfalfa witches'-broom (AWB) were collected from the field from 1990 to 1999. The entire 16S rRNA gene and 16/23S spacer region were amplified by polymerase chain reaction (PCR) from the field samples and standard CP, PWB, and AWB phytoplasmas and were subjected to restriction fragment length polymorphism (RFLP) analysis and HMA. Two subgroups (I and II) of phytoplasmas in the CP group were identified by HMA but not by RFLP analysis. The results were confirmed by 16/23S spacer region sequence data analysis. After HMA analyses of the PCR-amplified 16/23S spacer region, 14 phytoplasma isolates from field samples were classified into two aster yellows subgroups: subgroup I, phytoplasma isolates from China aster (Callistephus chinensis) yellows, French marigold (Tagetes patula) yellows, cosmos (Cosmos bipinnatus cv. Dazzler) yellows, clarkia (Clarkia unguiculata) yellows, California poppy (Eschscholzia californica cv. Tai Silk) yellows, monarda (Monarda fistulosa) yellows, and strawflower (Helichrysum bracteatum) yellows; and subgroup II, phytoplasma isolates from zinnia (Zinnia elegans cv. Dahlia Flower) yellows, Queen-Annes-Lace (Daucus carota) yellows, scabiosa (Scabiosa atropurpurea cv. Giant Imperial) yellows, Swan River daisy (Brachycombe multifida cv. Misty Pink) yellows, pot marigold (Calendula officinalis) yellows, purple coneflower (Echinacea purpurea) yellows, and feverfew (Chrysanthemum parthenium) yellows. The results indicate that HMA is a simple, rapid, highly sensitive and accurate method not only for identifying and classifying phytoplasmas but also for studying the molecular epidemiology of phytoplasmas.  相似文献   

6.
The presence of phytoplasma inFragaria ananassa x Duch cv Senga Sengana showing strawberry green petals symptoms was observed by electron microscopy of phloem tissue. No phytoplasmas were found in asymptomatic strawberry plants used as controls. Nucleic acids extracted from these plants were used in nested-PCR assays with primers amplifying 16S rRNA sequences specifie for phytoplasmas. Bands of 1.2 kb were obtained and the subsequent nested-PCR with specific primers and RFLP analyses allowed to classify the detected phytoplasmas in the aster yellows group (16SrI). They belonged to the subgroup I-C of which type strain is clover phyllody phytoplasma.  相似文献   

7.
对内蒙古农业大学校园内表现花器绿变症状的菊花样品进行采集和DNA提取,应用植原体16S rRNA基因和rp基因的引物进行巢式PCR扩增,从感病样品中分别扩增得到了长度均约为1.2 kb的片段。序列一致性分析表明,菊花绿变植原体16S rRNA基因与翠菊黄化植原体匈牙利风信子株系(GenBank登录号MN080271)、印度玉米株系(KY565571)、印度繁缕株系(KC623537)和印度马铃薯株系(KC312703)的核酸一致性最高,为99.9%,rp基因序列与翠菊黄化植原体立陶宛洋葱株系(GU228514)的核酸一致性最高,为99.8%。基于16S rRNA基因和rp基因构建系统进化树时发现,菊花绿变植原体均与16SrI-B亚组成员聚为一起。16S rRNA基因相似性系数分析表明,菊花绿变植原体与洋葱黄化植原体(AP006628)的相似性系数最高为1.00,洋葱黄化植原体(AP006628)在分类上属于16SrI-B亚组。因此,我们可以确定该菊花绿变植原体属于16SrI-B亚组。这是我国首次报道菊花绿变病的发生。  相似文献   

8.
 本研究对山东省11个地区的枣疯病样品进行了鉴定和分子变异分析。以样品总DNA为模板,经扩增和序列测定,分别得到16S rRNA (1 432 bp)、核糖体蛋白基因rp (1 196 bp)、转运蛋白基因secA (836 bp) 和secY (1 421 bp) 的序列,secA基因序列是首次从枣疯病植原体中扩增获得。对获得的序列与NCBI数据库中相关植原体序列进行聚类和核苷酸变异分析,结果显示山东省枣疯病植原体属于16SrⅤ-B、rpⅤ-C、secYⅤ-C亚组,相对于16S rRNA基因,rp,secAsecY变异更大,非同义突变更多,更利于对国内不同来源的枣疯病植原体的精细系统进化分析。  相似文献   

