首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
潜育性稻田是我国南方稻区主要的一种低产土壤。根据潜育性水稻土特生,以提高选育水稻耐潜育性品种的育种效率为目标,开展了育种新方法、筛选鉴定技术与指标等研究。  相似文献   

2.
中国农田土壤和稻米镉(Cd)污染严重,摸清稻田土壤与水稻各器官中Cd积累的关系,可为水稻安全生产提供依据。以潜育水稻土和潴育水稻土为研究对象,通过点对点采集土壤和水稻样品,比较了潜育水稻土与潴育水稻土生长水稻Cd积累的差异及影响因素。结果表明:在相似的土壤Cd污染水平下,生长于潜育水稻土上的水稻各器官镉积累明显低于潴育水稻土,潜育水稻土上生长水稻的茎叶、糙米镉平均含量只有生长于潴育水稻土上的55.53%和56.10%,表明潜育水稻土上生长水稻对土壤Cd的吸收量明显低于潴育水稻土上生长的水稻。土壤全Cd含量均是影响两类土壤水稻各器官Cd积累的主要因素,但其他土壤因素对水稻各器官中Cd积累的影响在两类农田中有较大的区别;潜育水稻土上影响水稻Cd积累的因素还有交换性亚铁和粘粒含量,而潴育水稻土中则为CEC。结果还表明,在潜育水稻土中,采用新鲜土样测定的土壤有效Cd比风干土测定的土壤有效Cd更能有效预测水稻各器官中Cd的积累。故,土壤潜育化可降低水稻对土壤Cd的吸收,减免糙米Cd污染的风险。  相似文献   

3.
针对道真县潜育型稻田面积较大和水稻旱育稀植技术兴起的实际,特对潜育型田用不同叶龄旱育秧采取半旱式栽培与平作载体进行了对比试验。结果表明:以5.5叶(中苗)半旱式栽培产量最高,3叶(小苗)产量次之,在生产实践中,潜育型稻田应大力推行半旱式栽培,并立足主栽中苗,辅之小苗。  相似文献   

4.
对36个水稻骨干系进行了RFLP分析,并对这些水稻材料的162个杂交组合育性进行了分组分类研究。杂种育性的遗传基础研究表明,亚种内杂交组合育性显著高于亚种间杂交组合育性。亚种间杂交不育性是由籼粳两个亚种间深刻的遗传分化引起的。  相似文献   

5.
自从20世纪70年代中国成功实现杂交水稻三系配套以来,不少学者致力于水稻细胞质雄性不育及育性恢复的机理研究。近年来,国内外科学家已定位和克隆了控制细胞质雄性不育和育性恢复的基因。2006年华南农业大学刘耀光研究组在《The Plant Cell》上发表论文揭示:BoroⅡ型水稻细胞质雄性不育由线粒体编码的细胞毒素肽引起,两个含PPR蛋白基因中的任何一个均可破坏或降解细胞毒素肽使植株育性恢复,从而在分子水平解释了BoroⅡ型水稻细胞质雄性不育及育性恢复性的机理。这是中国科学家对植物细胞质雄性不育及育性恢复研究的最新贡献。  相似文献   

6.
对36个水稻骨干系进行了RFLP(限制性内切酶长度多态性)分析,并对这些水稻材料的162个杂交组合育性进行了分组分类研究。杂种育性的遗传基础研究表明,亚种内杂交组合育性显著高于亚种间杂交组合育性。亚种间杂交不育性是由籼粳两个亚种间深刻的遗传分化引起的。广亲和性品种为亲本之一的杂交组合多数(71.7%)具有正常的育性,RFLP分析表明,这些杂交组合的遗传基础特殊,其遗传距离大于典型的亚种内组合距离,而小于典型的亚种间遗传距离。广亲和性水稻种质的创建、改造和利用潜力是大的,广亲和基因作用及其与杂种优势表现有关的若干遗传育种学问题要协同一并去解决。  相似文献   

7.
<正>吉林省农业科学院/农业部东北作物有害生物综合治理重点实验室等单位合作于水稻苗期在吉林省公主岭市南崴子乡大榆树村9队国家超级稻示范田内,研究了19%溴氰虫酰胺悬浮剂对水稻潜叶蝇的防治效果及安全性。田间试验表明,在水稻田插秧前2天时,利用19%溴氰虫酰胺悬浮剂  相似文献   

