首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
灌溉水盐度和施氮量对棉花产量和水氮利用的影响   总被引:6,自引:3,他引:3  
淡水资源不足和盐渍化是干旱半干旱地区农业生产的重要限制因素,因此提高水、 肥利用效率和作物产量,减少根区盐分积累和地下水污染风险是这些地区水分养分优化管理的重要目标。通过田间试验研究了滴灌条件下灌溉水盐度和施氮量对棉花产量和水、 氮利用率的影响。试验设置灌溉水盐度和施氮量两个因素,灌溉水盐度(电导率,EC)设3个水平,为0.35(淡水)、 4.61(微咸水)和 8.04(咸水)dS/m,分别用SF、 SM和SH表示;施氮(N)量设4个水平,为0、 240、 360和480 kg/hm2,分别以N0、 N1、 N2和N3表示。研究结果表明,棉花干物质重、 氮素吸收量和氮肥利用率受灌溉水盐度、 施氮量及二者交互作用的影响显著。咸水灌溉处理(SH)棉花干物质重、 氮素吸收量、 产量和氮肥表观利用率均显著降低,而微咸水灌溉(SM)对棉花氮素吸收量和氮肥表观利用率影响不大,但干物质重和产量有所降低。施氮肥可显著促进棉花生长,增加干物质重、 氮素吸收量和产量,但随着灌溉水盐度的增加,其促进效应明显受到抑制。微咸水和咸水灌溉会导致水分渗漏增加、 蒸散量降低,增施氮肥则可显著降低水分渗漏、 增加蒸散量。微咸水灌溉水分利用率最高,其次是淡水灌溉,咸水灌溉最低;增施氮肥则可显著提高水分利用率。因此滴灌条件下,高盐度的咸水不宜用于灌溉。而短期的微咸水灌溉不会对棉花产量和水、 氮利用率产生严重的负面影响;同时,合理的配施氮肥也有助于促进棉花生长,提高棉花产量和水分利用率。  相似文献   

2.
应用~(15)N示踪法研究咸水滴灌棉田氮肥去向   总被引:4,自引:0,他引:4  
通过田间小区试验和微区试验相结合研究滴灌条件下不同灌溉水盐度、灌水量和施氮量对棉田土壤中氮肥去向的影响。试验设置3种灌溉水盐度(电导率,EC):0.35、4.61和8.04 d S m-1(分别以S0.35、S4.61和S8.04表示);2个灌水量:405和540 mm;同时设置2个施氮水平:240、360 kg hm-2(360 kg hm-2为当地棉田推荐氮肥用量)。结果表明:S0.35和S4.61灌溉处理的棉花氮素吸收量和产量无显著差异,分别较S8.04灌溉处理高出27.46%和33.65%、21.29%和21.63%。灌溉水盐度主要通过影响棉花单株结铃数来影响棉花产量。增加施氮量和灌水量,棉花氮素吸收量和产量均有所增加。15N同位素标记试验结果表明:植物15N回收率在34.20%~62.51%之间,随灌溉水盐度的增加,植物15N回收率呈现先增加后减小的趋势,S0.35、S4.61处理较S8.04处理分别高出30.70%和41.77%;增加灌水量和施氮量可显著提高植物15N回收率。土壤15N残留率随灌溉水盐度的增加而增加,S4.61和S8.04处理的土壤15N残留率较S0.35处理分别高出3.48%和23.22%。施氮量由240 kg hm-2增加至360 kg hm-2,土壤15N残留率增加9.51%。各处理15N淋洗损失率在0.35%~3.59%之间,低施氮量下,S0.35和S4.61处理的15N淋洗损失率无显著差异,S8.04处理的15N淋洗损失率分别较S0.35、S4.61处理高出1.87倍和0.84倍;高施氮量下,15N淋洗损失率随灌溉水盐度的增加而显著增加。增加灌水量和施氮量,15N淋洗损失率均显著增加。  相似文献   

3.
通过土柱模拟试验,从不同滴头流量、滴水定额和滴灌水质三个方面,研究了不同滴头流量条件下水分运移规律以及不同滴头流量、水质对棉花蒸散特性的影响。研究表明,相同滴水定额条件下,大滴头流量有利于水分的水平运移,湿润锋曲线呈椭圆型,小滴头流量利于水分的垂直下渗,湿润锋更接近于圆形;苗期(6月份)和吐絮期(10月份)0.3 L h-1滴头流量处理蒸散量小于0.8 L h-1,只为后者的78.3%,而在7~9月份,小滴头流量滴灌蒸散量则明显大于大滴头流量。微咸水滴灌条件下,2.47 g L-1微咸水灌溉对蒸散量没有影响,3.50 g L-1咸水灌溉则有明显的抑制作用,整个生育期内咸水灌溉棉花蒸散总额比淡水和微咸水灌溉减少8.0%。  相似文献   

