首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SHORT VEGETATIVE PHASE(SVP)基因属于MADS 盒基因,它编码的蛋白转录因子对开
花具有抑制作用。SVP 主要在营养生长阶段表达,受自主途径等多个开花路径调控,并可以调节开花途径
整合子FLOWERING LOCUS T(FT),SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1(SOC1)
的表达,从而调控抽薹开花时间。本文综述了SVP 基因调控抽薹开花的作用机制,并结合SVP 基因的研
究现状展望了未来的研究方向。  相似文献   

2.
为了深入研究芥菜开花整合子SOC1基因的表达调控机制,利用染色体步移法从芥菜‘QJ’中克隆了SOC1编码区上游782 bp的启动子,并构建SOC1基因启动子的酵母表达载体pAbAi-SOC1,与蛋白表达载体pGADT7-FLC、pGADT7-SVP共转化酵母Y1HGold菌株。酵母单杂交表明:芥菜FLC和SVP蛋白均能与SOC1的启动子相互作用。进一步分析发现:SOC1启动子含3个CArG-box表达调控基序。分别亚克隆这3个基因片段(SOC1-1、SOC1-2和SOC1-3),并再次构建酵母重组质粒pAbAi-SOC1-1、pAbAi-SOC1-2和pAbAi-SOC1-3,与pGADT7-FLC、pGADT7-SVP分别融合到Y1HGold菌株。融合菌株均能在相应SD/-Leu/AbA培养基上生长,说明SOC1-1、SOC1-2和SOC1-3都能被芥菜FLC、SVP蛋白识别并结合。再次构建SOC1-1、SOC1-2、SOC1-3的CArG-box删除突变体及A-T互换突变体,则均不能与FLC、SVP蛋白互作。由此说明:SOC1-1、SOC1-2和SOC1-3的3个CArG-box基序确实能特异性识别FLC、SVP,发生DNA-蛋白相互作用。这为利用启动子调控SOC1基因的转录表达等深入研究奠定了理论基础。  相似文献   

3.
植物经过长期的发育进化,形成了一套复杂而精细的基因调控网络,以确保植株能在最佳
时间开花。开花时间是由一系列特定的基因在特定的时空环境下表达及相互作用所决定的。植物开花调
控的分子机理是最近研究的热点之一。本文综述了开花整合子SUPPRESSOR OF OVEREXPRESSION OF
CONSTANS1(SOC1)的功能,以及与其他相关调控信号之间的作用关系:SOC1 作为一个MADS 转录因子,
它能够整合来自四条开花调控途径(光周期途径,自主途径,春化途径,赤霉素途径)的开花信号,促进
开花。它的上游基因CO、FT、SPL 以及赤霉素信号可以上调SOC1 的表达,但SVP、FLC 却下调SOC1
的表达;SOC1 和AGL24 之间能形成正反馈回路,同时SOC1 和AGL24 蛋白还可以相互作用激活下游基
因LFY 的表达,调节下游花器官特征基因,实现花期调控。  相似文献   

4.
对蜡梅(Chimonanthus praecox)AP2(Apetala2,AP2)亚家族成员进行全基因组鉴定,并分析其在花发育过程中的表达模式;研究CpAP2-L11的表达特异性,过表达拟南芥(Arabidopsis thaliana)并观察其表型。共鉴定出20个蜡梅AP2亚家族转录因子,其中euAP2、basalANT和euANT组分别有5、6和9个成员,且euAP2组全部成员无miR172结合位点。共线性分析发现有12个成员形成了16对复制基因,并在进化过程中受纯化选择。多数AP2亚家族成员在4、5月花芽中高表达,在花芽进行需冷量积累的过程或后期低表达,仅CpAP2-L11在花芽需冷量积累到570 CU(Chill units,CU)的始花期高表达,同时CpAP2-L11在蜡梅幼果、外轮花被片和雄蕊中高表达,在茎、叶中低表达,并受高温和低温诱导表达量降低。拟南芥异源表达CpAP2-L11,抽薹时间显著提前,且FT、SOC1、LFY和AP1基因表达量显著升高。蜡梅CpAP2-L11可能参与低温诱导打破蜡梅休眠导致寒冬开花及春季花芽分化,且促进过表达拟南芥早开花。  相似文献   

