首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tree-ring width chronologies of Larix chinensis were developed from the northern and southern slopes of the Qinling Mountains in Shaanxi Province,and climatic factors affecting the tree-ring widths of L.chinensis were examined.Correlation analysis showed that similar correlations between tree-ring width chronologies and climatic factors demonstrated that radial growth responded to climate change on both slopes.The radial growth of L.chinensis was mainly limited by temperature,especially the growing season.In contrast,both chronologies were negatively correlated with precipitation in May of the previous year and April of the current year.Spatial climate-correlation analyses with gridded land-surface climate data revealed that our tree-ring width chronologies contained a strong regional temperature signal over much of northcentral and eastern China.Spatial correlation with seasurface temperature fields highlights the influence of the Pacific Ocean,Indian Ocean,and North Atlantic Ocean.Wavelet coherence analysis indicated the existence of some decadal and interannual cycles in the two tree-ring width chronologies.This may suggest the influences of El Nin˜o-Southern Oscillation and solar activity on tree growth in the Qinling Mountains.These findings will help us understand the growth response of L.chinensis to climate change in the Qinling region,and they provide critical information for future climate reconstructions based on this species in semi-humid regions.  相似文献   

2.
Improved understanding of tree-growth responses to climate is needed to model and predict forest ecosystem responses to current and future climatic variability. We applied dendroclimatological techniques to assess the effects of inter-annual climate variations on radial growth of high-elevation conifers in the central Hengduan Mountains, southwestern China. Eight tree-ring width chronologies of the major tree genera Abies and Picea that are aligned along an elevation gradient from 3200 to 4200 m a.s.l. were developed. Correlation and principal component analyses for the eight chronologies identified three groups of sites, representing different patterns of growth–climate relationships. Correlation and redundancy analyses with regional climate data revealed that radial growth of fir growing at high-elevation sites is enhanced by normal or warm summer temperatures (June and July) during the current growing season. In addition, radial growth of trees growing from high to middle elevations is sensitive to low temperatures during winter season. At low-elevation sites, trees display low sensitivity to temperature variation. However spring moisture availability becomes crucial for radial growth regardless of tree species. High- to middle-elevation conifers in the central Hengduan Mountains may benefit from the current climate warming, especially from rising winter temperatures.  相似文献   

3.
Anatomical characteristics have been proven useful for extracting climatic signals. To examine the climatic signals recorded by tree-ring cell features in the Changbai Mountains, we measured cell number and cell lumen diameter, in addition to ring widths, of Korean pine(Pinus koraiensis) tree rings at sites of varied elevation,and we developed chronologies of cell number(CN), mean lumen diameter(MLD), maximum lumen diameter(MAXLD) and tree-ring width(TRW). The chronologies were correlated with climatic factors monthly mean temperature and the sum of precipitation. As shown by our analysis, the cell parameter chronologies were suitable for dendroclimatology studies. CN and TRW shared relatively similar climatic signals which differed from MLD andMAXLD, and growth-climate relationships were elevationdependent, as shown by the following findings:(1) at each elevation, MLD and MAXLD recorded different monthly climatic signals from those recorded by TRW for the same climatic factors; and(2) MLD and MAXLD recorded climatic factors that were absent from TRW at lower and middle elevations. Cell lumen diameter proved to be an effective archive for improving the climate reconstruction for this study area.  相似文献   

4.
根据采自山东蒙山地区两组幼龄黑松树木年轮样本,研制出单点和区域树轮宽度年表,分析了蒙山黑松树轮宽度年表的统计参数和径向生长的气候限制因子,并尝试重建相关密切的气候因子,探讨蒙山黑松径向生长与大范围气候变化的关联。研究结果表明,(1)蒙山黑松树轮宽度年表的统计参数都比较高,说明蒙山黑松树轮宽窄变化包含有较多的气候环境变化信息。(2)蒙山黑松径向生长变化与当年4-9月降水量呈显著正相关。同时,当年5-7月异常高温也对蒙山黑松径向生长变化产生显著抑制。通过黑松树轮宽度年表对4-9月降水量的模拟重建结果表明蒙山黑松具有较大树轮气候研究潜力。(3)蒙山黑松树轮宽度生长与太平洋大范围气候波动存在显著关联。  相似文献   

