首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Swiss red wheat grain, bran, aleurone, and micronized aleurone were examined and compared for their free radical scavenging properties against 2,2-diphenyl-1-picrylhydrazyl radical (DPPH*), radical cation ABTS*+ and peroxide radical anion O(2)*-, oxygen radical absorbance capacity (ORAC), chelating capacity, total phenolic content (TPC), and phenolic acid composition. The results showed that micronized aleurone, aleurone, bran, and grain may significantly differ in their antioxidant properties, TPC, and phenolic acid composition. Micronized aleurone had the greatest antioxidant activities, TPC, and concentrations of all identified phenolic acids, suggesting the potential of postharvesting treatment on antioxidant activities and availability of TPC and phenolic acids. Ferulic acid was the predominant phenolic acid in Swiss red wheat and accounted for approximately 57-77% of total phenolic acids on a weight basis. Ferulic acid concentration was well correlated with scavenging activities against radical cation and superoxide anion, TPC, and other phenolic acid concentrations, suggesting the potential use of ferulic acid as a marker of wheat antioxidants. In addition, 50% acetone and ethanol were compared for their effects on wheat ORAC values. The ORAC value of 50% acetone extracts was 3-20-fold greater than that of the ethanol extracts, indicating that 50% acetone may be a better solvent system for monitoring antioxidant properties of wheat. These data suggest the possibility to improve the antioxidant release from wheat-based food ingredients through postharvesting treatment or processing.  相似文献   

2.
The phenolic acid composition and concentration of four manually separated fractions (pericarp, aleurone layer, germ, and endosperm fractions) as well as whole grains of yellow corn, wheat, barley, and oats were analyzed by HPLC‐MS/MS following microwave‐assisted alkaline aqueous extraction. Phenolic acid compositions in whole grains and their fractions were similar, with minor differences among the grain fractions. Significant differences (P < 0.05), however, were observed in phenolic acid concentrations among cereal types, within cereal varieties, and among grain fractions, with yellow corn exhibiting the highest values. The concentrations of p‐coumaric and syringic acid in the pericarp were 10‐ to 15‐fold and 6‐ to 10‐fold higher, respectively, in yellow corn than in wheat, barley, and oats. In the aleurone layer, sinapic and vanillic acids in yellow corn were about 8‐ and 30‐fold more than in wheat. The germ fraction of wheat had 1.8 times more syringic acid than yellow corn germ. Grain fractions, excluding endosperm, had enhanced levels of phenolic acids compared with whole grain. Sinapic acid was more concentrated in the pericarp and germ of wheat, whereas isoferulic acid was concentrated in the germ of purple barley. Syringic and vanillic acids were concentrated in the pericarp and sinapic acid in the aleurone layer of yellow corn. These findings are important in understanding the composition and distribution of phenolic acids, and they act as a guide in identification of grain fractions for use as food ingredients. In addition, yellow corn fractions (aleurone and pericarp) may be potential alternative phenolic‐rich functional food ingredients in grain‐based food products.  相似文献   

3.
Nitrogen (N) is an important plant nutrient and is crucial for the plant growth and grain yield formation of field crops such as wheat (Triticum aestivum L. ssp. aestivum). However, little is known about the influence of N on secondary metabolites in wheat grains which are supposed to be beneficial for human health due to their antioxidant potentials. Therefore, we investigated the influence of N fertilization on plant growth and yield performance of winter wheat, as well as on total phenolic concentration, antioxidant capacity, and the accumulation of (in)soluble phenolic acids in wheat grains during the grain‐filling phase. It was found that ferulic acid was the predominant phenolic acid in wheat grains. As expected, higher amounts of N fertilizer led to increasing grain yields, whereas the concentration of soluble ferulic acid decreased. In contrast, insoluble bound ferulic acid, total phenolic content, and antioxidant capacity were not affected by the N treatment. Insoluble phenolic compounds seemed to be less susceptible to variations in N supply.  相似文献   

