首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The effects of root exclusion and planted tree species on soil nitrogen (N) dynamics were examined at two plantations, one planted with Japanese cedar and the other with Japanese cypress. We set up ten 1 × 1 × 0.2-m-deep trenched sites and ten untrenched control sites at each plantation. We measured the pool size and leaching of inorganic N at each site for 2 years and the net N mineralization 1 and 2 years after trenching. Despite similar soil conditions, the cedar plantation showed higher net N mineralization than the cypress plantation. Stopped tree uptake of N was expected to cause an increased pool size and leaching of inorganic N at the trenched sites. Nevertheless, we found no significant increase in those variables at both plantations. The trenched cypress sites showed no decrease in the net N mineralization during the 2 years after trenching. However, the net nitrification at the trenched cypress sites increased remarkably at the deeper horizons in comparison with that at the control sites. Enhanced nitrification might result from improved ammonium availability through root exclusion. Net N mineralization at the trenched cedar sites decreased more than 60% compared with that at the control sites 2 years after trenching. Higher nitrification potential at the cedar plantation and enhanced nitrification potential at the trenched cypress sites never resulted in increased leaching of N, due to added fine root litter which acted as an immobilization agent for excess N, thus preventing N loss.  相似文献   

2.
The objective of this study was to determine the rate of nitrogen (N) mineralization in response to various levels of canopy cover in red pine (Pinus resinosa Ait.) stands. Experimental plots consisted of various levels of canopy cover,i.e., clearcut, 25% (50% during first sampling year), 75%, and uncut in red pine plantations in northern Lower Michigan, USA. Net N mineralization and nitrification in the top 15 cm of mineral soil were examined during the first two growing seasons (1991–1992) following the canopy cover manipulations, using anin situ buried bag technique. Mean net N mineralization over the course of both growing seasons (May–October) ranged from 26.9 kg ha−1 per growing season in the clearcut treatment to 13.4 kg ha−1 per growing season in the uncut stand. Net N mineralization and nitrification increased significantly in the clearcut treatment compared to the uncut treatment during the second growing season only. However, net N mineralization and nitrification did not differ significantly between the partial canopy cover treatments and the uncut stand. Increased N mineralization and nitrification in the clearcut during the second growing season may be associated with increased soil temperature and changes of organic matter quality with time since canopy removal. This study was supported in part by the USDA Forest Service and Michigan Technological University.  相似文献   

3.
Ammonification and nitrification rates and nitrogen uptake were measured using the buried-bag technique in irrigated mixed plantations of shisham (Dalbergia sissoo Roxb. ex DC.) and mulberry (Morus alba L.). Nitrogen transformations were rapid in these stands, particularly following thinning to reduce stand density. In young stands, net N mineralization was 26.72 mg N kg−1 soil month−1 (approximately 480 kg ha−1 month−1), but, as the end of the 22-year rotation approached, nitrification slowed to 13.41 mg N kg−1 soil month−1 (approximately 241 kg ha−1 month−1). N2-fixing shisham appeared to respond after thinning only to the increased space and temporarily reduced competition for light and moisture, but mulberry appeared to benefit greatly from the nitrogen released through mineralization following thinning.  相似文献   

4.
We compared N fluxes in a 150-year-old Fagus sylvatica coppice and five adjacent 25-year-old plantations of Fagus sylvatica, Picea abies, Quercus petraea, Pinus laricio and Pseudotsuga menziesii. We measured net N mineralization fluxes in the upper mineral horizon (A1, 0–5 cm) for 4 weeks and gross N mineralization fluxes for two days. Gross rates were measured during the 48-h period after addition of 15NH4 and 15NO3. Mineralization was measured by the 15NH4 dilution technique and gross nitrification by 15NO3 production from the addition of 15NH4, and by 15NO3 dilution. Net and gross N mineralization was lower in the soil of the old coppice, than in the plantations, both on a soil weight and organic nitrogen basis. Gross nitrification was also very low. Gross nitrification measured by NO3 dilution was slightly higher than measured by 15NO3 production from the addition of 15NH4. In the plantations, gross and net mineralization and nitrification from pool dilution were lowest in the spruce stand and highest in the beech and Corsican pine stands. We concluded that: (1) the low net mineralization in the soil of the old coppice was related to low gross rate of mineralization rather than to the concurrent effect of microbial immobilisation of mineral N; (2) the absence of nitrate in the old coppice was not related to the low rate of mineralization nor to the absence of nitrifyers, but most probably to the inhibition of nitrifyers in the moder humus; (3) substituting the old coppice by young stands favours nitrifyer communities; and (4) heterotrophic nitrifyers may bypass the ammonification step in these acid soils, but further research is needed to check this process and to characterize the microbial communities.  相似文献   

