首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 946 毫秒
1.
Cd胁迫对水稻亲本材料Cd吸收分配的影响   总被引:6,自引:3,他引:3  
采用土培试验,以前期筛选出的水稻Cd安全亲本材料D62B为试验材料,以普通材料Luhui17为对照,研究不同生育期水稻Cd安全亲本材料在1、4、16 mg·kg-1Cd处理浓度下对Cd的吸收、分配及转运特征。结果表明:(1)在不同Cd处理浓度下,水稻Cd安全亲本材料D62B生长受到了一定程度的抑制,且随Cd处理浓度的提高生物量均显著降低。当Cd处理浓度为16 mg·kg-1时,D62B在分蘖期、抽穗期和成熟期的生物量分别较1 mg·kg-1Cd处理降低了52.05%、43.06%和32.34%。(2)D62B地上部Cd含量和转移系数在不同生育期均显著低于Luhui17,成熟期谷壳、糙米Cd含量也较低。当Cd处理浓度为1 mg·kg-1和4 mg·kg-1时,D62B的糙米Cd含量均低于食品安全国家标准0.2 mg·kg-1,表现出Cd安全亲本材料的"安全性"。(3)随Cd处理浓度的提高,D62B对Cd的吸收速率显著增加,且在分蘖期其吸收速率达到最大。在各处理下,D62B对Cd的吸收速率与Luhui17差异不显著。但D62B对Cd的转运速率在4 mg·kg-1和16 mg·kg-1Cd处理下则显著低于Luhui17,成熟期差异达到最大,分别为Luhui17的46.52%和66.68%。(4)D62B地上部Cd的亚细胞分布表现为细胞壁可溶部分细胞器,Luhui17为可溶部分细胞壁细胞器,地下部则均表现为可溶部分细胞壁细胞器。随Cd处理浓度的增加,Luhui17地下部细胞壁的分配比例显著降低,在16 mg·kg-1Cd处理浓度下,Luhui17细胞壁的分配比例显著低于D62B。综上所述,最终表现出D62B具有籽粒Cd低积累的特点,可为培育Cd安全水稻品种提供优良的种质资源。  相似文献   

2.
为培育镉(Cd)安全水稻品种,以Cd低积累水稻亲本雅恢2816及其4个杂交组合泸98A/雅恢2816、5406A/雅恢2816、C268A/雅恢2816、蓉18A/雅恢2816为研究对象,采用盆栽试验,分析Cd低积累水稻亲本及其杂交后代成熟期Cd积累分配特征,探讨亲本及杂交组合对Cd的吸收转运差异。结果表明:在Cd处理浓度为1、2、4 mg·kg~(-1)条件下,杂交组合生物量均显著高于亲本,超亲优势达21.86%~89.63%。不同浓度Cd处理下,亲本及杂交组合各器官Cd含量分配顺序均为根茎、叶穗,其中杂交组合5406A/雅恢2816和C268A/雅恢2816的穗部Cd含量显著低于亲本,糙米Cd含量也仅为亲本的57.14%~86.36%,低于食品安全国家标准0.2 mg·kg~(-1)。随Cd处理浓度的增加,亲本及杂交组合Cd由根系向地上部的转移系数均降低,杂交后Cd在根系的分配比例上升,杂交组合根系Cd积累量为亲本的1.49~3.24倍,而茎、叶的分配比例仅为亲本的72.06%~81.20%和74.18%~91.08%。杂交组合5406A/雅恢2816和C268A/雅恢2816表现出优于亲本的籽粒Cd低积累特征,具有在中、轻度污染土壤上安全生产的潜力。  相似文献   