4.
干旱区咸水滴灌土壤盐分的分布与积累特征   总被引:5,自引:0,他引:5  
通过三年咸水灌溉田间试验,探讨了新疆干旱区膜下滴灌条件下,咸水灌溉后土壤中盐分的分布及积累特征。研究结果表明:膜下滴灌棉田持续利用咸水进行灌溉,土壤中盐分逐年增加,积盐程度随灌溉水盐度的增加而加重。地表滴灌土壤盐分的表聚明显;而地下滴灌在滴灌管上部土层盐分含量较高。与地表滴灌相比,地下滴灌的盐分会被淋洗到更深的土层。两种滴灌方式下,0 ̄100cm土壤平均盐度均逐年增加,且积累程度随灌溉水盐度增加而加重。在干旱区连续进行咸水灌溉,盐分的累积效应非常明显,如果不采取必要的洗盐措施,土壤中盐分最终会累积到危害作物生长的程度。  相似文献   

5.
微咸水膜下滴灌对棉花生长发育及其产量的影响研究   总被引:2,自引:0,他引:2  
微咸水膜下滴灌是缓解全球农业用水短缺的有效途径之一。通过开展不同灌溉水矿化度条件下的农田控制试验,围绕微咸水膜下滴灌对棉花叶面积、地上生物量积累及其分配、棉株叶片含水率、棉花产量及产量构成因素等的影响进行了研究,同时结合Logistic模型,对地上干物质积累规律进行了探讨。结果表明:利用矿化度低于6.0g/L的微咸水膜下滴灌比淡水灌溉更有利于棉花叶面积的生长;微咸水矿化度在2.0g/L时会促进棉花干物质的积累,而当矿化度≥4.0g/L时,干物质积累量随着矿化度的增加而减少,矿化度的增加会使干物质快速积累起始时间推迟且持续时间缩短。当矿化度≤4.0g/L时,棉花生育后期生殖器官所占比重随灌水矿化度的增加而增大,但当矿化度达到6.0g/L时生殖器官所占比重减小;灌溉水矿化度对棉花产量的影响有明显的分段性,民勤绿洲区种植棉花的灌溉水矿化度阈值为3.51g/L,即在矿化度3.51g/L时,微咸水灌溉的棉花产量与淡水灌溉产量差异不明显,高于此阈值时,则会造成减产。  相似文献   

6.
不同供氮水平下幼龄苹果园氮素去向初探   总被引:14,自引:7,他引:7  
以2年生红富士/平邑甜茶为试材,采用田间小区和15N微区相结合,研究了不同供氮水平下幼龄苹果园氮素去向。结果表明,施用氮肥显著增加了植株生物量和吸氮量,而氮肥利用率随施氮量的增加显著降低;N75、N150和N225的氮肥利用率分别为31.28%、22.95%和19.38%。土壤残留氮量随施氮量的增加而显著增大,且残留氮素主要分布于060 cm土层,深层渗漏量很小。整个作物土壤体系氮素回收率随施肥量的增加显著降低,损失率显著增高。N75处理的氮素回收率为60.41%,显著高于N150(46.41%)和N225处理(40.88%);且损失率最低(39.59%),显著低于其它两个处理。氨挥发损失随施氮量的增加显著升高,N2O损失量各处理间无明显差异;氮素损失中氨挥发和N2O损失所占比例较低,较多的氮素通过反硝化和径流等途径损失。  相似文献   

7.
棉花微咸水膜下滴灌灌溉制度的研究   总被引:16,自引:5,他引:11  
为寻求微咸水膜下滴灌的最优灌溉制度,利用2008和2009年田间试验结果,从棉花生长和产量的角度出发,分析11种灌溉处理各生育期的变化情况。测定了叶面积、干物质质量、棉花产量、土壤盐分等指标。结果表明:灌溉水量越大,棉花营养生长部分生长越快,生长时间越长;灌水盐分越高,盐分胁迫使生殖生长部分所占比例越大,越易衰老;试验区内灌溉定额3 750 m3/hm2(微咸水80%,淡水20%)的轮灌处理,2008年棉花产量达到5 190 kg/hm2,接近仅灌淡水5 250 m3/hm2处理(5 205 kg/hm2),该轮灌处理2008年总盐为负增长(-0.95 g/kg),2009年试验结果有力验证了该灌溉制度的节水增产、保护土壤环境的优越性。  相似文献   