5.
Climate is a main driving factor of the formation of annual tree-rings, but which climatic variables are the most influential on radial growth may vary among species and sites. To explore these interactions, tree-ring chronologies along a major elevation gradient were examined for three tree species in southern interior British Columbia (Canada): Pseudotsuga menziesii, Pinus contorta, and Picea glauca × engelmannii. We used correlations and linear and multiple regressions to explore the relationships between tree-ring radial growth and climate variables in the area from 1922 to 1997. All correlation coefficients between ring chronologies and monthly climatic variables were medium to low (from −0.3 to 0.4); nevertheless, moderate but significant trends could be identified. Multivariate models explained up to 53%, 43% and 32% of radial growth variability for P. contorta, P. menziesii and P. glauca × engelmannii, respectively. All three species showed similar radial growth–climate patterns across the elevational gradient, but they had different details that made ring width–climate relationships species-specific. Precipitation-related variables were more related to radial growth at low-elevations, changing into temperature-related variables at high-elevations. Tree-ring width for all three species was primarily and significantly affected by climate variables from the year previous to the growing season and only secondly by current year conditions, but the critical months varied for different species and altitudes. Winter precipitation also affected radial growth, either as a source of water or as a possible agent of physical damage. Although our work showed significant climate influences on breast height tree radial growth, our results also indicated that other site factors such as microclimate or stand dynamics can be as or more important than climate variability.  相似文献   

6.
Anatomical characteristics have been proven useful for extracting climatic signals. To examine the climatic signals recorded by tree-ring cell features in the Changbai Mountains, we measured cell number and cell lumen diameter, in addition to ring widths, of Korean pine (Pinus koraiensis) tree rings at sites of varied elevation, and we developed chronologies of cell number (CN), mean lumen diameter (MLD), maximum lumen diameter (MAXLD) and tree-ring width (TRW). The chronologies were correlated with climatic factors monthly mean temperature and the sum of precipitation. As shown by our analysis, the cell parameter chronologies were suitable for dendroclimatology studies. CN and TRW shared relatively similar climatic signals which differed from MLD and MAXLD, and growth-climate relationships were elevation-dependent, as shown by the following findings: (1) at each elevation, MLD and MAXLD recorded different monthly climatic signals from those recorded by TRW for the same climatic factors; and (2) MLD and MAXLD recorded climatic factors that were absent from TRW at lower and middle elevations. Cell lumen diameter proved to be an effective archive for improving the climate reconstruction for this study area.  相似文献   

7.

? Introduction

Siberian larch (Larix sibirica) is a highly climate sensitive species. Presently, the Altay Mountains is covered by widespread forests dominated by Siberian larch and thus has a great potential for dendroclimatological studies. However, tree-ring network of the Altay Mountains has not yet been well developed. The development of the new chronologies and the knowledge about the influence of climatic variables on tree growth is needed.

? Method

X-ray densitometric techniques were applied to obtain ring width (RW) and maximum latewood density (MXD) of Siberian larch from two upper tree line sites in the Altay Mountains, China. Climatic responses in ring widths and maximum latewood densities from the Altay Mountains (China, Russia, and Mongolia) were investigated by simple correlation analyses. To assess the common growth forces among the individual sites of the Altay Mountains, simple correlation, principal component analyses, and spatial correlation analysis were applied over the common period of the chronologies.

? Results

Ring width and maximum latewood density increases with decreasing precipitation, increasing temperature from late spring to late summer during the growing season. Based on the results of principal component analyses and spatial correlation analysis, summer temperature (June?CJuly) is the most important forces on the Siberian larch growth of the Altay Mountains. The growth of Siberian larch in the Altay Mountains captures the current warming trend. The growth of Siberian larch did not clearly lose its sensitivity under most recent warming in our study areas.

? Conclusions

The new MXD chronologies is presently the longest, absolutely dated, tree-ring density record yet developed from China. The climate response analysis shows that the RW and MXD of Siberian larch have strong responses to temperature in the growing season. Thus, MXD and RW of Siberian larch provides the best information for climate reconstruction in the warm season. Tree-rings of Siberian larch allow detecting the recently observed warming trend and putting it into the long-term climatic context in the Altay Mountains, due to the strong growth sensitivity to temperature change.  相似文献   

8.
Tree-ring chronologies were developed fromAbies mariesii Masters andPicea jezoensis ssp.hondoensis (Mayr) P. Schmidt collected at different altitudes of Mt. Norikura, central Japan. The tree-ring parameters of ring width and maximum density were measured by soft X-ray densitometry. The measurement series were detrended by fitting a 33-year cubic smoothing spline and autoregressive model. The correlation between species and between sites showed different responses of the species to climate in terms of ring width and maximum density. The correlation coefficient between sites within a species was higher than that between species for a site in the ring width, and the coefficient between species for a site was higher in maximum density. The correlation coefficient between tree-ring chronology and monthly climate data set showed different responses of radial growth to climate. The different response was probably explained by the difference in the length of the growing season. High summer temperature increased the maximum density of the two species and the radial growth inAbies mariesii. Summer precipitation correlated negatively to maximum density, but it did not affect the ring width of either species. The climatic signals could be extracted from ring-width and maximum-density chronologies of both species.  相似文献   