8.
在不同自然生态条件下对编号为Ms-3,Ms-7,Ms-8,Ms-9的4份水稻温敏不育系分期播种,进行育性观察、差异性分析及稳定性研究,从而鉴定水稻温敏不育系育性转换是否彻底以及育性是否稳定.结果表明:4份水稻温敏不育系在元江可以繁殖,同期播种品种间育性差异不显著,不同播期对育性的影响较大,以3月8日播种水稻温敏不育系自交结实率最高;建水不同播期对水稻温敏不育系育性影响不大,但品种间育性差异显著,除Ms-7外,其它几个温敏不育系在不同播期不育度达99%以上,育性转换彻底,自交结实率的变异系数小,不育性稳定,可以制种.  相似文献   

9.
章含祥 《种子科技》2023,(13):114-116
在现代农业高速发展的背景下,做好水稻田管理工作具有重要的现实意义。在水稻种植过程中,二化螟是最为常见的虫害类型之一,对水稻的种植品质造成了不利影响。文章重点阐述了安庆市太湖县水稻田管理的有效措施,探讨了二化螟绿色防控技术,以期不断提升水稻种植水平。  相似文献   

10.
两用不育水稻自然低温筛选研究   总被引:1,自引:0,他引:1  
黎世龄 《种子》2001,(6):26-27
根据自然温度变化规律和两用不育水稻育性遗传变异特点,提出了利用自然低温条件筛选不育临界温度低(21℃)、低温可育度高的两用不育水稻的方法,分析了采用自然低温筛选两用不育水稻的效果。  相似文献   

11.
A mapping population of 96 BC1F9lines (Backcross Inbred Lines: BILs),derived by a single-seed descent method rom a backcross of Nipponbare (japonica) / Kasalath (indica // Nippon are, was used to detect quantitative trait loci (QTLs) for leaf bronzing index (LBI), stem dry weight (SDW), tiller number (TN) and root dry weight (RDW) under Fe2+ stress condition in rice. Two parents and 96 BILs were phenotyped for the traits by growing them in Fe2+ toxicity nutrient solution. A total of four QTLs were detected on chromosome 1 and 3, respectively, with LOD of QTLs ranging from 3.17 to 7.03. One QTL controlling LBI, DW, N and RDW was located at the region of C955-C885 on chromosome 1, and their contributions to whole variation were 20.5%, 36.9%, 43.9% and 38.8%,respectively. The QTL located at the region of C955-C885 on chromosome 1 may be important to ferrous iron toxicity tolerance in rice. Another QTL for SDW and RDW was located at the region of C25-C515 on chromosome 3, with respective contributions of 47.9% and 35.0% to whole variation. Further, two QTLs on chromosome 1 were located for RDW at the region of R2329-R210 and for TN at the region of R1928-C178. Comparing with the other mapping results, the QTL located at the region of C955-C885 on chromosome 1 was identical with the results reported previously. There is a linkage between a TL detected under Fe2+ stress condition for stem and root dry weight and a QTL detected under phosphorus-deficiency condition for dry weight on chromosome 3. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Lowland rice is often subject to iron toxicity which may lead to yield reduction. In order to cope with this nutrient disorder, plants have developed resistance strategies. The aim of this research was to assess morphological and physiological parameters linked to iron toxicity resistance mechanisms and to identify quantitative trait loci (QTLs) involved in their genetic determinism. A segregating population consisting of 164 recombinant inbred lines (RILs) derived from a cross between Azucena and IR64 was tested twice in hydroponics at the vegetative stage at 0 and 250 mg Fe2+ l−1. Morphological traits were measured on all 164 RILs. Physiological traits, which were too time-consuming to allow their measurement on all the population, were measured on the two parents and extreme individuals only, selected on the basis of their leaf bronzing index and shoot dry weight. A total of 24 putative QTLs was identified on chromosomes 1, 2, 3, 4, 7 and 11 for leaf bronzing index, shoot water content, shoot and root dry weight, relative variation of shoot and root dry weight, shoot iron concentration, stomatal resistance and chlorophyll content index. Several QTLs were detected in overlapping regions for different parameters. The pertinence of phenotyping extreme RILs only for a QTL analysis is discussed in this study. The QTL analysis allowed to better understand the physiological response of rice in the presence of an excess of ferrous iron, inclusive the relations existing between the stomata closure, the shoot water content reduction and the oxidative stress linked to these growth conditions.  相似文献   