5.
Application of nitrogen fertilizer to 23-year old Pinus radiata D. Don at high rates induced considerable change in patterns of nitrogen mineralization in the soil. Increased net mineralization, nitrification, root Nitrate Reductase Activity, and foliar N levels were measured within 12 months of fertilizer application. Fertilizing did not, however, affect growth significantly over the 30 months of measurement. Significant differences in inorganic-N and patterns of mineralization between fertilized plots and controls were not maintained and all of the fertilized plots had levels of inorganic-N and patterns of mineralization approaching those of the control within 30 months. N added to these young aggrading forests of high productivity therefore appears to be quickly immobilized. Within normal forest rotations, it is apparent that the C/N ratio of the soil acts as a strong buffer to perturbation of mineralization patterns.  相似文献   

6.
The Southeastern United States has a robust broiler industry that generates substantial quantities of poultry litter as waste. It has historically been applied to pastures close to poultry production facilities, but pollution of watersheds with litter-derived phosphorus and to a lesser extent nitrogen have led to voluntary and in some areas regulatory restrictions on application rates to pastures. Loblolly pine (Pinus taeda L.) forests are often located in close proximity to broiler production facilities, and these forests often benefit from improved nutrition. Accordingly, loblolly pine forests may serve as alternative land for litter application. However, information on the influence of repeated litter applications on loblolly pine forest N and P dynamics is lacking. Results from three individual ongoing studies were summarized to understand the effects of repeated litter applications, litter application rates, and land use types (loblolly pine forest and pasture) on N and P dynamics in soil and soil water. Each individual study was established at one of three locations in the Western Gulf Coastal Plain region. Annual applications of poultry litter increased soil test P accumulation of surface soils in all three studies, and the magnitude of increase was positively and linearly correlated with application rates and frequencies. In one study that was established at a site with relatively high soil test P concentrations prior to poultry litter application, five annual litter applications of 5 Mg ha−1 and 20 Mg ha−1 also increased soil test P accumulation in subsurface soils to a depth of up to 45 cm. Soil test P accumulations were greater in surface soils of loblolly pine stands than in pastures when both land use types received similar rates of litter application. In one study which monitored N dynamics, lower soil organic N, potential net N mineralization, potential net nitrification, and soil water N was found in loblolly pine stands than pastures after two annual litter applications. However, increases in potential net N mineralization, net nitrification, and soil water N with litter application were more pronounced in loblolly pine than in pasture soils. Loblolly pine plantations can be a viable land use alternative to pastures for poultry litter application, but litter application rate and frequency as well as differences in nutrient cycling dynamics between pine plantations and pastures are important considerations for environmentally sound nutrient management decisions.  相似文献   

7.
城乡梯度森林土壤原易位N矿化   总被引:3,自引:0,他引:3       下载免费PDF全文
以位于南昌市城乡生态界面的湿地松(Pinus elliottii)人工林为研究对象,开展城区、郊区、乡村3个不同梯度土壤N原位、易位培养试验.结果表明:培养土壤来源对土壤的氨化、硝化速率影响差异极显著(P<0.001),对净矿化速率影响差异显著(P<0.05);氨化速率表现为乡村土壤来源(0.11 mg·kg-1·30 d-1)>郊区土壤来源(-0.92mg·kg-1·30d-1)>城区土壤来源(-2.02 mg·kg-1·30 d-1);硝化速率表现为乡村土壤来源(0.44 mg·kg-1·30 d-1)较低,城区(3.18 mg·kg-1·30 d-1)和郊区土壤来源(3.35 mg·kg-1·30 d-1)较高;净矿化速率表现为乡村土壤来源(0.54 mg·kg-1·30 d-1)<城区土壤来源(1.16 mg·kg-1·30 d-1)<郊区土壤来源(2.43 mg·kg-1·30 d-1).培养位置对氨化速率影响差异不显著(P>0.05),对硝化速率、净矿化速率影响差异极显著(P<0.001);硝化速率和净矿化速率均表现为乡村(0.68 mg·kg-1·30 d-1和-0.29 kg·kg-1·30 d-1)和郊区(1.78 mg·kg-1·30 d-1和1.06 mg·kg-1-30 d-1)较低,城区(4.51 mg·kg-1·30 d-1和3.36mg·kg-1·30 d-1)较高.总体来看,土壤N的矿化过程既与土壤理化特性有关,又明显受到城市化的影响.  相似文献   