9.
In southern Spain, the Cazorla Mountains (500–2,100 m a.s.l.) have supplied construction timber from black pine (Pinus nigra Arn.) for buildings and ships since at least the Middle Ages. To establish the age and provenance of wooden cultural heritage originating from this area, well-replicated long-span chronologies are needed. Old-living trees occur at high elevations, whereas many historical timbers originated from lower altitudes; hence, crossdating possibilities were questionable. To assess the potential of this species for the development of a multi-millennia tree-ring data set with living trees and historical timbers for the western Mediterranean, we developed four ring-width chronologies along the circa 1,000 m altitudinal range of black pine in these mountains and examined crossdating patterns and climate–growth responses along with altitude and through time. Teleconnections with other Iberian and Mediterranean tree-ring data were also tested. A well-replicated chronology spanning AD 1331–2009 was obtained at the upper site, while lower elevations delivered shorter chronologies. Similarity among chronologies and responses to climate were dependent on elevation. Tree-ring width was negatively related to temperature in previous late summer and positively to February–March, whereas precipitation had an opposite effect; some negative influence of early summer temperature was also observed. However, growth responses were rather unstable throughout the twentieth century. These chronologies showed good tele- and heteroconnections with conifer chronologies from Iberia, northern Morocco and Turkey, evidencing the existence of a common macroclimatic signal, which also varied along with elevation. The relevance of these results for dendrohistorical studies is discussed.  相似文献   

10.
Abstract Six Douglas fir (Pseudotsuga menziesii Franco) stands were selected in both the Sudety Mountains and the Great Poland Lowland. These two regions are distinctly different with regard to thermal and pluvial conditions. In each stand, two increment cores per tree were extracted from 20 approximately 100-year-old trees and the tree-ring widths measured. It is clear from the different growth reactions of the study trees to the climatic conditions that the Sudety Mountains and the Great Poland Lowland are two dendrochronologically separate regions. The tree-ring width chronologies form homogeneous groups for each region. The tree ring–climate models for Douglas fir in both regions indicate similarities and differences. The similarities among chronologies are attributed to winter temperature. The differences are attributed to rainfall (which changes with longitude and altitude of sites) during the vegetation season.  相似文献   

11.
Developing long-term chronologies of tree-ring anatomical features to evaluate climatic relationships within species might serve as an annual proxy to explore and elucidate the climatic drivers affecting xylem differentiation. Pinus leucodermis response to climate was examined by analyzing vertical xylem resin ducts in wood growing at high elevation in the Apennines of peninsular Southern Italy. Early- and latewood tree-ring resin duct chronologies, spanning the 1804–2010 time period, were constructed. We analyzed the relationships between resin duct chronologies and climate over the last century using correlation and response function analyses. Overall, results showed that ring width and resin duct relationships differed between early- and latewood, which indicated conditions affecting growth were not associated with resin duct production. Results also revealed differential responses to climate between early- and latewood resin duct chronologies. A notable observation was a positive and stable relationship between latewood resin duct number chronology and July maximum temperature throughout the twentieth century. This result suggested resin ducts might be a suitable proxy to evaluate P. leucodermis response to climate in the study area.  相似文献   

12.
An analysis was performed on the climatic responses of the radial growth of Larix gmelinii (Rupr.) Rupr. on contrasting north-facing and south-facing slopes in Tura, central Siberia. We developed chronologies of tree-ring width for four plots, designated as north-upper, northlower, south-upper, and south-lower. Both residual and standard chronologies of tree-ring widths exhibited a significant positive correlation with temperature from the end of May until early June in all four plots. The chronologies of ring width did not reveal any major difference in the response to temperature among the four plots. The standard chronologies of ring widths on the north-facing slope were negatively correlated with precipitation during the winter (October–April) and in early and mid-May, whereas the residual chronologies did not reveal clear relationships with precipitation during the winter and May. The significant correlation between ring width and temperature from the end of May until early June indicates that temperatures in springtime play a significant role in the radial growth of L. gmelinii. The negative correlations between standard chronologies of tree-ring width and precipitation in the winter and in May on the north-facing slope indicate that lowfrequency fluctuations in snowfall have negative effects on the radial growth. However, these effects vary and depend on the microscale topography. Part of this report was presented at the 55th Annual Meeting of the Japan Wood Society, March 2005, Kyoto  相似文献   