3.
水稻镉高积累品种对镉的富集特性   总被引:10,自引:1,他引:9  
【目的】研究了水稻Cd高积累品种对Cd的富集特性,并探讨其对Cd污染土壤的修复潜力,为Cd污染农田修复提供理论依据。【方法】以前期筛选出的Cd高积累品种泸17-T2171(Lu17-T2171)和武金4B(Wujin4B)为试验材料,普通品种泸恢17(Luhui17)为对照,采用土培试验,分析其在不同Cd处理条件下分蘖期和扬花期的Cd含量、积累量等变化特征,并探讨其对不同Cd污染程度土壤的净化能力差异。【结果】(1)随着Cd处理浓度的升高,Cd高积累品种的生物量逐渐增加,与对照相比(Cd0),Lu17-T2171生物量在分蘖期和扬花期Cd50条件下分别增加了33.96%和19.51%,Wujin4B分别增加了54.71%和15.22%。(2)高积累品种在分蘖期对Cd的吸收能力较强,特别是在Cd50条件下,Lu17-T2171地上部和根部Cd含量分别达到87.24和400.59 mg•kg-1,分别为Luhui17的2.38和2.86倍;Wujin4B地上部和根部Cd含量分别达到102.26和384.77 mg•kg-1,分别为Luhui17的2.79和2.86倍。两类水稻品种对Cd的富集系数均随着Cd处理浓度的增加而下降,且高积累品种富集系数明显大于普通品种。(3)高积累品种在扬花期对Cd的积累能力较强,在Cd50条件下,Lu17-T2171地上部和根部Cd积累量分别达到1 847.20和892.06 μg/pot,分别为Luhui17的2.91和2.74倍;Wujin4B地上部和根部Cd积累量分别达到1 895.37和783.42 μg/pot,分别为Luhui17的2.98和2.41倍,且高积累品种扬花期迁移率明显大于普通品种。(4)高积累品种的全株和地上部净化率明显高于普通品种。在Cd50条件下,Lu17-T2171扬花期整株和地上部净化率分别达到5.07%和3.42%,分别为Luhui17的2.86和2.90倍,Wujin4B整株和地上部净化率分别达到4.96%和3.51%,分别为Luhui17的2.79和2.98倍。【结论】在高Cd处理条件下,水稻Cd高积累品种对Cd有较强的吸收和富集能力,可作为农田Cd污染潜在的修复材料。  相似文献   

4.
以Cd抗性不同的四个小麦品种为试验材料,设置0、25 mg·kg~(-1)和50 mg·kg~(-1)三个CdCl2添加浓度进行盆栽试验。通过对小麦成熟期形态指标、多个生育时期生理指标、成熟期各器官中总Cd含量及各化学结合形态Cd占比的研究,旨在探讨小麦对Cd胁迫的形态和生理响应、小麦Cd吸收积累特性以及抗Cd机理。结果表明,株高、叶面积对Cd胁迫敏感程度低,25 mg·kg~(-1)Cd处理下对M1019的株高和西农20、许农186和M1019叶面积有促进作用;而同化物质的积累对Cd胁迫敏感,叶片干质量最为敏感,50 mg·kg~(-1)Cd处理下下降20%以上;高浓度Cd处理对小麦各生长指标均表现为抑制。25 mg·kg~(-1)Cd胁迫下能提高叶片POD酶活性,而50 mg·kg~(-1)Cd胁迫下POD酶活性降低,随胁迫时间增加POD酶活性降低;叶片SOD酶活性随着胁迫浓度和时间的增加而降低;脯氨酸含量则随着胁迫浓度和时间的增加而升高;叶绿素含量随胁迫浓度的增加而降低。随Cd处理浓度的增加小麦各器官Cd含量增加,各器官积累量表现为:根叶片茎秆籽粒,许农186和M1019整株Cd含量低于西农20和漯麦0603。50 mg·kg~(-1)Cd处理下漯麦0603叶片和籽粒的Cd转运系数最低,分别是21.2%和2.2%;叶片Cd转运系数最高的品种是西农20,系数为26.4%;籽粒Cd转运系数最高的是许农186,转运系数为3.0%。各化学结合形态中以氯化钠提取态和醋酸提取态占比最大,随Cd处理浓度增加而增加,活跃态Cd含量占比以许农186和M1019较低。结果表明不同形态和生理指标对Cd胁迫的响应不同,不同小麦对Cd的吸收积累特征有共性也存在品种间的差异,抗性品种与敏感型品种相比Cd的吸收积累量较低,活性高的Cd占比较少。  相似文献   