8.
Plantation forests play a pivotal role in carbon sequestration in terrestrial ecosystems, but enhanced nitrogen(N) deposition in these forests may affect plantation productivity by altering soil N cycling. Hence,understanding how simulated N deposition affects the rate and direction of soil N transformation is critically important in predicting responses of plantation productivity in the context of N loading. This study reports the effects of N addition rate(0, 40, and 120 kg N ha-1 a-1) and form(NH_4Cl vs. NaNO_3) on net N mineralization and nitrification estimated by in situ soil core incubation and on-soil microbial biomass determined by the phospholipid fatty acid(PLFA) method in a subtropical pine plantation. N additions had no influences on net N mineralization throughout the year. Net nitrification rate was significantly reduced by additions of both NH_4Cl(71.5) and NaNO_3(47.1%) during the active growing season, with the stronger inhibitory effect at high N rates. Soil pH was markedly decreased by 0.16 units by NH_4Cl additions. N inputs significantly decreased the ratio of fungal-to-bacterial PLFAs on average by 0.28(49.1%) in November. Under NH_4Cl additions, nitrification was positively related with fungal biomass and soil pH. Under NaNO_3 additions,nitrification was positively related with all microbial groups except for bacterial biomass. We conclude that simulated N deposition inhibited net nitrification in the acidic soils of a subtropical plantation forest in China,primarily due to accelerated soil acidification and compositional shifts in microbial functional groups. These findings may facilitate a better mechanistic understanding of soil N cycling in the context of N loading.  相似文献   

9.
在岷江上游干旱河谷岷江柏木幼林地经过连续4 a利用雨季种植绿肥压青,增加土壤肥力,提高水分利用率,促进幼树生长研究。结果表明:(1)种植红豆草的土壤0~40 cm含水量旱季增加3.68 g·kg-1,0~20 cm土壤容重降低0.07 g·cm-3;种植草木樨土壤0~40 cm含水量旱季增加4.18 g·kg-1,0~20 cm土壤容重降低0.05 g·cm-3;种植沙打旺土壤0~40 cm含水量增加2.46 g.kg-1,0~20 cm土壤容重降低0.18 g·cm-3。(2)种植绿肥压青,土壤有机质增加0.37 g·kg-1~0.55 g·kg-1,土壤CaCO3含量下降0.66 g·kg-1~1.36 g·kg-1,有效氮增加4.5 mg·kg-1~18.5 mg·kg-1,有效磷含量增加1.0~3.46 mg·kg-1,CEC比对照增加0.54~0.58mg.100g-1。(3)种植红豆草、草木樨、沙打旺绿肥压青对岷江柏木树高、地径生长有显著的促进作用,尤其种植红豆草的岷江柏木幼树生长最好,高、径生长为对照的1.7倍和1.6倍。  相似文献   

10.
对2 a生单种无瓣海桑(Sonneratia apetala)、单种秋茄(Kandelia obvata)和混种无瓣海桑—秋茄(1:1)人工林下土壤理化性质、微生物群落结构、酶活性进行了研究.结果表明,单种无瓣海桑林下土壤pH值最低(5.61±0.08),土壤有机质、总磷、总氮含量在3个群落间均无显著差异;单种无瓣海桑林下土壤蛋白酶、芳基硫酸酯酶和磷酸酶的活性高于其它两种人工林,脲酶、纤维素酶和脱氢酶活性以混种林下最高(分别为190.20±28.49,19.04±4.77和93.21±14.10μg·g-1·h-1),β-葡萄糖苷酶和芳基硫酸酯酶活性在3种人工林下差异不显著;单种无瓣海桑林下土壤中各种脂肪酸含量较高,混种林下土壤的脂肪酸含量最低;典型相关分析表明,蛋白酶活性和土壤pH、总氮含量呈显著负相关(P<0.01),磷酸酶活性与总磷含量呈显著正相关(P<0.01).  相似文献   