13.
稻米直链淀粉含量基因座位的分子标记定位   总被引:29,自引:0,他引:29  
以直链淀粉含量(AC)中等的CT9993和泰国优质的香软米KDML105杂交产生的152个重组近交系 (RIL)为材料, 构建了含83个RFLP、 69个AFLP和15个微卫星(SSLP)标记的分子标记连锁图 , 标记间平均距离为12.98 cM。 应用该连锁图对控制稻米AC的基因座位(QTL)进行了分析 。 结果表明: 稻米AC主要受两个主效QTL和5个微效QTL的共同控制  相似文献   

14.
QTL mapping of sheath blight resistance in a deep-water rice cultivar   总被引:2,自引:0,他引:2  
Sheath blight, caused by the pathogen Rhizoctonia solani Kühn, is one of the most serious diseases of rice and leads to severe yield loss worldwide. A recombinant inbred line (RIL) population consisting of 121 lines was constructed from a cross between HH1B and RSB03, the latter of which is a deep-water rice variety. Five traits were used to evaluate sheath blight resistance, namely disease rating (DR), lesion length (LL), lesion height (LH), relative lesion length [RLL, the ratio of LL to plant height (PH)], and relative LH (RLH, the ratio of LH to PH). Using the RIL population and 123 molecular markers, we identified 28 quantitative trait loci (QTLs) for the five traits in two environments. These QTLs are located on nine chromosomes and most of them are environment specific. A major QTL for DR (qSBR1) on chromosome 1 was identified with contributions of 12.7% at Shanghai and 42.6% at Hainan, and it collocated with a QTL for PH. The allele at this locus from RSB03 enhances sheath blight resistance and increases PH. Another QTL for DR on chromosome 7 was adjacent to QTLs for heading date (HD) and four other disease traits. RSB03 also carries the resistant allele at this locus and shortens HD. The susceptible parent, HH1B, provides the resistance allele at the locus qSBR8, where QTLs for four other disease traits were identified. QTL mapping results showed that most QTLs for LL, LH, RLL, and RLH are collocated with QTLs for DR. Three QTLs for DR are independent from HD, PH, and four other disease traits, while four QTLs are closely related to HD and PH. Four QTLs for LL, LH, RLL, and RLH are independent from DR, HD, and PH, while there is only one region harboring QTLs for these four traits and HD. Correlation analysis and QTL mapping results indicated that LL, LH, RLL, and RLH might be important indices, like DR, for evaluating the level of resistance to rice sheath blight.  相似文献   

15.
Improvement of rice grain yield (YD) is an important goal in rice breeding. YD is determined by its related traits such as spikelet fertility (SF), 1,000-grain weight (TGW), and the number of spikelets per panicle (SPP). We previously mapped quantitative trait loci (QTLs) for SPP and TGW using the recombinant inbred lines (RILs) derived from the crosses between Minghui 63 and Teqing. In this study, four QTLs for SF and four QTLs for YD were detected in the RILs. Comparison of the locations of QTLs for these three yield-related traits identified one QTL cluster in the interval between RM3400 and RM3646 on chromosome 3. The QTL cluster contained three QTLs, SPP3a, SF3 and TGW3a, but no YD QTL was located there. To validate the QTL cluster, a BC4F2 population was obtained, in which SPP3a, SF3 and TGW3a were simultaneously mapped to the same region. SPP3a, SF3 and TGW3a explained 36.3, 29.5 and 59.0 % of phenotype variance with additive effect of 16.4 spikelets, 6 % SF and 1.8 g grain weight, respectively. In the BC4F2 population, though the region has opposite effects on TGW and SPP/SF, a YD QTL YD3 identified in this cluster region can increase 4.6 g grains per plant, which suggests this QTL cluster is a yield-enhancing QTL cluster and can be targeted to improve rice yield by marker aided selection.  相似文献   

16.
利用重组自交系群体检测水稻耐铝毒数量性状基因座   总被引:4,自引:0,他引:4  
利用Kinmaze / DV85 81个重组自交家系(RIL)作图群体,采用苗期单营养液水培鉴定方法,以相对根伸长量(RRE)作为耐铝毒性状的表型值,分析亲本和重组自交系群体对铝毒的耐性表现。利用Windows QTL Cartographer 1.13a软件共检测到5个耐铝毒QTLs,分别位于第1、5、8、9和11染色体上,各个QTL的贡献率在8.64%~18.60%之间,其  相似文献   