5.
水稻镉安全亲本材料对镉的吸收分配特性   总被引:11,自引:1,他引:10  
【目的】筛选获得水稻镉(Cd)安全亲本材料,研究水稻Cd安全亲本材料对Cd的吸收分配特性,为稻米安全生产提供优良的种质资源。【方法】以56份水稻亲本材料为研究对象,在Cd污染农田土壤上进行大田试验,以糙米Cd含量为筛选指标,通过聚类分析筛选出水稻Cd安全亲本材料,并分析其在不同生育时期对Cd的吸收及分配特性。【结果】(1)当大田土壤Cd含量为13.89 mg·kg-1时,56份水稻亲本材料地上部Cd含量和积累量在分蘖期(CV=44.05%和CV=50.21%)、孕穗期(CV=23.57%和CV=28.62%)和成熟期(CV=44.98%和CV=44.69%)材料间均存在极显著差异。糙米Cd含量的变幅为0.15―1.77 mg·kg-1,最大值与最小值相差达11.80倍,其中Cd含量最低为0.15 mg·kg-1,低于食品安全国家标准0.2 mg·kg-1。(2)以糙米Cd含量为筛选指标将供试材料划分为安全材料、普通材料和高积累材料3类,其中安全材料的糙米Cd含量平均为0.20 mg·kg-1,显著低于普通材料(0.65 mg·kg-1)和高积累材料(1.57 mg·kg-1),且谷壳中的Cd含量以及籽粒分配系数也以安全材料为最低。(3)3类材料地上部Cd含量均随着生育时期的推进显著降低,且安全材料地上部Cd含量在分蘖期、孕穗期和成熟期均显著低于普通材料和高积累材料,特别是成熟期普通材料和高积累材料较安全材料高1.35和3.39倍。(4)安全材料地上部Cd积累量在3个生育时期均显著低于普通材料和高积累材料。其中安全材料在成熟期地上部的平均Cd积累量与普通材料相差2.23倍,与高积累材料相差3.86倍,成熟期材料间差异在3个生育时期为最大。且其地上部的Cd阶段性积累量在分蘖期―孕穗期积累能力最强,孕穗期―成熟期最弱。但普通材料和高积累材料则在3个生育时期阶段性积累量差异不显著。(5)安全材料糙米中Cd含量较低,与其向籽粒中较低的Cd分配转移能力有关。安全材料糙米中Cd的分配量仅占地上部Cd积累总量的8.11%,而普通材料和高积累材料糙米Cd积累量占地上部Cd积累总量的11.60%和17.59%。【结论】通过筛选获得的安全材料D62B、IRBN95-90和GRlu 17/ai TTP//lu 17_2在大田试验中其糙米Cd含量均低于食品安全国家标准(0.20 mg·kg-1),这3份材料可作为Cd安全亲本材料,为中轻度Cd污染农田水稻生产提供Cd安全种质资源。  相似文献   

6.
以水稻中优169为材料,通过盆栽试验,研究了不同浓度Cd污染对水稻分蘖期植株生长、根系活力、Cd积累与分配的影响。结果表明,5 mg·kg~(-1)的Cd污染使分蘖期水稻植株根系活力和生物量明显降低,茎蘖数减少。随着Cd污染程度的增加,水稻根和茎叶Cd含量和积累量明显增加;根和茎叶的Cd富集系数、转移系数均呈降低趋势。1 mg·kg~(-1)和5 mg·kg~(-1)Cd使水稻根系Cd分配比例增加,茎叶Cd分配比例下降,且趋于稳定。  相似文献   

