首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Providing balanced energy and nutrients for microbiota growth is essential for the maintenance of the colon ecosystem, and dietary fiber (DF) fermentation, particularly butyrogenic fermentation, augments colon health. Cereal DF, which are the complex carbohydrates of cereal grains that escape small intestine digestion and function either as substrate for colonic fermentation or as bulking material, are a dietary measure to mitigate the occurrence of certain colonic diseases, and perhaps to some degree act as therapeutic agents. In developed Western countries, as well as in many developing countries, colon cancer is one of the major causes for premature death and disability, and inflammatory bowel disease and other colonic disorders have become serious health issues. The function of DF in colon health is mediated through its physicochemical properties (e.g., water‐holding for laxative effect) or effect on colon microbiota (e.g., leading to immune regulation), as well as through colonic fermentation products, principally the short chain fatty acids (SCFA) of acetate, propionate, and butyrate. Due to the chemical diversity and complexity of DF and because not all DF materials function equally, new developments in DF fermentation behavior (pattern and end product profile) will be reviewed from a structure‐function viewpoint. The effect of cereal DF, mainly nonstarch cereal polysaccharides and resistant starch on colonic microbiota, fermentation products of SCFA, microbiota modulation, as well as on colon health will be summarized.  相似文献   

2.
Rye bran and aleurone, wheat bran and aleurone, and oat bran and cell wall concentrate were compared in their in vitro gut fermentation patterns of individual phenolic acids and short-chain fatty acids, preceded by enzymatic in vitro digestion mimicking small intestinal events. The formation of phenolic metabolites was the most pronounced from the wheat aleurone fraction. Phenylpropionic acids, presumably derived from ferulic acid (FA), were the major phenyl metabolites formed from all bran preparations. The processed rye, wheat, and oat bran fractions contained more water-extractable dietary fiber (DF) and had smaller particle sizes and were thus more easily fermentable than the corresponding brans. Rye aleurone and bran had the highest fermentation rate and extent probably due to high fructan and water-extractable arabinoxylan content. Oat samples also had a high content of water-extractable DF, β-glucan, but their fermentation rate was lower. Enzymatic digestion prior to in vitro colon fermentation changed the structure of oat cell walls as visualized by microscopy and increased the particle size, which is suggested to have retarded the fermentability of oat samples. Wheat bran was the most slowly fermentable among the studied samples, presumably due to the high proportion of water-unextractable DF. The in vitro digestion reduced the fructan content of wheat samples, thus also decreasing their fermentability. Among the studied short-chain fatty acids, acetate dominated the profiles. The highest and lowest production of propionate was from the oat and wheat samples, respectively. Interestingly, wheat aleurone generated similar amounts of butyrate as the rye fractions even without rapid gas production.  相似文献   

3.
Several recent articles have reported a significant antioxidant capacity of cereal products, determined in methanolic and ethanolic extracts. The aim of this work was to conduct an assessment of the antioxidant capacity of cereals using both chemical and in vitro digestive enzymatic extraction of antioxidants. Ferric reducing power (FRAP) and free radical scavenging capacity (DPPH) methods were used to determine the antioxidant capacity in wheat flour, bread, raw and boiled rice, wheat bran, and oat bran. The most efficient antioxidant extraction was achieved by using successively acidic methanol/water (50:50 v/v, pH 2) and acetone/water (70:30 v/v). The antioxidant capacity in these extracts ranged from 1.1 to 4.4 micromol Trolox/g dw. A significant amount of hydrolyzable phenolics with a high antioxidant capacity (from 5 to 108 micromol Trolox/g dw) was found in the residues of this aqueous-organic extraction. The antioxidant capacities of these nonextractable polyphenols are usually ignored in the literature, although they may have an antioxidant role in the gastrointestinal tract, especially after colonic fermentation, and may be fermentated to active metabolites. On the other hand, in vitro digestive enzymatic extracts obtained by enzymatic treatments that mimic conditions in the gastrointestinal tract showed that the amount of antioxidants released by the cereal matrix into the human intestine may be higher than the one that can be expected from measurements in the usual aqueous-organic extracts.  相似文献   