8.
灌溉水盐分及灌水量对土壤水盐分布与春玉米生长的影响   总被引:2,自引:1,他引:1  
在大田试验的基础上探明灌溉水盐分以及灌水量对土壤水盐分布的影响规律以及对春玉米生长的影响。以河套灌区春玉米为研究对象,设置2种灌溉水含盐量(1.1,5.0 g/L)与3种灌水量(210,255,300 mm)进行大田试验。结果表明,至成熟期,5.0 g/L微咸水灌溉处理0—100 cm土层土壤平均含水量及电导率相比1.1 g/L地下水灌溉处理显著增加;地下水灌溉处理中,随着灌水量的增加,生育期内土壤平均含水量下降趋势减小,土壤盐分淋洗作用更加明显;微咸水灌溉处理中,剖面土壤在灌水量少时出现盐分表聚现象,随着灌水量的增加,表层土壤盐分呈下降趋势,深层土壤由于盐分的积累呈增加趋势;在灌水后表层的土壤含水量变化明显且出现返盐现象,微咸水灌溉处理中土壤水分水平运移及深层土壤盐分累积更明显;在地下水和微咸水灌溉处理中,灌水量的增加能够显著提高玉米产量,但255,300 mm灌水量处理间差异不显著,微咸水灌溉条件下春玉米的产量较地下水灌溉条件下显著降低。综上所述,在地下水和微咸水灌溉条件下,255 mm灌水量既能适合春玉米生长,又能保证产量,可作为较好的灌溉定额选择,能够同时满足保障灌区作物生产和节约淡水资源的要求。  相似文献   

9.
通过田间小区磁化水滴灌试验,研究了磁化水膜下滴灌对土壤水盐分布特征、棉花生长特性及产量的影响。结果表明:磁化水灌溉可以提高土壤含水量,促进棉花根系对水分的吸收,0—100 cm土层内磁化强度为3 000 Gs时的土壤含水量最大,保水效果最好。磁化水灌溉可以有效降低土壤盐分含量,加快土壤盐分的淋洗,0—100 cm土层内各磁化水处理土壤平均含盐量表现为3 000 Gs4 000 Gs1 000 Gs5 000 Gs0 Gs,磁化淡水处理的土壤脱盐率为2.7%~28.2%,3 000 Gs磁化处理的土壤脱盐率最高;磁化微咸水处理的土壤积盐率为21.7%~33.9%。磁化水滴灌可以促进棉花生物量及产量的增长,淡水、微咸水磁化处理的产量较未磁化处理增加了8.98%~31.4%,3 000 Gs磁化处理下的棉花产量最高。从棉花生长特征、产量、水分利用效率等方面综合考虑,3 000 Gs为最佳磁化强度处理。  相似文献   

10.
微咸水滴灌条件下沙穴种植的土壤水盐二维空间分布规律   总被引:2,自引:1,他引:1  
河套灌区重度盐碱土具有结构性差、导水率低的特点,且该地区淡水资源短缺,为提高土壤水入渗性能,合理开发利用微咸水资源,可在滴头下方设置沙穴并利用微咸水灌溉。为探明不同矿化度微咸水滴灌的沙穴种植条件下二维土壤水盐分布规律,采用室内50 cm×50 cm二维土槽模拟试验,设置蒸馏水(0 g/L),2.0,3.0,4.0 g/L 4种不同矿化度处理,试验历时100 h。结果表明:在深度5 cm距滴头两侧15~20 cm及滴头下方25 cm的盐碱土处,土壤含水量较高,沙土土壤含水率随着矿化度的增加而增加,盐碱土土壤含水率随着矿化度的增加呈现先增加后降低的趋势,采用3.0 g/L灌溉水滴灌时,盐碱土含水率最大(变异系数为7.64%),说明利用3.0 g/L微咸水灌溉可有效提高沙穴种植条件下土壤含水率;入渗100 h后盐分主要聚集在滴头下方25~30 cm处,沙穴结构试验中,灌溉水矿化度为4.0 g/L的情况下土壤平均电导率最大(变异系数为50.59%),水平方向盐分淋洗效果优于垂直方向,且灌溉水矿化度越低,淋洗效果越显著,蒸馏水处理脱盐率为13.99%,灌溉水矿化度为2.0,3.0,4.0 g/L时积盐率分别为7.93%,14.57%,30.05%,脱盐半径随矿化度的增大而减小,3.0 g/L与2.0 g/L积盐量差异不显著(P=0.460>0.05),与4.0 g/L处理下积盐量差异显著(P=0.024<0.05)。结合土壤水盐空间分布规律,利用3.0 g/L微咸水可提高盐碱土土壤含水率,控制沙穴种植结构土壤积盐量,提高根系层土壤保水性。  相似文献   