7.
硅素分期施用对土壤镉形态和水稻镉累积的影响   总被引:3,自引:0,他引:3  
为了探明硅素运筹对土壤-水稻(Oryza sativa L.)体系中Cd迁移的影响,探索缓解Cd污染土壤中水稻吸收和积累Cd的最佳施硅时期和施硅比例,采用盆栽实验,以稻田土壤为供试土壤,外源添加氯化镉模拟Cd含量为100 mg·kg~(-1)的污染土壤,在施硅总量(56 mg·kg~(-1)土壤)不变的基础上设置基施硅素(C1)、基肥和拔节期硅素1∶1分期施用(C2)和拔节期施硅素(C3)3种处理,以不施硅(CK)为对照,研究硅素分期施用对土壤Cd的形态以及水稻对Cd的吸收、转运和累积的影响。结果表明:与CK相比,C2和C3处理水稻成熟期土壤中Cd含量增加19.4%(P0.05)、18.9%(P0.05),C2和C3土壤可交换态Cd含量降低27.3%(P0.05)、27.1%(P0.05),而土壤残渣态Cd含量分别增加97.7%(P0.05)、111.3%(P0.05)。成熟期各施硅处理水稻的根和糊粉层中Cd含量显著增加,而茎、叶和精米中Cd含量明显降低,其中C1、C2和C3精米的Cd含量分别比CK降低13.8%(P0.05)、35.1%(P0.05)和27.9%(P0.05),茎、叶、精米的Cd转移系数和富集系数也显著降低,而根的Cd富集系数显著升高。此外,本研究还发现土壤各形态Cd含量与水稻根和精米中Cd累积量有着显著的相关关系。综上表明,C2和C3成熟期土壤Cd的有效性显著降低,残渣态Cd显著增加,Cd从土壤向稻株中的转移受到抑制,水稻吸收的Cd大部分累积在根部,降低Cd向地上部各器官的迁移,从而导致精米Cd含量和累积量明显降低,其中C2处理更利于整个生育期土壤可还原态Cd含量的减少和抽穗期土壤中可氧化态Cd含量的增加,利于抽穗前水稻生长发育。C2处理施硅效果好,值得推荐。  相似文献   

8.
大气臭氧胁迫对稻季土壤Cd生物有效性的影响   总被引:1,自引:0,他引:1  
为明确大气O_3浓度升高对稻季土壤Cd生物有效性的影响,利用开顶式气室(OTCs)设置正常大气和臭氧浓度升高(比周围大气高40 nmol·mol-1)处理,土壤设置外源加入0、5、50 mg·kg~(-1)Cd处理,研究水稻生长期间不同深度土壤Cd含量的动态变化以及成熟期植株生物量和体内Cd含量的变化情况。在水稻分蘖期、拔节期、抽穗期和成熟期分别采集耕层0~5、5~10、10~15 cm深度土样,同时利用BCR连续提取法和DTPA提取法评价盆栽水稻土壤Cd生物有效性。结果表明,臭氧熏蒸显著降低了无污染土壤处理水稻籽粒生物量,降幅达2.92%,但却有增加植株各器官Cd含量的趋势,中度和重度污染土壤处理水稻的籽粒Cd含量较对照分别增加了20.20%和6.67%,差异不显著;臭氧熏蒸加剧了水稻生长对残渣态Cd的活化,营养生长时期更加明显,臭氧熏蒸不利于水稻的生长,在Cd污染土壤上会加剧Cd对作物的毒害,可能增加其通过生物富集进入食物链的风险。  相似文献   

9.
为探讨耐镉细菌Delftia sp. B9对镉(Cd)胁迫下水稻种子萌发及幼苗吸收积累Cd的影响,以两种水稻(华润2号、深两优5814)为材料,研究水稻在3种Cd胁迫浓度(0、0.01、0.1 mg·L~(-1))下添加Delftia sp. B9菌液对水稻幼苗生长和积累Cd的影响。结果表明:Cd胁迫浓度为0.1 mg·L~(-1)时,Delftia sp. B9产吲哚乙酸(IAA)能力与对照相比显著减少2.87 mg·L~(-1),产铁载体相对含量下降17.34%。Cd胁迫浓度为0.1 mg·L~(-1)时,添加Delftia sp. B9菌液对水稻种子萌发和耐性系数有显著的促进作用。Cd胁迫下添加Delftia sp. B9菌液的处理(T3)与对照(T1)相比能显著增加两种水稻幼苗的根长、株高、叶绿素a和叶绿素b含量。添加Delftia sp.B9显著降低两种水稻幼苗根、茎、叶中Cd含量,使华润2号根、茎、叶中Cd含量分别降低63.81%、67.59%、70.84%,使深两优5814根、茎、叶中Cd含量分别降低75.95%、74.84%、80.81%。研究表明,耐镉细菌Delftia sp. B9可促进Cd胁迫下水稻种子萌发,增加水稻幼苗叶绿素含量和株高,并降低根、茎、叶中Cd含量。  相似文献   