4.
RS4‐type resistant wheat starch (RWS) and resistant potato starch (RPS) were subjected successively to in vitro digestion with pepsin and pancreatin‐bile, and the indigestible residues (82.1% db and 74.1% db, respectively) were recovered and subsequently fermented by in vitro techniques using fresh human fecal microbiota as inoculum. Scanning electron microscopy of the indigestible residues showed surface erosion on the residual granules. Total gas production during the in vitro fermentation increased almost linearly over time with the two resistant starches exhibiting similar gas production rates, as well as a similar rate of production of total short‐chain fatty acids (SCFA). The indigestible fractions from both starches produced acetate as the major SCFA and relatively higher levels of butyrate than propionate, but wheat starch tended to produce more butyrate over time than potato starch. Fractional molar ratios of acetate, propionate, and butyrate from the RWS and RPS were 0.586:0.186:0.228 and 0.577:0.200:0.223, respectively. The calculated caloric contributions of the RWS and RPS are ≈33% lower than for unmodified starch and are comparable to those reported in the literature for RS2 and RS3 high‐amylose maize starches.  相似文献   

5.
Fermentation of cottonseed and other feedstuffs in cattle rumen fluid   总被引:2,自引:0,他引:2  
Bovine rumen fluid was fermented anaerobically over 48 h with cottonseed, corn, alfalfa, or a mixture of these substrates in anaerobic mineral buffer. Samples taken at different incubation times were derivatized with n-butanol and subjected to gas chromatography and mass spectroscopy. No unusual fermentation end-products from the cottonseed substrate were detected. Cottonseed supported rumen fermentation at levels comparable to those of the other substrates. Major components were usually found in the decreasing order of acetate, propionate, butyrate, and valerate, although acetate and propionate concentrations decreased late in the alfalfa and mixed-feed fermentations, eventually allowing butyrate concentrations to exceed those of propionate. As expected, lactate was produced in high concentrations when corn was fermented. The minor components 2-methylpropionate, 2- and 3-methylbutyrate, phenylacetate, phenylpropionate, and caproate also accumulated, with their relative concentrations varying with the substrate. Succinate was produced in substantial amounts only when corn and alfalfa were fermented; it did not accumulate when cottonseed was the substrate. Samples containing cottonseed were derivatized and subjected to reversed-phase high-performance liquid chromatography, revealing that gossypol concentrations did not change during fermentation.  相似文献   

6.
Plant cell walls within the human diet are compositionally heterogeneous, so defining the basis of nutritive properties is difficult. Using a pig fecal inoculum, in vitro fermentations of soluble forms of arabinoxylan, mixed-linkage glucan, and xyloglucan were compared with the same polymers incorporated into bacterial cellulose composites. Fermentation rates were highest and similar for the soluble polysaccharides. Cellulose composites incorporating those polysaccharides fermented more slowly and at similar rates to wheat bran. Bacterial cellulose and cotton fermented most slowly. Cellulose composite fermentation resulted in a different short-chain fatty acid profile, compared with soluble polysaccharides, with more butyrate and less propionate. The results suggest that physical form is more relevant than the chemistry of plant cell wall polysaccharides in determining both rate and end-products of fermentation using fecal bacteria. This work also establishes bacterial cellulose composites as a useful model system for the fermentation of complex cell wall dietary fiber.  相似文献   