4.
Two pigmented wheat genotypes (blue and purple) and two black barley genotypes were fractionated in bran and flour fractions, examined, and compared for their free radical scavenging properties against 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation (Trolox equivalent antioxidant capacity, TEAC), ferric reducing antioxidant power (FRAP), total phenolic content (TPC), phenolic acid composition, carotenoid composition, and total anthocyanin content. The results showed that fractionation has a significant influence on the antioxidant properties, TPC, anthocyanin and carotenoid contents, and phenolic acid composition. Bran fractions had the greatest antioxidant activities (1.9-2.3 mmol TEAC/100 g) in all four grain genotypes and were 3-5-fold higher than the respective flour fractions (0.4-0.7 mmol TEAC/100 g). Ferulic acid was the predominant phenolic acid in wheat genotypes (bran fractions) while p-coumaric acid was the predominant phenolic acid in the bran fractions of barley genotypes. High-performance liquid chromatography analysis detected the presence of lutein and zeaxanthin in all fractions with different distribution patterns within the genotypes. The highest contents of anthocyanins were found in the middlings of black barley genotypes or in the shorts of blue and purple wheat. These data suggest the possibility to improve the antioxidant release from cereal-based food through selection of postharvest treatments.  相似文献   

5.
In the milling process, efficient separation between the starchy endosperm and the other grain tissues is a key parameter estimated by ash measurement. Because this separation occurs near the aleurone layer interface, better understanding of this tissue fractionation is critical for a better analysis of the wheat milling behavior. Samples from hard and soft common wheat cultivars that had the same protein content were processed on a pilot mill, and whole grain meals or flour streams were analyzed for ash content. The para‐coumaric acid (p‐CA) and phytic acid flour contents were compared with ash measurement and used as markers of the aleurone cell walls or aleurone cell content, respectively. A greater amount of phytic acid in hard wheat flour compared with soft wheat flour was found and reveals a distinct milling behavior between those wheat classes, mainly at the breaking step. Therefore simple ash content measurement is not sufficient to analyze flour purity. At the reduction stage, quantity of phytic acid increases with the other markers and may result from the overall mechanical resistance of the aleurone tissue. As a consequence, wheat hardness not only determines grain milling behavior but also affects flour composition.  相似文献   

6.
Rye bran and aleurone, wheat bran and aleurone, and oat bran and cell wall concentrate were compared in their in vitro gut fermentation patterns of individual phenolic acids and short-chain fatty acids, preceded by enzymatic in vitro digestion mimicking small intestinal events. The formation of phenolic metabolites was the most pronounced from the wheat aleurone fraction. Phenylpropionic acids, presumably derived from ferulic acid (FA), were the major phenyl metabolites formed from all bran preparations. The processed rye, wheat, and oat bran fractions contained more water-extractable dietary fiber (DF) and had smaller particle sizes and were thus more easily fermentable than the corresponding brans. Rye aleurone and bran had the highest fermentation rate and extent probably due to high fructan and water-extractable arabinoxylan content. Oat samples also had a high content of water-extractable DF, β-glucan, but their fermentation rate was lower. Enzymatic digestion prior to in vitro colon fermentation changed the structure of oat cell walls as visualized by microscopy and increased the particle size, which is suggested to have retarded the fermentability of oat samples. Wheat bran was the most slowly fermentable among the studied samples, presumably due to the high proportion of water-unextractable DF. The in vitro digestion reduced the fructan content of wheat samples, thus also decreasing their fermentability. Among the studied short-chain fatty acids, acetate dominated the profiles. The highest and lowest production of propionate was from the oat and wheat samples, respectively. Interestingly, wheat aleurone generated similar amounts of butyrate as the rye fractions even without rapid gas production.  相似文献   

7.
This research evaluated the effects of postharvest treatment and heat stress on the availability of wheat antioxidants using Ankor and Trego wheat varieties. The grain, bran, and 40-mesh bran samples of both Ankor and Trego wheat were kept at 25, 60, and 100 degrees C for 9 days. Samples taken at day 0, 1, 2, 3, 5, and 9 were extracted with pure ethanol and examined for antioxidant properties including the scavenging activity against peroxyl (ORAC), cation ABTS, and 2,2-diphenyl-1-picryhydrazyl (DPPH.) radicals, as well as total phenolic content (TPC) and phenolic acid composition. Both heat stress and postharvest treatment significantly altered the antioxidant properties of wheat grain fractions. The ORAC values of Ankor bran and corresponding 40-mesh bran samples kept at 100 degrees C for 9 days reduced to 61 and 40% of that at day 0 on a per dry weight basis, respectively, while the ORAC values of the grain samples showed no significant change. The overall loss of DPPH. scavenging capacity was 38 and 100% for the bran and 40-mesh Ankor bran samples, respectively, and was 47 and 60% in the bran and 40-mesh Trego bran samples, respectively, whereas no reduction was detected in the grain samples under the same heat stress. Heat stress and postharvest treatment had similar effects on ABTS.+ scavenging capacities and TPC values of grain and fractions of both varieties. These data suggest that whole grain as opposed to its fractions is a preferred form of long-term storage for better preserving natural antioxidants and that the reduction of the particle size may accelerate the loss of natural antioxidants in wheat bran during storage and thermal processing but may enhance the releasable amount of wheat antioxidants from bran.  相似文献   