10.
采用盆栽试验研究不同浓度Cd(0、30、60、90、120、150、180 mg·kg~(-1))处理对苦楝(Melia azedarach L.)幼苗生长、Cd积累、光合、质膜透性以及渗透调节的影响。结果表明,当Cd2+浓度≤60 mg·kg~(-1)时显著促进苦楝幼苗生物量的积累(P0.05),Cd2+浓度60mg·kg~(-1)时抑制作用逐渐增强,但≤120 mg·kg~(-1)Cd处理对株高影响不显著(P0.05),植株能正常生长且保持较大的生物量;苦楝对Cd具有一定的积累能力,其根、茎、叶中Cd含量随Cd处理浓度的增加而增加,且根系是主要积累部位;随着Cd处理浓度的增加,叶绿素(Chla+b)含量和光合速率(Pn)下降,相对电导率(REC)和丙二醛(MDA)含量增大,但≤60 mg·kg~(-1)Cd处理时均无明显变化;随Cd浓度的升高,可溶性糖含量下降,可溶性蛋白和游离脯氨酸呈先升后降趋势,游离脯氨酸含量始终高于CK,苦楝通过增加可溶性蛋白和游离脯氨酸的含量来维持Cd胁迫下的渗透平衡,从而降低Cd毒害。上述结果表明,苦楝对Cd具有一定耐性,其耐Cd胁迫的阈值浓度大约是120 mg·kg~(-1),可以将其应用于土壤Cd污染区域,在美化环境的同时修复土壤Cd污染。  相似文献   

11.
利用盆栽巨菌草(Pennisetum sp.)实验,研究了不同土壤镉(Cd)浓度(T0:空白;T1:5 mg·kg~(-1);T2:10 mg·kg~(-1);T3:15 mg·kg~(-1))条件下,接种两种丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)[摩西斗管囊霉(Funneliformis mosseae,Fm)和根内根孢囊霉(Rhizophagus intraradices,Ri)]后土壤中Cd的生物有效性、巨菌草生物量、巨菌草Cd积累量等的变化。结果表明:与不施加菌剂(CK)相比,接种AMF显著降低了土壤中Cd的生物可利用性,在5、10、15 mg·kg~(-1)处理下,接种Fm和Ri后可交换态Cd分别降低了18.65%、20.51%、6.53%和12.54%、16.64%、6.66%;在10、15 mg·kg~(-1)处理下,接种Fm和Ri,植物地上部分生物量分别增加了20.98%、36.94%和36.54%、43.88%,地下部分生物量增加了14.31%、21.79%和25.78%、12.83%。接种AMF显著提高了巨菌草对Cd的吸收能力,其中在5 mg·kg~(-1)处理下接种Ri,巨菌草的重金属富集系数(BCF)最高,达到0.77,由于植物地上、地下部分Cd的含量均增加,巨菌草的Cd转移系数(TF)并没有显著变化。  相似文献   