7.
There is a growing interest in highly fermentable dietary fibers having the potential to reduce risks of disease through the production of short-chain fatty acids (SCFA). Recently a digestion-resistant retrograded maltodextrin (RRM), classified as type 3 resistant starch was developed. Systematic work to determine its molecular and physiological properties was carried out to determine (1) the fraction resistant to digestion in vitro and in vivo, (2) its postconsumption effect on blood glucose in healthy volunteers, and (3) its in vitro fermentation pattern, at different ages, by use of pooled fresh human fecal inoculum. RESULTS: The digestion resistant fraction obtained in vivo from ileostomy patients (59.4%) is similar to that obtained by the AOAC method for measuring retrograded resistant starch (59.7%). The relative glycemic response after consumption of 50 g of RRM was 58.5% compared to glucose set as 100%. When exposed to colonic microbiota, in vitro obtained indigestible fractions behave similarly to those obtained in vivo in ileostomy patients. Fermentation of RRM and production of butyric acid is negligible during the first months of life but develops subsequently during weaning. In adults, RRM fermentation results in a high yield of SCFA, with butyrate representing 21-31 mol % of total SCFA. The high yield of SCFA during colonic fermentation, observed from weaning age on, as well as the potential to help reduce glycemic load may be of benefit to a number of health-related functions in the host. Further study on clear clinical end points is warranted.  相似文献   

8.
Xylo-oligosaccharides (XOS) with various substituents were fermented in vitro by fecal inocula (FI) from four human volunteers to study the influence of substitution on the ability and rate of fermentation and on the production of short-chain fatty acids (SCFA) and lactate. By all FI used nonsubstituted XOS (nXOS) and arabino-XOS (AXOS) were fermented more quickly than the more complex structures of acetylated XOS (AcXOS) and XOS containing a 4-O-methylglucuronic acid group (GlcA(me)XOS). In the first stage (0-40 h) of the fermentations of nXOS and AXOS mainly acetate and lactate were formed. The fermentations of AcXOS and GlcA(me)XOS resulted in a lower lactate production, whereas the concentration of propionate and butyrate increased. These results put emphasis on the detailed elucidation of the structural features of nondigestible oligosaccharides in general to understand their fermentation mechanisms more precisely.  相似文献   

9.
Grape antioxidant dietary fiber (GADF) is a phenolic-rich dietary fiber matrix. The aim of this work was to determine which phenolic compounds come into contact with colonic epithelial tissue after the ingestion of GADF. By use of HPLC-ESI-MS/MS techniques phenolic metabolites were detected in feces, cecal content, and colonic tissue from rats. Free (epi)catechin (EC) was detected in all three sources, and more than 20 conjugated metabolites of EC were also detected in feces. Fourteen microbially derived phenolic metabolites were also identified in feces, cecal content, and/or colonic tissue. These results show that during transit along the digestive tract, proanthocyanidin oligomers and polymers are depolymerized into EC units. After ingestion of GADF, free EC and its conjugates, as well as free and conjugated microbially derived phenolic metabolites, come into contact with the intestine epithelium for more than 24 h and may be partly responsible for the positive influence of GADF on gut health.  相似文献   

10.
Epidemiological studies have consistently demonstrated that there is an association between carotenoid-rich food intakes with a low incidence in chronic diseases. Nevertheless, there is not an association between the intake of total dietary carotenoids and chronic health incidence in the European population, probably because of different carotenoid food sources and bioavailability. The objective of this study was to evaluate the small and large intestine bioaccessibilities of major dietary carotenoids from fruits and vegetables in a common diet. A bioaccessibility model that includes enzymatic digestion and in vitro colonic fermentation was employed. Lutein presented greater small intestine bioaccessibility (79%) than beta-carotene (27%) or lycopene (40%). With regard to large intestine bioaccessibility, similar amounts of lycopene and beta-carotene were released from the food matrix (57%), whereas small amounts of lutein (17%) were released. These results suggest that 91% of the beta-carotene, lutein, and lycopene contained in fruits and vegetables is available in the gut during the entire digestion process. Colonic fermentation is shown to be important for carotenoid availability in the gut.  相似文献   