9.
ABSTRACT The phytoplasma "Candidatus Phytoplasma australiense" has been reported from New Zealand and Australia, where it has been associated with a range of host plants, especially since the 1970s. Partial tuf gene sequences of 36 New Zealand (NZ) isolates from four different host genera revealed nine different variants, which clustered into two distinct groups without any obvious correlation with host or geographic region. Phylogenetic analysis of these sequences, together with those available from Australian isolates, revealed three distinct clades: one found solely in Australia, one found solely in NZ, and a third with representatives from both countries. These divisions are consistent with differences observed in the 16-23S rRNA internal transcribed spacer region; therefore, we conclude that they represent three distinct subgroups: tuf 1, tuf 2, and tuf 3. We estimated a time of divergence for the three clades based on a synonymous substitution rate calculated by comparing the complete tuf gene sequence from the Loofah witches'-broom phytoplasma and "Candidatus Phytoplasma australiense". Using a calibration date of 110 million years, the estimated time to a common ancestor for all clades (6 to 9 million years ago) suggests divergence during the Miocene, well after the geological separation of NZ and Australia.  相似文献   

10.
Phytoplasmas infecting sour cherry and lilac in Lithuania were found to represent two lineages related to clover phyllody phytoplasma (CPh), a subgroup 16SrI-(R/S)C (formerly 16SrI-C) strain exhibiting rRNA interoperon sequence heterogeneity. 16S rDNAs amplified from the cherry bunchy leaf (ChBL) and lilac little leaf (LcLL) phytoplasmas were identical or nearly identical to those of operon rrnA and operon rrnB, respectively, of CPh. There was no evidence of 16S rRNA interoperon sequence heterogeneity in either LcLL or ChBL phytoplasma. Based on collective RFLP patterns of 16S rDNA, ChBL was classified in subgroup 16SrI-R, and LcLL was classified in new subgroup 16SrI-S. The ribosomal protein (rp) gene sequences from LcLL phytoplasma were identical to those of CPh, and strain LcLL was classified in rp subgroup rpI-C. By contrast, rp gene sequences from ChBL phytoplasma differed from those of subgroup rpI-C; based on RFLP patterns of rp gene sequences, ChBL was classified in new rp subgroup rpI-O. Single nucleotide polymorphisms (SNPs), designated here by a new SNP convention, marked members of rp subgroup rpI-C, and distinguished LcLL and CPh from ChBL and other non-rpI-C phytoplasmas in group 16SrI. The results raise questions concerning phytoplasma biodiversity assessment based on rRNA genes alone and encourage the supplemental use of a single copy gene in phytoplasma identification and classification, while drawing attention to a possible role of horizontal gene transfer in the evolutionary history of these lineages.  相似文献   

11.
Sequence comparisons and phylogenetic analysis of the 16S rRNA genes and the 16S/23S spacer regions of the phytoplasmas associated with Australian grapevine yellows, papaya dieback and Phormium yellow leaf diseases revealed minimal nucleotide differences between them resulting in the formation of a monophyletic group. Therefore, along with Australian grapevine yellows, the phytoplasmas associated with Phormium yellow leaf and papaya dieback should also be considered as Candidatus Phytoplasma australiense.  相似文献   

12.
Twelve Argentinean 16SrIII (X-disease)-group phytoplasma strains were analyzed. Ten of them, detected in daisy (Bellis perennis), garlic (Allium sativum), ‘lagaña de perro’ (Caesalpinia gilliesii), periwinkle (Catharanthus roseus), ‘rama negra’ (Conyza bonariensis), ‘romerillo’ (Heterothalamus alienus), summer squash (Cucurbita maxima var. zapallito) and tomato (Solanum lycopersicum), are new phytoplasma strains while two strains, detected in garlic and China tree (Melia azedarach), have been previously described. The plants showed typical symptoms of phytoplasma diseases, such as leaf size reduction, proliferation, stunting and virescence. The identification and genetic diversity analysis of the phytoplasmas were performed based on 16S rDNA and ribosomal protein gene sequences. The classification into 16Sr groups and subgroups was established by actual and virtual RFLP analysis of the PCR products (R16F2/R16R2) compared with reference strains. According to the classification scheme, strains HetLL and ConWB-A and B represent two new subgroups 16SrIII-W and X, respectively. On the other hand, strains CatLL, TomLL and CaesLL are related to subgroup 16SrIII-B, and strains BellVir, TomRed, CucVir and GDIII-207 are related to subgroup 16SrIII-J. Ribosomal protein genes were amplified using primers rpF1/rpR1 and rpIIIF1/rpIIIR1. RFLP analysis performed with AluI, DraI and Tru1I (MseI isoschizomer) distinguished three new rp profiles within subgroup 16SrIII-B, one for subgroup 16SrIII-J, and one shared with strains of the new subgroups 16SrIII-W and X. The phylogenetic analysis based on 16S rDNA and ribosomal protein gene sequences confirmed the separation of HetLL and ConWB strains in two new subgroups and the close relatedness among subgroup J phytoplasmas, which have been detected only in South America.  相似文献   