12.
施硒对花生镉吸收与抗性及化学形态的影响   总被引:6,自引:4,他引:2  
采用温室盆栽试验,研究了低镉(Cadmium,Cd)浓度与高Cd浓度条件下,施硒(Selenium,Se)对花生生长、抗逆生理、Cd吸收积累及Cd在花生植株中形态的影响。结果表明,不同Cd条件下施Se均显著影响花生生物量。施Se可以缓解细胞膜的损害,降低丙二醛的积累。Cd胁迫抑制了花生的光合作用,随Se浓度增大,花生叶片光合速率呈现先升高后降低的趋势。Cd污染条件下,随施Se浓度增大,花生叶片及根系Cd含量先降低后升高,且在Se浓度为0.25 mg·kg~(-1)时效果最显著。在低Cd处理(3 mg·kg~(-1))和高Cd处理(30 mg·kg~(-1))条件下,施加0.25 mg·kg~(-1)Se使花生地上部分及根系Cd含量分别下降了12.71%、46.13%和21.29%、36.00%。花生植株中Cd形态以氯化钠提取态(FNaCl)、醋酸提取态(FHAc)和水提取态(FW)为主要形态。施Se处理可提高花生根部FHAc和FW提取态Cd的分配比例。研究结果显示,适量施Se可有效降低花生植株体内活性态Cd的比例,减少Cd的吸收。  相似文献   

13.
为探究Cd-Pb、Cd-Zn和Cd-Pb-Zn复合污染的交互效应,以滇杨幼苗为研究对象,通过土培盆栽试验对Cd(50 mg·kg-1)、Pb(500 mg·kg-1)、Zn(500 mg·kg-1)单一及复合胁迫下滇杨富集、转运Cd的特征进行深入分析,旨在为滇杨的矿区修复利用提供依据。结果表明:单一及复合胁迫可降低滇杨幼苗株高增长率,提高其地径增长率,其中Cd-Pb-Zn复合胁迫株高增长率降幅最大(24.45%),Cd-Zn复合胁迫地径增长率增幅最高(317.04%),而滇杨生物量仅在Cd-Pb-Zn复合胁迫时显著下降,降幅为30.28%。与单一Cd胁迫相比,Cd-Pb复合胁迫显著增加滇杨茎中Cd含量,Cd-Zn和Cd-Pb-Zn复合胁迫显著降低滇杨各器官Cd含量;单一Cd胁迫下滇杨Cd积累量为0.32 mg·pot-1,Cd-Pb胁迫未显著改变Cd积累量(0.34 mg·pot-1),而Cd-Zn(0.14 mg·pot-1)和Cd-Pb-Zn胁迫(0....  相似文献   

14.
选择沈抚灌区东部13个自然村庄的农业种植区,以1500 m间距网格化布点29处,调查研究区历史耕作情况,选取18个停灌时间不同的耕地样点,每个样点按0~20、20~40、40~60 cm采集3层土壤样品,分析测定重金属Cd、Pb的全量及化学形态,并测定了地上作物的茎叶、籽粒中重金属含量,探究研究区不同停灌时间及利用类型耕地土壤中Cd、Pb的分布特征及变化规律。结果表明:0~20、20~40、40~60 cm土壤中Cd含量分别为0.65~1.57、0.66~1.18、0.61~1.18 mg·kg-1,停灌20~25年的土壤0~20 cm土层Cd含量最高,为1.57 mg·kg-1;各土层Pb变化范围分别为21.07~38.59、14.97~30.59、15.71~25.66 mg·kg-1,未随停灌时间发生明显变化;Cd在20~40、40~60 cm土层迁移率分别为0.42~0.50、0.46~0.52,而Pb仅为0~0.34、0~0.68;玉米茎叶、籽粒中Cd含量分别为0.33~0.47、0.02~0.07 mg·kg-1,水稻茎叶、籽粒中Cd含量分别为0.33~0.89、0.02~0.09 mg·kg-1,Pb含量分别为1.51~2.32、0.47~0.62mg·kg-1,Cd、Pb在作物茎叶、籽粒中未随不同耕作方式及停灌时间表现出明显差异;水田土壤可交换态Cd含量占总量的37.33%,旱田可交换态Cd含量占总量的7.82%~13.95%;水田土壤可交换态Pb含量占总量的9.03%,旱田占总量的0.87%~4.18%。研究结果可为重金属污染耕地的利用管理及污染修复提供依据。  相似文献   