13.
Radial growth variability and response to interannual climate variation of Cembran pine (Pinus cembra L.) were studied in the timberline ecotone on Mt. Patscherkofel (2246 m a.s.l.). The study area, which is in the inner alpine dry region of the Central Austrian Alps, is characterized by a continental climate with minimum precipitation in winter (about 150 mm during December-February) and frequent occurrence of warm dry winds (F?hn) in early spring. The hypothesis that spatial and temporal variability of radial growth is caused by site-related differences in sensitivity to winter stress (i.e., desiccation) was examined by applying dendroclimatological techniques. Ordination methods applied to tree ring time series revealed that spatial variability in radial growth is influenced by the local site factors elevation and slope aspect. Growth-climate relationships were explored using Pearson product-moment correlation coefficients and multiple regression analysis. Radial growth at the timberline was positively correlated with temperature in July and was also strongly correlated with mild temperatures in the previous autumn and high precipitation in winter (January-March). At the tree line, temperatures in the previous autumn and precipitation in late winter (March) also controlled radial growth, whereas July temperature was not significantly correlated with ring width. Because previous autumn temperature and winter precipitation were the main growth-determining factors at the timberline and the tree line, and both of these climate variables are known to influence susceptibility of trees to winter stress, the results support the working hypothesis. Analysis of climatic conditions in extreme growth years confirmed the high sensitivity of tree ring growth to precipitation in late winter (March) at the tree line plots. Furthermore, extent of growth reduction and release varied spatially and temporarily, with south- and west-facing stands showing a higher sensitivity to climate variation in the most recent decade (1990s) than the north-facing stand. This aspect-related change in sensitivity to climate may be associated with effects of climate warming on cambial activity.  相似文献   

14.
国庆喜  葛剑平 《林业研究》1998,9(3):173-175
IntrodedionEcologicaIstudieshavebeenconductedli1theBroad-leavedKoreanpineforestatMt.Changbaiformanyyears[1].Sincetheintroductionoftheconceptofgapphaseregeneration,relationshipbetweengapandregenerationoftheforesthasobtainedmoreattention.Detailedinves-tigationonspeciescomposition,vegetationstructureandtheirroleindetermininggapregimeislackinghowever.Theaimofthepresentstudyistogetadetailedmeas-ureofthespatialpatternsofcanopytreesandrelatethistothegapformation,gapsizeandtheirroleinregenerationoft…  相似文献   

15.
We analyzed growth responses to climate of 24 tree-ring width and four maximum latewood density chronologies from the greater Tatra region in Poland and Slovakia. This network comprises 1183 ring-width and 153 density measurement series from four conifer species (Picea abies (L.) Karst., Larix decidua Mill., Abies alba (L.) Karst., and Pinus mugo (L.)) between 800 and 1550 m a.s.l. Individual spline detrending was used to retain annual to multi-decadal scale climate information in the data. Twentieth century temperature and precipitation data from 16 grid-boxes covering the 48-50 degrees N and 19-21 degrees E region were used for comparison. The network was analyzed to assess growth responses to climate as a function of species, elevation, parameter, frequency and site ecology. Twenty ring-width chronologies significantly correlated (P<0.05) with June-July temperatures, whereas the latewood density chronologies were correlated with the April-September temperatures. Climatic effects of the previous-year summer generally did not significantly influence ring formation, whereas site elevation and frequency of growth variations (i.e., inter-annual and decadal) were significant variables in explaining growth response to climate. Response to precipitation increased with decreasing elevation. Correlations between summer temperatures and annual growth rates were lower for Larix decidua than for Picea abies. Principal component analysis identified five dominant eigenvectors that express somewhat contrasting climatic signals. The first principal component contained highest loadings from 11 Picea abies ring-width chronologies and one Pinus mugo ring-width chronology and explained 42% of the network's variance. The mean of these 12 high-elevation chronologies was significantly correlated at 0.62 with June-July temperatures, whereas the mean of three latewood density chronologies, which loaded most strongly on the fourth principal component, significantly correlated at 0.69 with April-September temperatures (P<0.001 over the 1901-2002 period in both cases). These groupings allow for a robust estimation of June-July (1661-2004) and April-September (1709-2004) temperatures, respectively. Comparison with reconstructions from the Alps and Central Europe supports the general rule of the dominant influence of growing season temperature on high-elevation forest growth.  相似文献   