13.
Trade in ornamental plant species comprises a significant segment in the economies of countries in Europe, North America and Asia. Since the quality of ornamental plants is adversely affected by diseases attributed to phytoplasmas, we surveyed plant collections in botanical gardens and floriculture farms in Lithuania for phytoplasmal diseases. Seventeen ornamental species belonging to nine plant families exhibited disease symptoms including general yellowing and stunting, proliferation of shoots, phyllody, virescence and reduced size of flowers, and reddening of leaves. Analysis of the phytoplasmal 16S rRNA gene sequences amplified by PCR revealed that the plants were infected by phytoplasmas belonging to four distinct subgroups (16SrI-A, 16SrI-B, 16SrI-L, and 16SrI-M) of group 16SrI (aster yellows phytoplasma group) and indicated the presence of sequence-heterogeneous 16S rRNA genes in newly recognized strains belonging to subgroups 16Sr-L and 16SrI-M. Infections by these diverse phytoplasmas in a wide array of plant species and families suggests that unidentified, polyphagous insect vectors may actively transmit phytoplasmas threatening the Baltic region's ornamental plant industry.  相似文献   

14.
A total of 62 phytoplasma isolates were collected from North America, Europe and Asia and analysed by heteroduplex mobility assay (HMA) of the 16/23S spacer region amplified by the polymerase chain reaction. The results revealed wide genetic diversity among the phytoplasmas studied and a number of new phytoplasma strains were identified from known or new plant hosts in Alberta, Canada. Two distinctive subgroups were revealed by HMA in phytoplasmas associated with canola yellows, Chinese aster yellows, dandelion yellows and monarda yellows. In Alberta, two subgroups of the aster yellows group of phytoplasmas, I-A and I-B, were prevalent in naturally infected field crops and ornamentals in open gardens. The results indicated that HMA is a simple, but rapid and accurate, alternative method for the detection and estimation of genetic divergence of phytoplasmas when finer molecular characterization of phytoplasmas is required at the subgroup level.  相似文献   

15.
Okra plants with bunchy top disease were found to be prevalent during the period of August–October 2009 in New Delhi, India. The common symptoms observed were shortening of internodes, aggregation of leaves at the apical region, reduced leaf lamina, stem reddening, fruit bending, phyllody and stunting of plants. The disease incidence ranged from 2–60% accompanied by significant reductions in production of both flowers and seeds. Nested polymerase chain reaction targeting phytoplasma specific 16S rDNA and rp genes revealed all symptomatic plants to be positive for phytoplasma. Homology searches depicted its closest identity to phytoplasmas of 16SrI ‘Candidatus Phytoplasma asteris’, like the Sugarcane yellows and Periwinkle phyllody phytoplasmas. Profiles for 16S rDNA obtained with 10 restriction endonucleases, differed in TaqI sites for two phytoplasma isolates (BHND5 & 10) from the standard pattern of 16SrI-B subgroup, the latter was seen in the case of isolate BHND1. Restriction fragment analysis of rp genes with AluI, Tsp509I matched with patterns of the rpI-B phytoplasmas. Phylogenetic reconstruction of rp genes revealed okra bunchy top phytoplasma (BHND1) as a divergent isolate, the subsequent sequence analysis of which showed the presence of a novel BslI site. These significant differences suggest that multiple phytoplasma strains are affecting okra, one of which is a diverging lineage within the 16SrI-B group while others represent a new 16SrI subgroup not reported so far. Additionally, this is the first report of a phytoplasma associated disease in okra plants worldwide.  相似文献   

16.
棣棠丛枝病相关植原体的分子鉴定   总被引:1,自引:0,他引:1  
 植原体(Candidatus Phytoplasma)是一种没有细胞壁的原核微生物,主要由取食韧皮部的昆虫(叶蝉、飞虱等)传播, 也可由菟丝子寄生和嫁接等途径传播,常常引起植株黄化、丛枝、花器变态、萎缩等症状。迄今为止,世界上报道的植物植原体病害有1 000余种,仅我国就有100多种,造成巨大损失。  相似文献   

17.
A comparison was made of the two palm yellows phytoplasmas affecting palms to determine if the entire ribosomal RNA operon portion of the phytoplasma genome, or portions thereof, could account for the observed palm host differences. Polymerase chain reaction (PCR) was used to amplify a 5.0?kb DNA fragment consisting of the entire ribosomal RNA operon from a subgroup 16SrIV-D phytoplasma that causes Texas Phoenix palm decline (TPD) in cabbage (Sabal palmetto) palm in west central Florida and from a subgroup 16SrIV-A phytoplasma that causes lethal yellowing (LY) in coconut (Cocos nucifera) palm in Jamaica. Before the PCR reaction, we sequenced by 454 sequencing a draft genome of the coconut LY phytoplasma, strain LYFL, that infects C. nucifera in Florida, and obtained from this draft sequence both copies of the entire ribosomal operon. Sequence analysis of the ribosomal RNA operons from both the LY and TPD phytoplasmas revealed the gene composition and orientation for the operons to be 5′16S rRNA-tRNAIle-23S rRNA-5S rRNA3′ and a tRNAVal3′ downstream of the 5S rRNA gene. Based on molecular comparisons using the sequences of the ribosomal RNA operon, the TPD (16SrIV-D) strain was 98?% similar to the LY (16SrIV-A) strains.  相似文献   