5.
《中国蔬菜》2013,1(1):25-26
抽薹开花调控基因SVP的作用机制杨修勤等(西南大学园艺园林学院,南方山地园艺学教育部重点实验室,重庆市蔬菜学重点实验室,重庆400715)—《中国蔬菜》2013(2)SHORT VEGETATIVE PHASE(SVP)基因属于MADS盒基因,它编码的蛋白转录因子对开花具有抑制作用。SVP主要在营养生长阶段表达,受自主途径等多个开花路径调控,并可以调节开花途径整合  相似文献   

6.
桂花OfSVP响应环境低温对花芽分化的影响   总被引:1,自引:0,他引:1  
SVP(SHORT VEGETATIVE PHASE)是植物响应环境温度调控开花的一类MADS-box转录因子。为了探究桂花(Osmanthus fragrans)中SVP基因对其花芽分化和发育的作用,研究了19和25℃处理下‘堰虹桂’桂花的花芽分化过程以及SVP基因的表达特性。结果表明,19℃处理能够显著促进‘堰虹桂’花芽分化,最为显著的是缩短花序分化期和雌蕊分化期。qRT-PCR分析发现,桂花7个SVP基因(OfSVP1~OfSVP7)在花芽不同发育阶段中均有表达,其中OfSVP4、OfSVP6、OfSVP7表达量从花序分化期开始一直呈现下降趋势,至雌蕊分化期达到最低,19℃处理的表达量一直低于25℃处理;19℃处理的OfSVP的下游基因FT、SOC1和GA20ox2的表达量基本上一直高于25℃处理,与OfSVP4、OfSVP6、OfSVP7表达呈负相关。因此,OfSVP4、OfSVP6、OfSVP7可能是桂花中响应低温促进花芽分化的关键基因,其可能通过调控FT、SOC1和GA20ox2的表达影响花芽分化进程。  相似文献   

7.
葡萄MADS-box转录因子家族全基因组鉴定及表达分析   总被引:2,自引:0,他引:2  
从葡萄基因组中共鉴定出54个MADS-box基因,其中Type-Ⅰ型10个,Type-Ⅱ型44个,分布于15条染色体中,编码的蛋白质序列为62~596个氨基酸,外显子数1~16个。启动子区含有大量光信号、植物激素、胁迫和分生组织等相关功能域。根据实时荧光定量RT-PCR的结果发现,SEP、FUL、FLC、SVP、SOC1和ANR1亚类基因随叶片生长表达水平逐步升高,在成熟叶中最高,衰老叶片中下降;果实第1次膨大期和果实转色期是SEP、SOC1和ANR1亚类基因的两个表达高峰期;单氰胺处理诱导SVP、AGL15、SOC1、AP3/PI、AGL12和FLC亚类基因在休眠过程中表达量持续上升,在休眠解除过程表达量下降。  相似文献   

8.
洋葱光周期途径转录因子基因AcCOL7的克隆及功能鉴定   总被引:1,自引:0,他引:1  
以洋葱品系‘SA2’为材料,克隆到1个光周期途径重要转录因子CONSTANS-like基因,命名为AcCOL7,其cDNA序列全长1 101 bp,编码366个氨基酸。多序列比对和结构域分析表明,AcCOL7蛋白包含1个B-box型锌指结构和1个CCT结构域;系统发育分析结果显示它与水稻OsCOL13亲缘关系较近;实时荧光定量PCR分析显示,AcCOL7的表达量在抽薹前幼叶中最高,幼嫩花茎次之。为了解AcCOL7的功能,构建了其过表达载体,转化拟南芥co突变体。与突变体植株相比,转化株表现为早花,且突变体的其他变异性状也得到了一定程度的恢复,表明AcCOL7与拟南芥的AtCOL5具有相似的功能,即在光周期诱导开花途径中具有显著的促进开花作用。  相似文献   