17.
水稻抗稻曲病数量性状座位及效应分析   总被引:3,自引:0,他引:3  
利用157个家系组成的大关稻(japonica)/IR28 (indica)重组自交系(recombinant inbred lines, RIL)群体,采用高效引发稻曲病人工接种方法,以病情指数作为稻曲病的表型值。2007和2009年,鉴定亲本及RILs对水稻稻曲病的抗性。利用QTL Cartographer 软件,对水稻稻曲病抗性基因进行检测分析。两年共检测到qFsr1、qFsr2、qFsr4、qFsr8、qFsr10、qFsr11、qFsr12等7个QTL,分别位于第1、第2、第4、第8、第10、第11和第12染色体上,贡献率在9.8%~22.5%之间。其中,2007年检测到qFsr1、qFsr4、qFsr10、qFsr11、qFsr12等5个位点;2009年检测到qFsr2、qFsr8、qFsr10、qFsr11等4个位点,qFsr11、qFsr12在两年中均被检测到,对性状的解释率在18.0%~19.3%之间,使病情指数下降8.0%~16.3%,提高了抗病性。根据抗性位点加性效应方向,在qFsr1、qFsr2、qFsr8、qFsr10、qFsr11和qFsr12位点上,亲本IR28存在抗稻曲病的增效等位基因,大关稻具有减效等位基因,而位点qFsr4的抗性效应来源正好相反。qFsr11、qFsr12及其附近的标记可望在稻曲病抗性分子标记辅助选择育种中加以应用。  相似文献   

18.
Plant height (PH) and ear height (EH) are important agronomic traits in maize (Zea mays L.) breeding. To investigate the influence of the genetic background on the detection of quantitative trait locus (QTL) conferring PH and EH, related mapping populations were developed from a near isogenic line (NIL) and its recurrent parent. Through joint-environment analyses, a total of four QTLs for PH were identified within the introgressed regions of the used NIL. Compared with the mapping results of RILs, extra PH QTLs could be detected within the target region of the used NIL on chromosome 4, but a previous PH QTL within this region was lost. The missed detection of a previous PH QTL also occurred on chromosome 6. As such, the genetic background of the recurrent parent exerted its influence on the detection of height QTL in this study. Meanwhile, according to the analyses of recombination events, qPEH6, a major height QTL on chromosome 6, was narrowed down to a region of approximately 1 Mb. Sequence analysis revealed that GRMZM2G014119, which encodes an ubiquitin-like protein related to the auxin response, was roughly assumed to be the candidate gene responsible for qPEH6.  相似文献   

19.
利用98个家系组成的日本晴(粳稻)/Kasalath(籼稻)//日本晴回交重组自交系(backcross inbred lines, BILs) 群体(BC1F10),研究水稻光合功能相关的数量性状基因座(QTL)。基于水稻抽穗后7 d叶片全氮含量(TLN)、叶绿素a/b比值(Chl.a/b)和叶绿素含量(Chl),共检测到8个QTL,其LOD值为2.61 ~ 6.42  相似文献   

20.
Rice is a typical silicon-accumulating plant and the beneficial effect of silicon on rice has long been recognized. In a previous study using 244 recombinant inbred lines (RILs) of an indica rice cross, Zhenshan 97B/Milyang 46 grown in 2003, four QTLs were detected for hull silicon content. QTL qHUS-6 had the largest effect among these, and the same interval also had significant effects on yield traits in the same population. The primary objective of this study was to validate the QTL effect in this region on HUS and yield traits. The same RIL population and another RIL population of lower heterogeneity were grown in 2004. QTL qHUS-6 was found to have significant additive effects on hull silicon content with a consistent direction in the two populations. From a residual heterozygous line selected from RILs of the same cross, 15 F2:3 lines that differed only in a 2.15-Mb segment extending from RM587 to RM6119 on the short arm of chromosome 6 were derived. In these lines, qHUS-6 displayed a major effect, so did QTLs for yield traits previously detected in the same region. Two more QTLs for HUS detected in 2003, qHUS-1-1 and qHUS-1-2, also had consistent effects in the Zhenshan 97B/Milyang 46 RIL population in 2004. Thus this study verified three candidate regions for fine mapping HUS QTLs and determining the genetic relationship between silicon content and yield traits in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号