11.
The objective of this two-year field experiment was to study the effects of irrigation amount, N rate, and irrigation water salinity on cotton growth and the fate of N fertilizer. The movement of N through the plant-soil system was traced using 15N-labeled urea. The study consisted of twelve treatments, including two irrigation amounts (405 and 540?mm, I405 and I540, respectively); two N application rates (240 and 360?kg?N/ha, N240 and N360, respectively); and three irrigation water salinity levels [0.35, 4.61 and 8.04?dS/m, representing fresh water (FW), brackish water (BW), and saline water (SW), respectively]. A randomized complete block design was used with three replications. The results showed that cotton biomass, N uptake, and yield increased as irrigation amount and N amount increased; however, all three variables were significantly less in SW than in FW and BW. Plant 15N recovery rates were greater (i) in the I540 treatments than in the I405 treatments and (ii) in the N360 treatments than in the N240 treatments. Plant 15N recovery rates in BW were 7.98% and 30.01% greater than those in FW and SW, respectively. Residual soil 15N increased as N fertilizer amount increased but declined as irrigation amount increased. Residual soil 15N in BW and SW was 6.02% and 21.44% greater, respectively, than in FW. Total 15N recovery was significant greater in BW than in FW and SW. The 15N leaching losses increased significantly with increases in irrigation amount, irrigation water salinity, and N rate. Our study suggests that if appropriate amounts of irrigation water and N fertilizer are used, then brackish irrigation water (4.61?dS/m) will not affect cotton growth, yield and N recovery. In contrast, saline irrigation water (EC?>?8?dS/m) reduces cotton growth, yield, and N use efficiency.  相似文献   

12.
滴灌模式对棉花根系分布和水分利用效率的影响   总被引:7,自引:5,他引:2  
理解膜下滴灌参数对土壤盐分运移和作物生长的影响是制定科学滴灌制度、合理利用水资源的重要环节。毛管布置方式和滴灌水质是膜下滴灌的重要参数,为研究其对土壤盐分变化、棉花根系分布及水分利用效率的影响,设计了2种毛管布置方式(一管四行(Ms)和一管两行(Md))和3个滴灌水质水平(淡水0.24?dS/m、微咸水4.68?dS/m、咸水7.42?dS/m)。结果表明,滴管布置方式对土壤盐分变化和根系分布有显著影响。在相同滴灌水质条件下,Ms处理有利于降低棉花根区土壤含盐量。所有处理根系主要分布于0~40?cm土层内,矿质水滴灌时Md中根系受抑制程度明显高于Ms,但其主要影响根系密度δR>0.5?kg/m3区域的分布范围,对δR>0.2?kg/m3区域范围分布无明显影响。生育期内棉花总耗水量随滴灌水矿化度的上升而降低,与滴管布置无关。相对淡水滴灌而言,矿质水滴灌时Ms处理产量有所降低,但其水分利用效率随灌水矿化度上升而升高;而Md处理产量和水分利用效率均随灌水矿化度上升而下降。  相似文献   