15.
矿物硅肥与微生物菌剂对水稻吸收积累镉的影响   总被引:4,自引:2,他引:2  
采用室外盆栽试验和田间随机区组试验相结合的方法,研究基施矿物硅肥、微生物菌剂、矿物硅肥与微生物菌剂组配施用,对湖南地区晚稻成熟期内各部位中Cd的含量及产量的影响。结果表明,在盆栽试验中,与CK相比,微生物菌剂处理对水稻根部、茎鞘、谷壳和糙米中Cd含量的抑制效果最佳,降低幅度分别为46.19%、52.46%、38.39%和55.31%,而矿物硅肥处理对叶片中Cd含量的抑制效果最佳,降低幅度为54.39%;在田间随机区组试验中,与CK相比,矿物硅肥处理对水稻根部、茎鞘和叶片中Cd含量的抑制效果最佳,降低幅度分别为73.91%、71.28%和76.77%,而微生物菌剂处理对谷壳和糙米中Cd含量的抑制效果最佳,降低幅度分别为65.52%和69.57%。对于轻度污染土壤,施用三种改良剂后,糙米中Cd含量明显降低,分别为0.09、0.07、0.12 mg·kg~(-1),均能达到国家食品卫生标准(Cd0.2 mg·kg~(-1));水稻产量方面,施用改良剂均能使水稻增产,其中以矿物硅肥+微生物菌剂组配处理的效果最为显著,在盆栽试验和田间随机区组试验中,分别比对照增产28.06%和31.1%。  相似文献   

16.
锰对超富集植物青葙镉积累的影响   总被引:1,自引:1,他引:0  
为探讨锰对青葙吸收和积累镉的影响,通过水培试验和土培试验两种方式,分别在镉处理为0(对照)、0.6、1、2 mg·L~(-1)和0(对照)、3、5、10 mg·kg~(-1)的条件下,施加100 mg·L~(-1)和500 mg·kg~(-1)的锰研究了锰对青葙吸收和积累镉的影响,并且在土培试验进行的同时监测土壤溶液中的镉含量。结果表明,在水培和土培条件下施加锰对青葙吸收和积累镉的作用不同。在水培条件下,向镉处理组中施加锰可显著抑制青葙对镉的吸收和积累。当镉处理浓度为0.6 mg·L~(-1)时,施加锰使青葙叶片镉含量降低了35.9%。然而,在土培条件下,施加锰显著促进了青葙对镉的吸收和积累。在镉处理浓度为3 mg·kg~(-1)时,锰对青葙镉积累促进作用最强,与未施加锰处理组相比青葙叶片中镉含量增加了352%。土壤溶液中镉含量较低,但锰的施加可显著提高土壤溶液中的镉含量(P0.05)。上述结果表明,尽管镉和锰在青葙中可能存在部分相同的转运和吸收途径,但由于两者在土壤固相与液相之间存在的离子交换作用使得土培和水培实验表现出相反的趋势。  相似文献   

17.
重金属铅镉胁迫对芋生长发育和产量的影响   总被引:1,自引:0,他引:1  
采用盆栽试验研究了0(对照),500、1 000、1 500、2 000 mg·kg-1和2 500 mg·kg-1 6个浓度的铅(Pb)与0(对照)、0.5、1.0、1.5、2.0 mg·kg-1和2.5 mg·kg-1 6个浓度的镉(Cd)溶液分别处理土壤对芋生长发育和产量的影响。结果表明,Pb胁迫抑制芋植株的生长,株高最大低于对照25.3%,对芋叶长、叶宽的影响不显著;而Cd浓度在1.0 mg·kg-1以上显著促进了植株的生长,株高最大高于对照42.1%,最大叶长高于对照60.1%,最大叶宽高于对照60.9%。在1 000 mg·kg-1和1 500 mg·kg-1 Pb胁迫下,叶绿素含量显著高于对照,浓度大于1.0 mg·kg-1时Cd胁迫显著高于对照;Pb胁迫MDA含量同比对照显著增加,最大增加了60.8%,Cd胁迫仅在1.0 mg·kg-1显著高于对照45.4%。Pb胁迫可溶性糖含量先升后降,1 000 mg·kg-1时显著高于对照40.6%,Cd胁迫时呈上升趋势,最大高于对照33.5%;Pb胁迫可溶性蛋白呈上升趋势,最大高于对照144.0%,Cd胁迫时先上升后下降,1.5 mg·kg-1时显著高于对照37.0%;Pb、Cd胁迫均使SOD活性下降,最大下降幅度分别为37.8%和60.0%,使POD和CAT活性增强,POD最大增强幅度分别为119%和78.7%,CAT最大增强幅度分别为298.5%和65.5%。Pb或Cd胁迫均导致芋产量明显下降,最大下降分别为53.6%和56.5%。  相似文献   