11.
The effect of a simultaneous intake of food or flavonoids on anthocyanins absorption and antioxidant status in pigs was investigated. Twelve male pigs at 27.1 +/- 0.7 kg BW fitted with jugular venous cannulae were maintained in individual metabolic crates. The animals were each given one of three dietary treatments in random order: blackcurrant powder (BC) to give a dose of 100 mg total ACNs/kg BW mixed either with water and sugar (Diet A), cereal (Weet-Bix), milk, and sugar (Diet B), or cereal, milk, sugar, and an additional flavonol (rutin, approximately 100 mg/kg BW) (Diet C). The four major anthocyanins of BC, delphinidin-3-glucoside, delphinidin-3-rutinoside, cyanidin-3-glucoside, and cyanidin-3-rutinoside, were identified and quantified by HPLC-PDA in all three diets. In the pig plasma, four peaks with a reversed pattern to those of anthocyanins in the BC extract were detected. The total amount of anthocyanins absorbed was not significantly different between the three diets, but the rate of absorption and subsequent decline was slower following administration of diet B and C than diet A. All three diets increased antioxidant capacity when measured by the FRAP assay but not when measured by the ORAC and non-protein ORAC assay. However, the increase was delayed and did not appear until 4 h after ingestion, at a time when plasma anthocyanin levels had returned to baseline. The present study demonstrates that the simultaneous intake of food or other flavonoids delays the absorption profile for anthocyanins. Our results also suggest that the increase in antioxidant capacity is not due to dietary anthocyanins but may be due to metabolites that result from anthocyanin consumption.  相似文献   

12.
In vitro antioxidant activity of coffee compounds and their metabolites   总被引:2,自引:0,他引:2  
In this paper we report the antioxidant activity of different compounds which are present in coffee or are produced as a result of the metabolism of this beverage. In vitro methods such as the ABTS*+ [ABTS = 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] decolorization assay and the oxygen radical absorbance capacity assay (ORAC) were used to assess the capacity of coffee compounds to scavenge free radicals. The importance of caffeine metabolites and colonic metabolites in the overall antioxidant activity associated with coffee consumption is shown. Colonic metabolites such as m-coumaric acid and dihydroferulic acid showed high antioxidant activity. The ability of these compounds to protect human low-density lipoprotein (LDL) oxidation by copper and 2,2'-azobis(2-amidinopropane) dihydrochloride was also explored. 1-Methyluric acid was particularly effective at inhibiting LDL oxidative modification. Different experiments showed that this caffeine metabolite is not incorporated into LDL particles. However, at physiologically relevant concentrations, it was able to delay for more than 13 h LDL oxidation by copper.  相似文献   

13.
Ruminal fermentation of propylene glycol and glycerol   总被引:1,自引:0,他引:1  
Bovine rumen fluid was fermented anaerobically with 25 mM R-propylene glycol, S-propylene glycol, or glycerol added. After 24 h, all of the propylene glycol enantiomers and approximately 80% of the glycerol were metabolized. Acetate, propionate, butyrate, valerate, and caproate concentrations, in decreasing order, all increased with incubation time. Addition of any of the three substrates somewhat decreased acetate formation, while addition of either propylene glycol increased propionate formation but decreased that of butyrate. R- and S-propylene glycol did not differ significantly in either their rates of disappearance or the products formed when they were added to the fermentation medium. Fermentations of rumen fluid containing propylene glycol emitted the sulfur-containing gases 1-propanethiol, 1-(methylthio)propane, methylthiirane, 2,4-dimethylthiophene, 1-(methylthio)-1-propanethiol, dipropyl disulfide, 1-(propylthio)-1-propanethiol, dipropyl trisulfide, 3,5-diethyl-1,2,4-trithiolane, 2-ethyl-1,3-dithiane, and 2,4,6-triethyl-1,3,5-trithiane. Metabolic pathways that yield each of these gases are proposed. The sulfur-containing gases produced during propylene glycol fermentation in the rumen may contribute to the toxic effects seen in cattle when high doses are administered for therapeutic purposes.  相似文献   