11.
The effects of soil animals on soil nitrogen (N) mineralization and its availability were studied by investigating soil animal groups and their amounts of macro-faunas sorted by hand, and middle and microfaunas distinguished with Tullgren and Baermann methods under three Pinus sylvestris var. mongolica Litv. plantations in Zhanggutai sandy land, China. In addition, soil N mineralization rate was also measured with PVC closed-top tube in situ incubation method. The soil animals collected during growing season belonged to 13 orders, 5 groups, 4 phyla, whose average density was 86 249.17 individuals-m^-2. There were significant differences in soil animal species, densities, diversities and evenness among three plantations. Permanent grazing resulted in decrease of soil animal species and diversity. The average ammonification, nitrification and mineralization rates were 0.48 g:m^-2·a^-1, 3.68 g·m^-2·a^-1 and 4.16 g·m^-2·a^-1, respectively. The ammonification rate in near-mature forest was higher than that in middle-age forests, while the order of nitrification and net mineralization rates was: middle-age forest without grazing 〈 middle-age forest with grazing 〈 near-mature forest with grazing (P〈0.05). Soil N mineralization rate increased with soil animal amounts, but no significant relationship with diversity. The contribution of soil animals to N mineralization was different for different ecosystems due to influences of complex factors including grazing, soil characteristics, the quality and amount of litter on N mineralization.  相似文献   

12.
At present, our understanding of the dynamics of microbial biomass and soil N in silvopastoral systems is very limited. In this paper, the effects of understorey management on soil microbial C and N, net N mineralization, and net nitrification were studied in two seven-year-old radiata pine (Pinus radiata D. Don) – pasture systems, consisting of plots with and without ryegrass (Lolium perenne) as an understorey. Mini-plots (1 × 1 m) with animals excluded and herbage repeatedly clipped and removed were used for soil sampling. Three mini-plots formed a transect at each of two positions: 0.9 and 3.5 m north of the tree rows. Measurements were taken from July 1997 to June 1998 about once every 40 days. One composite sample was collected from each of two sampling depths (0–10 and 10–20 cm) at each transect position on each sampling date. Temporal and spatial variability of N mineralization rates and microbial biomass C and N was large. Net mineralization and nitrification rates were higher in the bare ground than in the ryegrass plots for a major part of the year, particularly from late spring to early fall. Net N mineralization and nitrification rates were higher in the 0–10 than in the 10–20 cm soil layers in both the ryegrass and bare ground treatments; however, the depth effect on microbial biomass C and N was only significant in the ryegrass treatment. In the surface soil layer, microbial biomass C and N were substantially greater in the ryegrass than in the bare ground plots. Soil microbial properties and activities were closely linked to pasture root activities, soil depth, and site biophysical conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
In most temperate forest, nitrogen (N) is considered a limiting factor. This becomes important in extreme environments, as Nothofagus antarctica forests, where the antecedents are scarce. Thinning practices in N. antarctica forests for silvopastoral uses may modify the soil N dynamics. Therefore, the objective of this work was to evaluate the temporal variation of soil N in these ecosystems. The mineral extractable soil N, net nitrification and net N mineralization were evaluated under different crown cover and two site quality stands. The mineral N extractable (NH4 +–N + NO3 ?–N) was measured periodically. Net nitrification and net N mineralization were estimated through the technique of incubation of intact samples with tubes. The total mineral extractable N concentration varied between crown cover and dates, with no differences among site classes. The lowest and highest values were found in the minimal and intermediate crown cover, respectively. In the higher site quality stand, the annual net N mineralization was lower in the minimal crown cover reaching 11 kg N ha?1 year?1, and higher in the maximal crown cover (54 kg N ha?1 year?1). In the lower site quality stand there was no differences among crown cover. The same pattern was found for net nitrification. Thinning practices for silvopastoral use of these forests, keeping intermediate crown cover values, did not affect both N mineralization and nitrification. However, the results suggest that total trees removal from the ecosystem may decrease N mineralization and nitrification.  相似文献   