9.
以‘砀山酥梨’(Pyrus bretschneideri‘Dangshan Suli’)为材料,利用梨基因组数据库,通过PCR获得了糖转运相关基因PbTMT4(Pbr032130.1)2 211 bp的CDS序列及其编码起始位点上游长度为1 220 bp的启动子序列。使用农杆菌介导法将PbTMT4导入拟南芥,与野生型对照植株相比,转基因拟南芥植株的生长速度更快,抽薹、开花时间更早,叶片糖积累量更高。生物信息学分析表明,该启动子中含有多个与逆境应答、激素信号和光信号相关的顺式作用元件。为进一步分析PbTMT4启动子功能,构建了该启动子与GUS基因融合的植物表达载体并转化拟南芥。对T_3代转基因拟南芥各组织进行GUS活性染色和半定量分析,发现GUS基因在根、茎、叶、花和果荚中均有表达,NaCl、干旱、GA_3、MeJA以及光照处理均能一定程度上提高转基因拟南芥中GUS基因的转录水平。逆境处理发现,PbTMT4转基因株系较野生型植株受到的伤害小。研究结果初步表明,PbTMT4可促进转基因拟南芥发育并提高糖积累量,可能在抗非生物胁迫中起重要的调控作用。  相似文献   

10.
张娟  颜爽爽  赵文圣  张小兰 《园艺学报》2013,40(11):2180-2188
 利用同源克隆的方法得到黄瓜的FT 同源基因CsFT,通过表达分析、进化树分析以及遗传 转化拟南芥等方法初步验证了CsFT 在黄瓜花发育过程中的作用。不同于之前的研究结果,CsFT 主要在 雄花与雌花中表达,而在叶中基本不表达。异源过表达CsFT 导致拟南芥提前开花,并且茎顶部出现顶端 花,说明黄瓜的CsFT 基因与拟南芥AtFT 基因在开花调控上存在保守性。  相似文献   

11.
利用同源克隆的方法得到黄瓜的 FT 同源基因 CsFT,通过表达分析、进化树分析以及遗传转化拟南芥等方法初步验证了 CsFT 在黄瓜花发育过程中的作用。不同于之前的研究结果,CsFT 主要在雄花与雌花中表达,而在叶中基本不表达。异源过表达 CsFT 导致拟南芥提前开花,并且茎顶部出现顶端花,说明黄瓜的 CsFT 基因与拟南芥 AtFT 基因在开花调控上存在保守性。  相似文献   

12.
以‘丰光’油桃嫩梢组织为试材,克隆了1个ERF家族基因并命名为PpERF1a(ppa018178m)。该基因全长为600 bp,编码199个氨基酸,含有1 个典型的AP2 结构域。亚细胞定位结果显示PpERF1a定位于细胞膜和细胞核。在拟南芥中超量表达PpERF1a,共获得15个阳性转基因株系。与对照相比,转基因植株出现发育不良的表型,其中6株持续长出莲座叶,但不抽薹;6株能够抽薹开花,但不结实且生长势明显弱于对照;3株能够开花结实,但种子产量极低。这些结果表明PpERF1a在转基因拟南芥中具有调控生长发育的功能,为后期在桃中开展PpERF1a的功能研究提供了有益的启示。  相似文献   

13.
【目的】FT(FLOWERING LOCUS T)是成花素基因,探究板栗(Castanea mollissima)CmFT的生物学功能。【方法】在板栗基因组数据库中,检索并克隆板栗FT同源基因,对其基因结构、编码蛋白进行分析。利用荧光定量PCR测定CmFT的时空表达情况。通过亚细胞定位分析CmFT在细胞中的表达位置。通过对CmFT过量表达拟南芥(Arabidopsis thaliana)的开花性状分析,验证CmFT的生物学功能。【结果】CmFT开放阅读框长度为525 bp,编码174个氨基酸,具有保守的PEBP结构域,定位于细胞核。CmFT在叶片和茎尖均有较高表达,并且于7月在叶片中的表达水平达到峰值。在拟南芥中过表达CmFT可提高开花促进基因AtFT、LEAFY(AtLFY)、SUPPRESSOR OF CONSTANS OVEREXPRESSION 1AtSOC1)及开花抑制基因TERMINAL FLOWER1(AtTFL1)和FLOWERING LOCUS C(AtFLC)的表达水平,并导致植株提前开花。【结论】CmFT为板栗开花素基因,可促进成花。  相似文献   