8.
The starchy endosperm proportion in durum wheat grain and its ability to be isolated from the peripheral tissues appear as main intrinsic characteristics potentially related to the milling value but still difficult to assess. In this study, several durum wheat samples displaying distinct grading characteristics were analyzed and processed through a pilot mill. The histological composition of grains and milling fractions was monitored by using identified biochemical markers of each wheat grain tissue. Contrasted milling yields of semolina and flour were observed between samples, despite displaying a similar starchy endosperm proportion determined by hand dissection. These yields were related both to differences in the starchy endosperm extraction and to the presence of the aleurone layer, particularly its cellular content. Furthermore, two distinct types of fractionation behavior of the aleurone layer were distinguished depending on the wheat grain sample. Extraction of the envelopes and embryonic axis into semolina and flours were found negligible in comparison with the other tissues.  相似文献   

9.
The health-promoting effects of whole-grain consumption have been attributed in part to their unique phytochemical contents and profiles that complement those found in fruits and vegetables. Wheat is an important component of the human diet; however, little is known about the phytochemical profiles and total antioxidant activities of milled fractions of different wheat varieties. The objectives of this study were to investigate the distribution of phytochemicals (total phenolics, flavonoids, ferulic acid, and carotenoids) and to determine hydrophilic and lipophilic antioxidant activity in milled fractions (endosperm and bran/germ) of three different wheat varieties, two of which were grown in two environments. Grain samples of each of the wheat varieties were milled into endosperm and bran/germ fractions. Each fraction was extracted and analyzed for total phenolics, ferulic acid, flavonoids, carotenoid contents, and hydrophilic and lipophilic antioxidant activities. Total phenolic content of bran/germ fractions (2867-3120 micromol of gallic acid equiv/100 g) was 15-18-fold higher (p < 0.01) than that of respective endosperm fractions. Ferulic acid content ranged from 1005 to 1130 micromol/100 g in bran/germ fractions and from 15 to 21 micromol/100 g in the endosperm fractions. The bran/germ fraction flavonoid content was 740-940 micromol of catechin equiv/100 g. On average, bran/germ fractions of wheat had 4-fold more lutein, 12-fold more zeaxanthin, and 2-fold more beta-cryptoxanthin than the endosperm fractions. Hydrophilic antioxidant activity of bran/germ samples (7.1-16.4 micromol of vitamin C equiv/g) was 13-27-fold higher than that of the respective endosperm samples. Similarly, lipophilic antioxidant activity was 28-89-fold higher in the bran/germ fractions (1785-4669 nmol of vitamin E equiv/g). Hydrophilic antioxidant activity contribution to the total antioxidant activity (hydrophilic + lipophilic) was >80%. In whole-wheat flour, the bran/germ fraction contributed 83% of the total phenolic content, 79% of the total flavonoid content, 51% of the total lutein, 78% of the total zeaxanthin, 42% of the total beta-cryptoxanthin, 85% of the total hydrophilic antioxidant activity, and 94% of the total lipophilic antioxidant activity. Our results showed that different milled fractions of wheat have different profiles of both hydrophilic and lipophilic phytochemicals. These findings provide information necessary for evaluating contributions to good health and disease prevention from whole-wheat consumption.  相似文献   