14.
alpha-Amylases from different origins (wheat, malted barley, fungi, and bacteria) are used extensively to improve breadmaking. However, the enzyme activities, in addition to the differences associated with their origins, are strongly affected by the process conditions and the presence of other compounds in the medium. The activity of different alpha-amylases was tested under different conditions (pH and temperature), and in the presence of some bread ingredients (salt and sugar), some breadmaking additives (ascorbic acid and sodium propionate), and some metabolites (organic acids and saccharides) generated during the fermentation step, to envisage the behavior of these alpha-amylases during the breadmaking process. The alpha-amylase activities were affected to a different extent by the addition of these compounds depending on the enzyme origin. In general, the alpha-amylases from cereals (wheat and malted barley) were less sensitive to the presence of some ingredients, additives, and metabolites. These results show the great variation of the alpha-amylase activity with the process conditions and the importance of its knowledge in the selection of the appropriate alpha-amylase for a specific breadmaking process.  相似文献   

15.
Several oat brans (crunchy oat bran, oat bran alone, and oat breakfast cereal) and wheat brans (wheat bran alone, wheat bran powder, wheat bran with malt flavor, bran breakfast cereal, tablet of bran, and tablet of bran with cellulose) used as dietary fiber supplements by consumers were evaluated as alternative antioxidant sources (i) in the normal human consumer, preventing disease and promoting health, and (ii) in food processing, preserving oxidative alterations. Products containing wheat bran exhibited higher peroxyl radical scavenging effectiveness than those with oat bran. Wheat bran powder was the best hydroxyl radical (OH*) scavenger. In terms of hydrogen peroxide (H2O2) scavenging, wheat bran alone was the most effective, while crunchy oat bran, oat bran alone, and oat breakfast cereal did not scavenge H2O2. The shelf life of fats (obtained by the Rancimat method for butter) increased most in the presence of crunchy oat bran. When the antioxidant activity during 28 days of storage was measured by the linoleic acid assay, all of the oat and wheat bran samples analyzed showed very good antioxidant activities. The Trolox equivalent antioxidant capacity (TEAC) assay was used to provide a ranking order of antioxidant activity. The wheat bran results for TEAC (6 min), in decreasing order, were wheat bran powder > wheat bran with malt flavor > or = wheat bran alone > or = bran breakfast cereal > tablet of bran > tablet of bran with cellulose. The products made with oat bran showed lower TEAC values. In general, avenanthramide showed a higher antioxidant level than each of the following typical cereal components: ferulic acid, gentisic acid, p-hydroxybenzoic acid, protocatechuic acid, syringic acid, vanillic acid, vanillin, and phytic acid.  相似文献   

16.
Dietary fiber (DF) is one of the main dietary factors contributing to consumers' well-being. In this work the possibility of using the roasted coffee silverskin (CS), a byproduct of roasted coffee beans, as a DF-rich ingredient has been evaluated. The results of our investigation showed that this material has 60% total DF, with a relevant component (14%) of soluble DF. Although a small amount of free phenol compounds is present in CS, it has a marked antioxidative activity, which can be attributed to the huge amount of Maillard reaction products, the melanoidins. Static batch culture fermentation experiments showed that CS induces preferential growth of bifidobacteria rather than clostridia and Bacteroides spp. CS can be proposed as a new potential functional ingredient in consideration of the high content of soluble DF, the marked antioxidant activity, and the potential prebiotic activity.  相似文献   

17.
Hydroxycinnamic acids are a group of phenolic compounds that exhibit a wide range of in vitro chemoprotective and antioxidant properties. Cereals containing a high proportion of the bran layers are rich in ester-linked hydroxycinnamic acids, such as ferulic and diferulic acids. The present work investigated the absorption in humans of hydroxycinnamic acids from high-bran breakfast cereal (wheat). Plasma and urine samples from six volunteers were collected before and after cereal consumption and analyzed for total hydroxycinnamic acids content after beta-glucuronidase/sulfatase treatment both by HPLC-DAD and by LC-MS (SIM monitoring). High-bran cereal administration resulted in increased plasma ferulic and sinapic acid concentrations (maximum levels detected of approximately 200 and approximately 40 nM, respectively) with absorption peaks between 1 and 3 h. Increases of approximately 4-fold in ferulic acid and approximately 5-fold in feruloylglycine were detected in 24-h urine after consumption of the cereal. Most of the ferulic acid detected in urine and plasma was present as conjugates (feruloylglycine and/or glucuronides). Diferulic acids were undetectable. The data show that ferulic and sinapic acids are taken up in humans from dietary high bran wheat but that absorption is limited and may originate only from the free and soluble portions present in the cereal.  相似文献   