14.
为阐明芥菜(Brassica juncea Coss.)开花激活因子AGL24的表达特性及其在开花途径中与调节因子SOC1、SVP和FLC蛋白的互作机制,从‘青叶芥’中克隆了680 bp的AGL24基因,它编码221个氨基酸。序列分析表明:芥菜AGL24含有M、I、K和C域,分别有59、11、102和47个氨基酸,与油菜AGL24亲缘关系较近。荧光定量PCR分析发现:在低温春化途径和长日照光周期途径中,AGL24在叶片和茎尖中均有表达,营养生长期表达量较低,而生殖生长期表达量迅速增加;AGL24在光周期途径中的表达峰值要早于低温春化途径。酵母双杂交试验表明:全长AGL24与开花信号整合子SOC1蛋白能够互作,激活酵母报告基因AUR1-C、HIS3、ADE2和MEL1,在QDO/X-α-Gal/AbA平板培养基上长出蓝斑。另外,分别去掉M域后的截短体AGL24与SOC1也能相互作用。β–半乳糖苷酶活性检测发现:截短体杂交组合AGL24 × SOC1的互作强度显著高于全长杂交组合AGL24 × SOC1。然而全长AGL24或截短体AGL24 均不能与光周期途径核心抑制子SVP互作,也不与低温春化途径核心抑制因子FLC相互作用,说明AGL24并不是SVP或FLC的直接靶蛋白。  相似文献   

15.
PbKT12是基于梨果实转录组分析筛选出的对施钾有强烈响应的钾转运体基因,本研究中进一步验证其功能。以‘黄冠’(PyruspyrifoliaNakai)梨果实为材料克隆得到PbKT12全长序列,分析表明该基因序列共2 730 bp,编码909个氨基酸;序列对比表明PbKT12与苹果中同源蛋白氨基酸序列相似性高达97%。亚细胞定位结果显示,PbKT12定位于细胞质膜上。PbKT12转化钾吸收缺陷型酵母R5421在低于5 mmol·L-1 K+的培养基上能够恢复生长。qRT-PCR结果表明,PbKT12在梨果实和叶片中的相对表达量随盆栽土壤施钾水平增加而升高。使用农杆菌侵染花序法将PbKT12导入拟南芥,与野生型拟南芥相比,过表达PbKT12拟南芥植株的生长速度比野生型更快,抽薹、开花时间更早,植株葡萄糖积累量更高。采用X射线荧光光谱仪无损检测K+在拟南芥植株中的分布发现,在缺钾胁迫下过表达PbKT12拟南芥中K+向花序运输的量增加。因此推断,PbKT12在梨果实中具有促进K+转运和葡萄糖积累的作用。  相似文献   

16.
以光敏感型茄子(Solanum melongena L.)‘蓝山禾线茄’子叶为材料,克隆了紫外光受体蛋白基因UVR8同源基因SmUVR8的cDNA全长序列,并对序列进行生物信息分析,通过转化拟南芥突变体以及实时荧光定量PCR研究其功能。序列分析表明,SmUVR8的CDS全长1 530 bp,编码509个氨基酸,属于较不稳定亲水性蛋白。蛋白序列比对发现,SmUVR8与其他茄科植物的UVR8高度同源。通过拟南芥uvr8突变体转化试验发现,转基因植株(SmUVR8/uvr8)恢复了野生型的表型,说明SmUVR8与拟南芥的UVR8功能具有相似性。通过实时定量PCR发现,UV-B照射影响SmUVR8以及下游SmHY5和SmCHS的表达。酵母双杂交结果表明,SmUVR8与SmCOP1的互作依赖于UV-B。推测UV-B在茄子中是通过紫外光受体SmUVR8与SmCOP1的互作,促进SmHY5和SmCHS的表达。  相似文献   