18.
三种螯合剂对芥菜修复铀镉复合污染土壤的影响   总被引:5,自引:1,他引:4  
为探讨螯合剂对植物修复的影响,采用模拟土壤铀镉复合污染的盆栽试验,研究3种可降解螯合剂乙二胺二琥珀酸(EDDS)、草酸(OA)和柠檬酸(CA)在不同浓度(0、2.5、5.0、7.5 mmol·kg~(-1))下对芥菜吸收、转运、富集铀和镉的影响。结果表明:芥菜生长受螯合剂种类及浓度的影响,其中EDDS对芥菜有较强的毒害效用,且与浓度呈正效应,而低浓度的(2.5 mmol·kg~(-1))CA、OA均促进芥菜的生长,高浓度(7.5 mmol·kg~(-1))出现抑制;螯合剂促进芥菜对铀和镉的吸收、转运,其中,在7.5 mmol·kg~(-1)CA处理时,芥菜地上部、单株铀含量均达到峰值,分别为9.71、20.63 mg·kg~(-1)DW,是对照的6.03、2.84倍。在5.0 mmol·kg~(-1)EDDS处理时,芥菜地上部、单株镉含量达到峰值,分别为382.2、328.2 mg·kg~(-1)DW,是对照的4.67、2.35倍。在7.5 mmol·kg~(-1)CA处理下,芥菜的铀转运系数最高为0.118,是对照组的2.93倍,而EDDS处理下镉的转运效果较佳。从单株铀、镉富集量来看,CA促进芥菜富集铀的效果最佳,而EDDS促进芥菜富集镉的效果最佳,同时,对铀也有一定效用;此外,CA、EDDS的添加分别增强了土壤中铀镉的有效态含量。综合而言,施加适宜浓度的螯合剂能够提升芥菜对铀镉复合污染土壤的修复效率。  相似文献   

19.
为探讨有机物料对土壤Cd形态和水稻Cd含量的影响,于2017年5月至2017年9月在温室大棚进行水稻盆栽试验,在不同外源Cd浓度处理下,通过分析对照组(CK)及施加猪粪堆肥(PM)、腐殖土(HM)、污泥堆肥(CS)对水稻Cd含量的影响,探究有机物料活性组分差异与水稻Cd含量的关联性。结果表明:三种有机物料含氧官能团含量和极性大小顺序均为HMCSPM。施加三种有机物料都有利于缓解土壤Cd污染对水稻的生长毒害作用。外源Cd浓度为2 mg·kg~(-1)时,施用PM、HM和CS后的水稻籽粒Cd浓度较对照分别降低17.24%、32.41%和17.93%。且施用HM后,水稻籽粒Cd最高浓度为0.19 mg·kg~(-1),满足《食品安全国家标准食品中污染物限量》(GB 2762—2017)要求。而在外源Cd浓度达到10 mg·kg~(-1)时,仅施加PM可使水稻籽粒Cd浓度降低,但仍不能达到食品安全标准要求。水稻籽粒Cd含量与土壤可交换态Cd及铁锰氧化物结合态Cd含量呈显著正相关关系,与水稻根Cd含量呈极显著正相关,含氧官能团丰富、极性大的HM降低土壤可交换态镉含量效果最好。有机物料主要通过改变土壤Cd赋存形态,降低水稻根系对土壤Cd的吸收富集,抑制Cd向籽粒转运,进而影响Cd在水稻体内含量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号