10.
The nutritional value of breadmaking cereal spelt (Triticum aestivum ssp. spelta) is said to be higher than that of common wheat (Triticum aestivum ssp. vulgare), but this traditional view is not substantiated by scientific evidence. In an attempt to clarify this issue, wholemeal and milling fractions (sieved flour, fine bran, and coarse bran) from nine dehulled spelt and five soft winter wheat samples were compared with regard to their lipid, fatty acid, and mineral contents. In addition, tocopherol (a biochemical marker of germ) was measured in all wholemeals, whereas phytic acid and phosphorus levels were determined in fine bran and coarse bran samples after 1 month of storage. Results showed that, on average, spelt wholemeals and milling fractions were higher in lipids and unsaturated fatty acids as compared to wheat, whereas tocopherol content was lower in spelt, suggesting that the higher lipid content of spelt may not be related to a higher germ proportion. Although milling fractionation produced similar proportions of flour and brans in spelt and wheat, it was found that ash, copper, iron, zinc, magnesium, and phosphorus contents were higher in spelt samples, especially in aleurone-rich fine bran and in coarse bran. Even though phosphorus content was higher in spelt than in wheat brans, phytic acid content showed the opposite trend and was 40% lower in spelt versus wheat fine bran, which may suggest that spelt has either a higher endogenous phytase activity or a lower phytic acid content than wheat. The results of this study give important indications on the real nutritional value of spelt compared to wheat. Moreover, they show that the Ca/Fe ratio, combined with that of oleate/palmitate, provides a highly discriminating tool to authenticate spelt from wheat flours and to face the growing issue of spelt flour adulteration. Finally, they suggest that aleurone differences, the nature of which still needs to be investigated, may account for the differential nutrient composition of spelt and wheat.  相似文献   

11.
The objective of this research was to analyze the antioxidant capacity directly of water‐extractable nonstarch polysaccharides (NSP) and feruloylated arabinoxylans (WEAX) following their characterization. NSP were isolated from barley, wheat, and wheat fractions (germ, bran, and aleurone). WEAX were extracted only from wheat fractions. Antioxidant capacity of NSP measured with the 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH), 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid (ABTS), and oxygen radical absorbance capacity (ORAC) assays was 24.0–99.0, 40.0–122.0, and 140.0–286.0μM Trolox equivalents (TE)/g, respectively. The antioxidant capacity of WEAX was 75.7–84.0, 58.0–105.0, and 110.0–235.0μM TE/g for those three assays. DPPH and ABTS were highly correlated to xylose content (R2 = 0.85), degree of substitution (R2 = −0.99), total phenolic acids (R2 = >0.73), total phenolic content (TPC) (R2 = >0.78), and ferulic acid content (R2 = >0.86). ORAC was only influenced by TPC (R2 = 0.63). By taking yield and antioxidant capacity into account, NSP would provide about 0.4–4.2, 0.6–5.1, and 2.8–12.0μM TE/g of flour of radical scavenging activity as measured by DPPH, ABTS, and ORAC, respectively, compared with WEAX (0.4–1.0, 0.3–1.3, and 0.6–2.8μM TE/g). Our results suggest that NSP or WEAX may play a role in protection against free radicals in a food matrix and likely in the gastrointestinal tract.  相似文献   

12.
麦麸结构层粉体的电特性研究   总被引:1,自引:1,他引:0  
为了确定麦麸结构层粉体静电场分离的可行性,该文以高纯度麦麸糊粉层和外果皮粉体为原料,研究其介电性、导电性和电晕带电特性的差异。结果表明,麦麸粉体的介电常数随频率的增加而降低,最终趋于一致;当频率较低时,外果皮的相对介电常数明显低于糊粉层;当频率为300 MHz时,两者的介电常数之比最大达5.3;麦麸粉体的导电性差,糊粉层粉体的电阻率为2300MΩ/cm,为外果皮电阻率的5倍;经正电晕带电后,糊粉层粉体所获电荷量约为外果皮的1.7倍,具有明显差异;单位质量麦麸粉体所获电荷量随电晕电压的增加而增加,而随麦麸粉体的含水率和粒径的增大而减小。总之,麦麸结构层粉体的介电性、导电性和电晕带电性均存在明显差异,可以利用介电泳和电晕带电后的静电场分离技术对麦麸结构层进行分离纯化。  相似文献   