17.
以8年生‘中油4号’油桃为试材,对休眠期的枝条进行ABA和GA处理发现,ABA延迟芽体萌动,GA促进萌芽和提前开花,在桃芽萌发中ABA和GA起拮抗作用。利用转基因技术在拟南芥中过表达桃ABA分解代谢关键酶ABA 8’–羟化酶基因PpeCYP707A1、PpeCYP707A2和PpeCYP707A3,获得纯合株系,RT-PCR结果表明,目的基因在过表达株系中的表达量分别达到对照的23.86倍、7.37倍、3.23倍;过表达株系生长缓慢,抽薹、开花延迟,其中过表达PPECYP707A1株系生长最慢,开花最晚;过表达株系种子萌发和幼苗生长对ABA不敏感,受伤害程度小;10℃低温处理试验证明,过表达株系相对生长速率高于野生型,推测低温条件下,过表达CYP707As正调控拟南芥的生长发育。  相似文献   

18.
菊花FT类似基因的克隆与表达分析   总被引:5,自引:1,他引:4  
以地被菊(Chrysanthemum morifolium Ramat.)‘七月桃花’为材料,利用同源基因克隆法结合RACE技术克隆了光周期调控开花重要基因FLOWERING LOCUS T(FT)的类似基因(基因登陆号GQ925916,命名为CmFT)。该基因开放阅读框有525 bp,可编码174个氨基酸。蛋白比对发现,CmFT所推测的氨基酸序列包含FT类蛋白保守基序和两个关键性氨基酸残基。通过系统遗传进化树分析进一步表明CmFT属于FT亚家族成员。SYBR GREEN法实时荧光定量RT-PCR表达分析结果表明CmFT在花芽的表达量最高,茎的表达量次之,叶片表达量最低。在短日条件下,该基因的表达量呈昼夜节律表达型,在光照期间呈下降趋势,在夜间逐渐上升,光照前4 h时达到最高水平。在长日条件下,其相对表达量显著低于短日条件下且趋于零。由此推测,该基因主要与菊花光周期敏感性密切相关,可能在光周期促进开花中发挥一定的作用。  相似文献   

19.
FLOWERING LOCUS C(FLC)是植物抽薹开花调控网络中关键的开花决定因子。随着表观遗传学的发展,人们发现组蛋白修饰等表观调控FLC 的表达在植物抽薹开花时间调控中起着非常重要的作用。FLC 的抑制因子或促进因子通过改变组蛋白氨基酸的共价修饰(如乙酰化、甲基化等),影响FLC基因所在区域的染色质重塑,调控FLC 转录表达水平,从而调节植物抽薹开花。本文就近年来国内外对植物抽薹开花关键调控基因FLC 及表观遗传调控其表达研究现状进行了综述,并针对目前研究中存在的问题提出了今后的研究方向和重点。  相似文献   

20.
以红肉苹果‘紫红3号’愈伤组织为试材,克隆了细菌鞭毛蛋白受体基因MdFSL2,研究了其与拟南芥AtFLS2对细菌鞭毛蛋白敏感性差异以及对苹果轮纹病抗性的影响。进化树分析表明,MdFLS2与拟南芥AtFLS2亲缘关系较远,处于不同的进化树分支,与梨PbFLS2的亲缘关系最近。时空表达特异性研究表明,在苹果叶片中MdFLS2表达不随组织衰老而产生差异,能够被外源SA处理诱导,不受IAA、ACC处理影响;在根系中表达量最高,而在花与果实中表达量较低。在拟南芥中异源过表达MdFLS2,显著抑制植株生长,并出现叶片边缘枯死或细胞死亡的表型。在转基因拟南芥中受SA诱导的病程相关基因AtPR1、AtPR2和AtPR5,及衰老相关基因AtORE1和AtNAP的表达水平均显著高于野生型。为研究MdFLS2是否具有感知细菌鞭毛蛋白的能力,进行拟南芥根系生长抑制试验,MdFLS2超表达恢复了细菌鞭毛蛋白N端22个保守氨基酸肽段(flg22)对拟南芥fls2突变体根系生长的抑制作用,但flg22分别处理30和60 min,或20和40 min,flg22诱导的标志性基因表达水平及MAPK激酶活化水平在过表达MdFLS2的fls2突变体中显著低于同样处理的野生型。超表达MdFLS2提高了拟南芥叶片对轮纹病菌的抗性,并增强了拟南芥突变体fls2对假单胞菌DC3000的抗性。研究结果说明苹果MdFLS2是一个有功能的免疫相关基因,MdFLS2与AtFLS2在具体执行功能与作用机制上可能存在差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号