16.
长白山岳桦体内碳素供应状况   总被引:1,自引:0,他引:1  
低温条件常常驱动的碳缺乏导致高海拔处植物生长缓慢,生长季的高寒低温更是限制高海拔地区树木向上分布的关键因素之一。高海拔地区的不利  相似文献   

17.
The study evaluated the sensitivity of larch (Larix decidua Mill.) of 20 provenances growing in the Polish lower mountain region to different climatic elements. The provenances were grown on an experimental plot located in the Polish Carpathians. Analysis of the year-to-year tree-ring width of larch of particular provenances has been undertaken. The larch populations examined were subjected to high stresses induced by the local climatic conditions. The tested larch populations were characterised by a similar sensitivity to the various climatic elements occurring during the development of the annual ring in the current and the previous year. The most limiting element of the climate, which had the strongest influence on the variation in the radial growth of larch, is air temperature. Precipitation and sunshine played an important, but slightly less significant role. A similar influence on the changes of the tree-ring width of larches of all provenances was exerted by the solar conditions in September and pluvial conditions in November of the previous year as well as thermal, pluvial and solar conditions in March and July in addition to the thermal conditions in August of the year in which the tree ring was formed. The consequence was the strong uniformity of the incremental rhythm, which is illustrated by the standardised chronologies of tree-ring widths. However, the larches of particular provenances indicated different sensitivity to the temperature in September of the previous year and to the precipitation in August of the year of tree-ring formation. It was reflected in the short-term rhythm of the changes in the tree-ring widths.  相似文献   

18.
A dendroclimatic study was conducted in the treeline ecotone of Barun Valley,eastern Nepal,to determine the tree-ring climate response and ring width trend of Abies spectabilis.A 160-year-old chronology,from 1850 to 2010,was developed from 38 tree-ring samples.No higher growth in recent decades was observed in tree-ring width in this area.The mean temperature of the current year in February and in the combined winter months of December,January,and February showed significant positive correlation with tree-ring width,although no significant correlation was found between tree-ring width and the precipitation pattern of the region.This tree-ring climate response result is different from that in other studies in Nepal,which could be attributed to location and elevation.  相似文献   

19.
Tree growth is regulated by a combination of exogenous and endogenous factors. Such factors also interact with each other, complicating the understanding of causal links. IN particular, resource allocation is sensitive to reproductive investment, especially in masting species, which in turn is regulated by climatic variables. Both resource allocation and seed production patterns are also sensitive to tree age. This study aims to (1) evaluate the effects of tree age and local and regional climate on tree ring width and seed production by Spanish black pine (Pinus nigra Arn. ssp. salzmannii) forest in Cuenca Mountains (Spain), and (2) assess the relationship between seed production and secondary growth of Spanish black pine. Seed fall was estimated using 60 rectangular seed traps (40 × 50 × 15 cm) from 2000 to 2014, randomly distributed across the study area. Standardized tree-ring chronologies were calculated using a random sample of 106 trees stratified into three age classes (> 80 years; 26–80 years, and ≤ 25 years). Local climate data was obtained from a meteorological station, and regional climate data from the CRU-TS 3.1 dataset. Average seed production ranged over time from 2 to 189 seeds m?2 (coefficient of variation = 157%). We identified four masting years (2000, 2003, 2006, and 2014) using a classification based on percentile seed production. Seed production was regulated by climate of the previous 2–3 years, while tree growth responded to precipitation and temperature in the previous and current year. Independent of climate, high seed production had a negative effect on tree ring width and weakened climate growth relationships, indicating resource depletion. Tree age modulated climate sensitivity, increasing correlations between climate and tree-ring index in older trees. P. nigra has been showed to be a climate sensitive species with a bimodal masting behaviour, which should be taking into account for management purposes and silvicultural guidelines under climate change scenarios.  相似文献   

20.
Using eight populations of Scots pine growing in foothills of the Sudetes (southern Poland) as an example, the character and causes of annual ring variation in 1900–1999 were studied. The climate had a short-term effect on radial growth during the whole period investigated. A long-term decrease of radial growth occurred after 1960, but only in some localities. It was probably caused by non-climatic factors, most likely by industrial pollution. The decline of trees during that period is mainly evidenced by a high variation of width of annual rings, a small similarity of chronologies of annual ring widths, and a lack of signal years. After 1990, the tree recovery process was evident. It was most intensive in localities where the earlier stress was the most severe. Then, trees started to produce wide annual rings, homogeneity of the growth reaction increased, and the signal years began to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号