13.
《Cereal Chemistry》2017,94(2):291-297
Edible beans are among the most important grain legumes consumed by humans. To provide new information on the antioxidant phenolics of edible beans, the antioxidant capacity, total phenolic content (TPC), and total flavonoid content (TFC) in both soluble and bound fractions of 42 edible beans from China were systematically evaluated, with main phenolic compounds identified and quantified in 10 beans possessing the highest TPC. Edible beans contained a wide range of total antioxidant capacity and TPC generally comparable with common grains, fruits, and vegetables, and their bound fractions had significant antioxidant capacity, TPC, and TFC. Red sword bean was found for the first time to show extremely high total antioxidant capacity (ferrous[II] at 235 ± 13.2 μmol/g and Trolox at 164 ± 10.5 μmol/g) and TPC (1767 ± 58.3 mg of GAE/100 g). Phenolic compounds such as catechin, ferulic acid, gallic acid, p‐coumaric acid, and protocatechuic acid were widely detected in selected beans. A positive correlation was found between antioxidant capacity (ferric‐reducing antioxidant power [FRAP] and Trolox equivalent antioxidant capacity [TEAC] values) and TPC, with correlation coefficient r = 0.974 (FRAP value versus TPC) and r = 0.914 (TEAC value versus TPC). Therefore, beans with high antioxidant capacity and phenolic content can be valuable sources of dietary natural antioxidants for the prevention of oxidative stress‐related chronic diseases.  相似文献   

14.
The effects of pearling on the content of phenolics and antioxidant capacity of two Canadian wheat classes, namely, Canada Western Amber Durum; Triticum turgidum L. var. durum; CWAD) and Canada Western Red Spring; Triticum aestivum L.; CWRS) were examined. The antioxidant activity of wheat phenolics was evaluated using oxygen radical absorbance capacity (ORAC), inhibition of photochemiluminescence (PCL), Rancimat method, inhibition of oxidation of low-density lipoprotein, and DNA. The phenolic composition of wheat extracts was determined using high-performance liquid chromatography. The antioxidant capacity of both pearled grains and byproducts significantly decreased as the degree of pearling increased. Among grains, the unprocessed whole grains demonstrated the highest antioxidant capacity. The byproducts always demonstrated higher antioxidant capacity compared to the pearled grains, regardless of the wheat class. The resultant byproducts from 10-20% pearling possessed the highest antioxidant capacity. Processing of cereals may thus exert a significant effect on their antioxidant activity. The concentration of grain antioxidants is drastically reduced during the refining process. As phenolic compounds are concentrated in the outermost layers, the bran fractions resulting from pearling may be used as a natural source of antioxidants and as value-added products in the preparation of functional food ingredients or for enrichment of certain products.  相似文献   

15.
The structure of the aleurone layer was considered for many years as a potential factor influencing wheat milling efficiency. Eight durum wheat samples of different milling values, including distinct cultivars and harvesting conditions, were employed to investigate the structural characteristics of the aleurone layer through image analysis of kernel sections. Particular attention was paid to tissue thickness and structural irregularity of its interface with the starchy endosperm. Wheat cultivar, agricultural conditions, and location of measurement within the grain had an influence similar to both thickness and irregularity of the aleurone layer. Conversely, grain weight and morphology showed no effect on these parameters. Statistical investigation demonstrated no correlation between structural characteristics and wheat milling behavior. However, the negative correlation between the extraction rate of semolina and starch content in the bran fraction, which was used as an indicator of the endosperm‐aleurone dissociation extent, demonstrated the relevance of the tissue adhesion on milling efficiency.  相似文献   

16.
Mechanical properties of wheat grain outer layers from common wheat (Triticum aestivum L.) cultivars known to display distinct milling behavior were analyzed using uniaxial tension tests. Tensile modulus and strain to rupture of the tissues distinguished between the wheat cultivars. Values of strain to rupture were related to coarse bran size generated by grain milling, a characteristic that distinguishes the two hardness classes. As content of an aleurone marker in total or first break flour was also related to coarse bran size, extensibility of wheat grain outer layers' could be a key parameter to explain the observed tissue mechanical behavior and thus distribution of the aleurone layer content in flours. As tissue mechanical properties are generally linked to the cell wall biochemical composition and structure, analysis of the main wheat outer layers' cell wall compounds was undertaken to establish relationships with the differences observed in mechanical properties. No clear correlation could be found with one of the wheat outer layers' component but involvement of the outer layers' cell wall structure in the tissues behavior at milling was confirmed.  相似文献   