18.
ABSTRACT Antisera raised against phloem-limited phytoplasmas generally react only with the phytoplasma strain used to produce the antigen. There is a need for an antiserum that reacts with a variety of phytoplasmas. Here, we show that an antiserum raised against the SecA membrane protein of onion yellows phytoplasma, which belongs to the aster yellows 16S-group, detected eight phytoplasma strains from four distinct 16S-groups (aster yellows, western X, rice yellow dwarf, and elm yellows). In immunoblots, approximately 96-kDa SecA protein was detected in plants infected with each of the eight phytoplasmas. Immunohistochemical staining of thin sections prepared from infected plants was localized in phloem tissues. This antiserum should be useful in the detection and histopathological analysis of a wide range of phytoplasmas.  相似文献   

19.
ABSTRACT Alfalfa (Medicago sativa) plants showing witches'-broom symptoms typical of phytoplasmas were observed from Al-Batinah, Al-Sharqiya, Al-Bureimi, and interior regions of the Sultanate of Oman. Phytoplasmas were detected from all symptomatic samples by the specific amplification of their 16S-23S rRNA gene. Polymerase chain reaction (PCR), utilizing phytoplasma-specific universal primer pairs, consistently amplified a product of expected lengths when DNA extract from symptomatic samples was used as template. Asymptomatic plant samples and the negative control yielded no amplification. Restriction fragment length polymorphism profiles of PCR-amplified 16S-23S rDNA of alfalfa using the P1/P7 primer pair identified phytoplasmas belonging to peanut witches'-broom group (16SrII or faba bean phyllody). Restriction enzyme profiles showed that the phytoplasmas detected in all 300 samples belonged to the same ribosomal group. Extensive comparative analyses on P1/P7 amplimers of 20 phytoplasmas with Tru9I, Tsp509I, HpaII, TaqI, and RsaI clearly indicated that this phytoplasma is different from all the other phytoplasmas employed belonging to subgroup 16SrII, except tomato big bud phytoplasma from Australia, and could be therefore classified in subgroup 16SrII-D. The alfalfa witches'-broom (AlfWB) phytoplasma P1/P7 PCR product was sequenced directly after cloning and yielded a 1,690-bp product. The homology search showed 99% similarity (1,667 of 1,690 base identity) with papaya yellow crinkle (PapayaYC) phytoplasma from New Zealand. A phylogenetic tree based on 16S plus spacer regions sequences of 35 phytoplasmas, mainly from the Southern Hemisphere, showed that AlfWB is a new phytoplasma species, with closest relationships to PapayaYC phytoplasmas from New Zealand and Chinese pigeon pea witches'-broom phytoplasmas from Taiwan but distinguishable from them considering the different associated plant hosts and the extreme geographical isolation.  相似文献   

20.
ABSTRACT Epidemics of aster yellows in lettuce in Ohio are caused by at least seven distinct phytoplasma strains in the aster yellows (AY) group. Five of the strains are newly reported: AY-BW, AY-WB, AY-BD3, AY-SS, and AY-SG. All seven strains were characterized based on symptoms in aster and lettuce, and by polymerase chain reaction (PCR). Strain AY-BD2 (formerly 'Bolt') causes yellowing and leaf distortion in lettuce and bolting in aster, whereas strain AY-S (formerly 'Severe') causes stunting, leaf clustering, and phyllody. Strain AY-WB causes yellowing and wilting in lettuce and witches'-broom in aster. Strain AY-SG induces horizontal growth in lettuce and aster plants. Strain AY-BW causes chlorosis of emerging leaves and abnormally upright growth of leaf petioles. AY-SS causes symptoms similar to those caused by AY-S but has a different PCR-restriction fragment length polymorphism (RFLP) banding pattern. Strains AY-BD2 and AY-BD-3 cause mild leaf and stem distortion in lettuce but are differentiated by PCR-RFLP. All phytoplasma strains collected from lettuce in Ohio belong to the 16SrI group. AY-WB belongs to the 16SrI-A subgroup and the other six belong to the 16SrI-B subgroup. Five of the seven strains were distinguished from each other by primer typing. The results of phylogenetic analyses of sequences of the 16S rRNA genes were basically consistent with the classification based on PCR-RFLP, in which AY-WB clustered with phytoplasmas of the 16rIA subgroup and the other Ohio lettuce strains clustered with phytoplasmas in the 16SrI-B subgroup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号