13.
14.
咸水冻融灌溉对重度盐渍土壤水盐分布的影响   总被引:8,自引:2,他引:6  
张越  杨劲松  姚荣江 《土壤学报》2016,53(2):388-400
室内咸水冰融化试验设置2个处理:7.5 g L-1咸水冰(SIW(7.5))、15 g L-1咸水冰(SIW(15)),探究了咸水冰融化过程中的水量、水质以及离子组成的变化;土柱模拟试验设置同一灌水量(150mm),4个处理:淡水直接灌溉(FW)、7.5 g L-1咸水直接灌溉(SW)、7.5 g L-1咸水冻融灌溉(SIW(7.5))、15 g L-1咸水冻融灌溉(SIW(15)),对比分析两种灌溉水质(淡水、咸水)和两种灌水方式(直接灌溉、结冰灌溉)对土壤(粉砂壤土)水盐动态的影响。结果表明:咸水冰融化过程中,初期融出水量较大,但含盐量和钠吸附比(SAR)较高,后期融出水量较小,含盐量和SAR很低;融出水的离子含量变化与电导率(EC)变化表现相同的趋势;小于3 g L-1的水的融出率分别是SIW(7.5)=25.46%和SIW(15)=32.78%。FW处理下,土壤中水盐运动持续时间较其他3个处理长,土壤导水率降低最快,灌溉水入渗完成时表层土壤含水量达到33.88%,显著高于其他处理。四种处理下,0~15 cm土层土壤的含盐量平均值分别为FW=2.32 g kg-1、SIW(7.5)=2.80 g kg-1、SIW(15)=3.87 g kg-1、SW=4.31 g kg-1。同等灌水量下,SIW(15)处理下土壤脱盐深度最浅。离子分析表明:FW和SIW(7.5)处理下,0~25 cm土壤的钠吸附比(SAR)下降明显,显著小于SW、SIW(15);然而FW处理下,土壤碱化特征最为明显。综合而言,在淡水资源缺乏而咸水资源相对丰富的地区,中度矿化度咸水结冰融水灌溉可以有效降低根层土壤盐分,满足农业生产的要求。  相似文献   

15.
滨海盐碱地是滨海地区重要的土地资源,随着滨海地区城镇化进程及生态文明建设的发展,迫切需要低成本、快速、可持续的滨海盐碱地原土植被构建技术。针对滨海盐碱地原土建植与咸水/微咸水资源的利用,该研究以月季(Rosa chinensis)为例,采用微咸水滴灌技术进行滨海盐碱地水盐调控植被构建。试验在渤海湾曹妃甸区吹沙造田形成的典型沙质滨海盐渍土上进行,设计了灌溉水电导率(ECiw)为0.8、3.1、4.7、6.3、7.8 dS/m的5个处理,研究滴灌水盐调控对土壤盐分淋洗及月季根系生长和分布特征的影响。结果表明:在渤海湾滨海地区气候条件下,先进行淡水滴灌盐分强化淋洗和缓苗灌溉,随后采用7.8 dS/m的微咸水滴灌,0~100 cm土层土壤盐分得到了有效的淋洗,尤其是根层0~40 cm土壤盐分经过一个月左右,由初始28.33 dS/m降低到均小于4 dS/m,一个低盐适生的土壤环境得到快速营造;随着ECiw的增加,0~40 cm土层土壤最终趋于稳定的盐分呈增加趋势,土壤脱盐过程可以被logistic方程描述,脱盐过程可划分为快速脱盐、缓慢脱盐和盐分趋于稳定3个阶段;94%以上的月季根系主要分布在0~20cm的表层土壤中,随着ECiw的增加,根系生物量显著降低,根系受盐分胁迫生理干旱影响向土壤深处生长以扩大水分空间。研究认为,采用短期淡水滴灌盐分强化淋洗和缓苗淡水滴灌、随后进行微咸水滴灌的方法,可以实现土壤盐分的快速淋洗并维持在较低水平,但受盐分对根系生长的影响会作用于植物地上部分生长及植物存活,因此需要结合植物耐盐性及生产目标(产量、景观)确定适宜灌溉水矿化度阈值。  相似文献   

16.
棉花是鲁北平原种植的重要经济作物,合理利用微咸水和咸水资源是解决棉花季节干旱问题的重要途径。通过田间小区试验,以淡水滴灌处理为对照,设置不同盐分梯度的咸水滴灌处理,研究2种类型咸水滴灌对棉田土壤水分和盐分的分布影响以及棉花产量的响应。结果表明,咸水滴灌条件下主要影响棉田40~100 cm土壤水分的变化,碳酸氢钠型和氯化钠型咸水处理对土壤含水量的影响没有显著差异。利用EC值低于8 d S·m~(-1)的咸水进行补灌,棉田0~40 cm土壤盐分积累不明显,灌溉水EC值为10 d S·m~(-1)的氯化钠型咸水灌溉在0~100 cm土壤盐分有明显的积累。滴灌补灌EC值不大于6 d S·m~(-1)的碳酸氢钠型咸水和不大于8 d S·m~(-1)的氯化钠型咸水对棉花产量没有明显的影响,滴灌补灌7 d S·m~(-1)碳酸氢钠型和10 d S·m~(-1)氯化钠型咸水明显降低棉花产量。从土壤盐分的积累和棉花产量来看,在鲁北平原可以利用6 d S·m~(-1)咸水滴灌对棉花进行补灌;利用咸水滴灌,要同时考虑灌溉水盐分的数量和盐分组成,碳酸氢钠型咸水要更加谨慎利用。  相似文献   