18.
The in vitro fermentability of three novel dietary fibers (DFs) prepared from mushroom sclerotia, namely, Pleurotus tuber-regium, Polyporous rhinocerus, and Wolfiporia cocos, was investigated and compared with that of the cellulose control. All DF samples (0.5 g each) were fermented in vitro with a human fecal homogenate (10 mL) in a batch system (total volume, 50 mL) under strictly anaerobic conditions (using oxygen reducing enzyme and under argon atmosphere) at 37 degrees C for 24 h. All three novel sclerotial DFs exhibited notably higher dry matter disappearance (P. tuber-regium, 8.56%; P. rhinocerus, 13.5%; and W. cocos, 53.4%) and organic matter disappearance (P. tuber-regium, 9.82%; P. rhinocerus, 14.6%; and W. cocos, 57.4%) when compared with those of the cellulose control. Nevertheless, only the W. cocos DF was remarkably degraded to produce considerable amounts of total short chain fatty acids (SCFAs) (5.23 mmol/g DF on organic matter basis, with a relatively higher molar ratio of propionate) that lowered the pH of its nonfermented residue to a slightly acidic level (5.89). Variations on the in vitro fermentability among the three sclerotial DFs might mainly be attributed to their different amounts of interwoven hyphae present (different amounts of enzyme inaccessible cell wall components) as well as the possible different structural arrangement (linkage and degree of branching) of their beta-glucans.  相似文献   

19.
The antimutagenic and antioxidant potentials of rooibos (Aspalathus linearis) tea samples, collected from each of its major processing stages, were evaluated according to the Salmonella typhimurium mutagenicity test and the hydrogen donating ability and superoxide anion radical scavenging assays, respectively. Ten random samples were collected before and after fermentation, as well as after sun-drying, sieving, and steam pasteurization. Results indicated that the fermented tea had a significantly (P < 0.05) lower antimutagenic and antioxidant potential than the unfermented tea. Of the different processing stages, the most significant reduction in the antimutagenic and antioxidant property of the tea was found during the "fermentation" step. Sun-drying, sieving, and steam pasteurization also reduced the antimutagenic potential of the tea, although not to the same extent as the first processing step. The hydrogen donating ability was significantly increased after steam pasteurization in comparison to those of fermented and sun-dried tea. Pasteurization did not affect superoxide anion radical scavenging in comparison to fermented tea. Differences seem to exist in the antimutagenicity and antioxidant potencies of the tea sampled at the various stages during processing. A possible role of tea polyphenols in the antimutagenic and antioxdant activities of the tea is suggested as processing caused a significant reduction in the total polyphenolic content.  相似文献   

20.
A new soluble cocoa fiber product (SCFP), obtained after enzymatic treatment of cocoa husks, was characterized and its potential health effects studied in an animal model of dietary-induced hypercholesterolemia. The SCFP was rich in soluble dietary fiber (DF) and antioxidant polyphenols. Consumption of a cholesterol-rich diet containing the SCFP as a source of DF resulted in lower food intake and body weight gain in comparison with control groups consuming cholesterol-free or cholesterol-rich diets with cellulose as DF. The cholesterol-rich diet caused remarkable hypercholesterolemia. However, the SCFP diminished the negative impact of the cholesterol-rich diet, buffering the decrease of high density lipoprotein-cholesterol, and the increase of total and low density lipoprotein-cholesterol levels, and lipid peroxidation (malondialdehyde levels) induced by the fatty diet. The SCFP also decreased triglyceride levels to values lower than those in the group fed the cholesterol-free diet. These results put forward the potential application of the SCFP as a dietary supplement or functional food ingredient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号