14.
INTRODUCTIoNMeasurementsofNmincralizationinun-fertilizedforestsoilsprovideanindexofavail-ableNfortreegrowth(AuchmoodyandFilipl973,Stonel973,AbereIal.l989,BinklcyandHartl989,MclilIoela/.l993).Histori-cally,tWoapproaches(IaboratoryandinsitlIincubations)havebcenuscdtoestimatetheratCofNmineralization,butneitheriswidelyaccepted(Keeney,l98o).Thegenerallackofagrementamongthemethodsisduetodiffer-encesintheirsensitivitytocnvironmentalfac-torswhichinfluencesoilNmineralization(Raisonetal.l987…  相似文献   

15.
Poplar (Populus deltoides Bartr.) based agroforestry systems are economically viable and more sustainable than many other crop rotations prevalent in northern India. Growth {girth at breast height (GBH) and height} and productivity (volume) of clone G-48 of poplar spaced at 5 x 4 m, soil organic carbon (OC), and concentration of available macronutrients (N, P and K) and micronutrients (Zn, Fe, Mn and Cu) in surface soil (0-15 cm depth) were determined at an interval of six months starting from April 2002 till October 2003 in one and four year old (in January 2002) 16 poplar plantations on farmers' fields in Ludhiana, Punjab. The observations were taken from plantations having fodder {sorghum (Sorghum bicolor)/pearlmillet (Pennisetum americanum) in summer}-wheat (Triticum aestivum) (in winter) rotation throughout the poplar age and those having sugarcane (Sachharum officinarum) initially during two years and fodder-wheat rotation thereafter. The GBH, height and volume of younger plantations intercropped with fodder-wheat rotation were 15.6, 17.2 and 46.7%, respectively higher than that of plantations intercropped with sugarcane. Growth increment of poplar was markedly higher during April to October than October to April. Soil OC was significantly greater in older (6.83 g kg-1) than the younger (5.35 g kg-1) plantations. Available macronutrients in soil increased at successive sampling times. The average Zn concentration at final sampling was 17% lower compared to initial sampling, whereas the other micronutrients tended to increase during April 2002 to October 2003 and the increase was higher in four year old plantations than one year due to higher inputs of organic matter.  相似文献   

16.
To investigate the effect of tree species on soil N dynamics in temperate forest ecosystems, total N (Nt), microbial N (Nmic), net N mineralization, net nitrification, and other soil chemical properties were comparatively examined in beech (64–68 years old) and Norway spruce (53–55 years old) on sites 1 and 2, and beech and Scots pine (45 years old) on site 3. The initial soil conditions of the two corresponding stands at each site were similar; soil types were dystric Planosol (site 1), stagnic Gleysols (site 2), and Podzols (site 3). In organic layers (LOf1, Of2, Oh), Nmic and Nmic/Nt, averaged over three sampling times (Aug., Nov., Apr.), were higher under the beech stands than under the corresponding coniferous ones. However, the Nmic in the organic layers under beech had a greater temporal variation. Incubation (10 weeks, 22 °C, samples from November) results showed that the net N mineralization rates in organic layers were relatively high with values of 8.1 to 24.8 mg N kg–1 d–1. Between the two corresponding stands, the differences in net N mineralization rates in most of the organic layers were very small. In contrast, initial net nitrification rates (0.2–17.1 mg N kg–1 day–1) were considerably lower in most of the organic layers under the conifer than under the beech. In the mineral soil (0–10 cm), Nmic values ranged from 4.1–72.7 mg kg–1, following a clear sequence: August>November>April. Nmic values under the beech stands were significantly higher than those under the corresponding coniferous stands for samples from August and April, but not from November. The net N mineralization rates were very low in all the mineral soils studied (0.05–0.33 mg N kg–1 day–1), and no significant difference appeared between the two contrasting tree species.  相似文献   