17.
为了提高青稞的附加利用价值,该文以青稞麸皮为研究对象,考察了提取试剂、酸质量分数、萃取pH值、料液比和提取温度对多酚质量分数和 DPPH·自由基清除能力的影响。采用中心组合设计优化其结合酚提取工艺。结果表明,青稞结合酚提取最优工艺条件为:提取试剂为硫酸,酸质量分数为11.10%,水料比为1:17 g/mL,提取温度为75℃,pH值不作处理,此条件下提取得到的结合酚质量分数达224.33 mg/(100 g),DPPH·自由基清除能力达9919.28μmol/(100 g),与预测值多酚质量分数243.80 mg/(100 g),其DPPH·自由基清除能力9087.02μmol/(100 g)基本一致。高效液相色谱法检测到最优工艺下所得青稞结合酚中含有8种酚酸及8种黄酮类物质,总量达325.104 mg/(100 g)。研究结果为全面评价青稞结合酚含量及青稞麸皮的高效利用提供科学依据。  相似文献   

18.
Millstream flours, bran, pollard, and germ fractions were prepared from two Australian and two New Zealand wheat cultivars using a pilot‐scale roller mill. The distribution of six redox enzymes in milling fractions and the relationship of the enzymes to baking parameters were investigated. Lipoxygenase (LOX), dehydroascorbate reductase (DAR), and protein disulfide isomerase (PDI) tended to be higher in the tail‐end fractions of break and reduction flour streams, but the highest levels were in the bran, pollard, and germ fractions. These enzymes had moderate to strong correlations with ash content of flour. These results indicated that a considerable amount of these enzymes in the tail‐end flour streams were likely to be derived from contamination with bran, aleurone, or germ components of grain. Peroxidase (POX) tended to be higher in the break flours, but polyphenol oxidase (PPO) and ascorbate oxidase (AOX) tended to be evenly distributed in the millstream flours. These three enzymes generally had poor correlations with ash and baking parameters. LOX and DAR had a negative correlation with the baking quality of bread made in the absence of ascorbic acid (AA) but a poor correlation with improvement of bread quality made with AA. The negative correlation probably reflects the high content of ash (hence trichomes), glutathione, and protein thiols in those fractions that have high LOX and DAR, and these high‐reducing‐power components and trichomes in flour may be the actual cause of poor quality bread. PDI generally had a poor correlation with bread quality in the absence of AA but a significant positive correlation with improvement in the quality of bread made with AA. It thus seems that the endogenous levels of these six enzymes were not a limiting factor in the breadmaking process, except for PDI, the levels of which may have positively influenced breadmaking in the presence of AA.  相似文献   

19.
In regard to important roles of enzymatic antioxidant in abiotic stresses, and their practical use as stress indices, the current research was implemented to peruse antioxidant enzymatic activities of different wheat varieties and to find the susceptible and the tolerant varieties based on these indices. The experiment was carried out in the greenhouse of Islamic Azad University, Sanandaj, Iran in 2015. A factorial experiment based on completely randomized design (CRD) with three replications were used to evaluate the effects of different water regimes, including 100% and 50% field capacity (FC) on 25 wheat cultivars. Antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbic peroxidase (APX), and grain yield of the wheat varieties were measured. The results showed that under normal irrigation condition, the relationships between grain yield and antioxidant were inversed, but under stressful condition the relationships between wheat grain yield and some important antioxidants such as CAT and SOD were positive. Among antioxidant enzymes, SOD activity showed a higher variation among wheat varieties of this study, indicating that this enzyme is an important trait to be used in the breeding programs. Based on the results of different statistical techniques and comparing relationships among traits for normal irrigation and stress condition, enzymatic antioxidant could be used as practical criteria for screening tolerant genotypes of wheat. On the other side, SOD and CAT resulted in being the most important criteria for achieving higher tolerant genotypes through indirect selection.  相似文献   

20.
In cereals, phenolic acid (PA) content and total antioxidant capacity (TAC) may have a wide range of variability, probably because of several factors influencing the occurrence of grain antioxidants, which include genotype, environment, and their possible interactions. However, only a few studies have investigated the influence of these factors on durum wheat. In the present study, we investigated the impact of the genetic and environmental factors on the profile and content of PAs occurring as soluble free, soluble conjugated, and insoluble bound compounds, as well as on the TAC level, in three genotypes of durum wheat grown in three different Italian agroclimatic areas during two crop years. The results show that genotype, environment, and crop year have highly significant effects on TAC levels and on PA contents. In particular, TAC and free PAs are most influenced by year, whereas conjugated and bound PAs are most influenced by environment × year and genotype, respectively. Therefore, it is evidenced that genetic and environmental factors affect the antioxidant activity and the content of the three forms of PAs in durum wheat to different extents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号