17.
为了探究盐旱胁迫对土壤中氮素分布和棉花生长的影响,通过测坑试验研究滴灌区不同盐分、干旱条件下土壤全氮、硝氮、氨氮的分布和棉花生长情况。试验设置3种盐分梯度的土壤(电导率,EC):3,6,9 dS/m,分别用T1、T2、T3表示;3个灌水量:2 700,3 600,4 500 m3/hm2,分别用W1、W2、W3表示(4 500 m3/hm2为当地推荐灌水量)。结果表明:当土壤盐分梯度> 3 dS/m时土壤全氮累积量显著高于低盐土壤(P<0.05),且土壤盐分对棉花花期生长影响较大。土壤的氨氮挥发量和土壤盐分梯度成正比。土壤硝态氮的淋失与灌水量呈正比,与正常灌水量的硝态氮淋失相比,水分胁迫对棉花产量的影响更为严重(P<0.01)。随土层深度的增加,土壤碱解氮以每20 cm土层8%的速度减少。各处理土壤15N残留率为11%~40%,随土壤盐度增加而增加,随灌水量增加而减少,与土壤全氮含量呈正比,与棉花产量呈反比。综上所述,T1W3处理更有利于棉花对氮肥的利用和产量的提高,推荐滴灌区棉花土壤盐度<3 dS/m,灌水量4 500 m3/hm2,可在花期适当提高施肥量以稳定产量。  相似文献   

18.
The scarcity of fresh water has forced farmers to use saline water (SW) for irrigation. It is important to understand the response of the soil microbial community and diversity to saline irrigation water. The objective of this study was to determine the effects of irrigation water salinity and nitrogen fertilization rates on soil physicochemical properties, microbial activity, microbial biomass, and microbial functional diversity. The field experiment consisted of a factorial design with three levels of irrigation water salinity (electrical conductivities (ECs) of 0.35, 4.61 or 8.04?dS?m?1) and two nitrogen rates (0 and 360?kg?N?ha?1). The results showed that the 4.61 and 8.04?dS?m?1 treatments both reduced soil microbial biomass C (MBC), microbial biomass N (MBN), basal respiration, total phospholipid fatty acid (PLFA), bacterial PLFA, fungal PLFA, and fungal:bacterial ratios. In contrast, the SW treatments increased the MBC:MBN ratio. Nitrogen fertilization increased soil MBC, MBN, basal respiration, total PLFA, bacterial PLFA, and gram-negative bacterial PLFA. In contrast, N fertilization decreased gram-positive bacterial PLFA, fungal PLFA, and fungal:bacterial ratios. Average well color development, Richness, and Shannon's Index were always lowest in the 8.04?dS?m?1 treatment. Carbon utilization patterns in the 8.04?dS?m?1 treatment were different from those in the 0.35?dS?m?1 treatment. In conclusion, five years of irrigation with brackish or SW reduced the soil microbial biomass, activity, and functional diversity, which may cause the deterioration of soil quality. Thus, the high-salinity water (EC?>?4.61?dS?m?1) is not appropriate as a single irrigation water resource. Proper N fertilizer input may overcome some of the negative effects of salinity on soil microbial.  相似文献   

19.
微咸水滴灌对黄瓜产量及灌溉水利用效率的影响   总被引:7,自引:8,他引:7  
试验主要研究了华北半湿润地区微咸水滴灌条件下,滴头正下方0.2 m深度土壤基质势分别控制在-10~-50 kPa时,不同盐分浓度微咸水(2.2~4.9 dS/m)对黄瓜产量、灌水量及灌溉水利用效率(IWUE)的影响。研究发现当灌溉水电导率(EC)大于1.1 dS/m时,黄瓜的产量随着EC的增大而降低。当滴头下0.2 m深度土壤基质势控制在-25~-35 kPa时,黄瓜表现出来的耐盐性最强,EC每升高1 dS/m产量大约降低3%。总的趋势是土壤基质势控制越高(-10 kPa)处理的灌溉量越多,IWUE越低,而土壤基质势控制越低(-50 kPa)处理的灌溉量越少,IWUE越高。通过研究,在年降雨量大约为600 mm的半湿润地区,当没有足够的淡水用于作物灌溉时,可以在采用一系列灌溉与栽培管理措施条件下,利用2.2~4.9 dS/m的微咸水来灌溉黄瓜等对盐分中等敏感的作物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号