17.
Elevated atmospheric nitrogen(N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition with four levels of N addition rate(N0, N30, N60, and N120) for6 years in an old-growth temperate forest in Xiaoxing'an Mountains in Northeastern China. We measured gross N transformation rates in the laboratory using ~(15)N tracing technology to explore the effects of N deposition on soil gross N transformations taking advantage of N deposition soils. No significant differences in gross soil N transformation rates were observed after 6 years of N deposition with various levels of N addition rate. For all N deposition soils, the gross NH_4~+ immobilization rates were consistently lower than the gross N mineralization rates,leading to net N mineralization. Nitrate(NO_3~-) was primarily produced via oxidation of NH_4~+(i.e., autotrophic nitrification), whereas oxidation of organic N(i.e., heterotrophic nitrification) was negligible. Differences between the quantity of ammonia-oxidizing bacteria and ammonia-oxidizing archaea were not significant for any treatment, which likely explains the lack of a significant effect on gross nitrification rates. Gross nitrification rates were much higher than the total NO_3~- consumption rates,resulting in a build-up of NO_3~-, which highlights the high risk of N losses via NO_3~- leaching or gaseous N emissions from soils. This response is opposite that of typical N-limited temperate forests suffering from N deposition,suggesting that the investigated old-growth temperate forest ecosystem is likely to approach N saturation.  相似文献   

18.
19.
Understory vegetation is an important component in forest ecosystems. However, the effects of understory on soil properties in subtropical forests are not fully understood. We thus conducted an experimental manipulative study in two young fast-growing plantations—Eucalyptus urophylla and Acacia crassicarpa—in southern China, by removing understory vegetation in both plantations, to estimate the effects of understory vegetation on microclimate, soil properties and N mineralization. Our data showed that, after 6 months, understory removal (UR) in both plantations had greatly increased soil surface luminous intensity (90–500 cd) and temperature (0.5–0.8 °C); soil moisture was reduced in the Eucalyptus plantation but not in the Acacia plantation. Understory removal also reduced soil organic matter (SOM), but had little impact on other soil chemical properties, including total phosphorus, C/N, pH, exchangeable cations (K, Ca, Mg), available P, ande extractable NH4–N and NO3–N. We found a significant decline of soil N mineralization and nitrification rates in the 0–5 cm soils of UR in both plantations. The decline of SOM in UR may contribute to the lower N transformations rates. This study indicates that a better understanding of understory vegetation effects on soil N cycling would be beneficial to forest management decisions and could provide a critical foundation for advancing management practices.  相似文献   

20.
Changes in soil N mineralization pathways occurring along a full rotation cycle have received little attention to date, while tree uptake for N may change during forest ageing. The aims of this study were (i) to characterize changes in potential net N mineralization and potential net nitrification within organic layers and the topsoil (organo-mineral horizon) along a 100-year chronosequence for a temperate oak–hornbeam forest and (ii) to reveal covariances between potential net N mineralization pathways and the properties of the humic epipedon (defined as the sum of organic layers and topsoil). For that purpose, a space-for-time substitution procedure and aerobic laboratory incubation method for 28 days at 28 °C in the dark were used. In addition, acetylene and captan were used to discriminate between autotrophic and heterotrophic (bacterial and/or fungal) nitrification. Several humic epipedon properties were determined, e.g. pH, exchangeable cation concentrations, effective cation exchange capacity, total C and N, dissolved organic C and N, fungal and microbial biomass N. Potential net N mineralization and nitrification pathways changed greatly along the mixed forest chronosequence. Potential net N mineralization in the organic layers increased with stand maturation whereas potential net nitrification in the topsoil decreased significantly. Selective inhibitors revealed changes in nitrification pathways along the chronosequence, i.e. potential net nitrification was autotrophic in the topsoil while it was mainly heterotrophic within the organic layers. In the organic layer, potential net nitrification was autotrophic at the onset of the chronosequence while it appeared heterotrophic during the aggradation phase and finally fungal in mature stands. A Co-Inertia Analysis was used to reveal covariances between N mineralization pathways and humic epipedon properties. The analysis showed two functional temporal shifts within N cycling along the chronosequence, one probably controlled by organic matter quality and high competition for available N resulting in the autotrophic versus heterotrophic nitrification shift in the organic layers and one mainly controlled by (i) fine organic matter abundance, allowing high N mineralization in the organic layers and (ii) acidity inhibited autotrophic nitrification in the topsoil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号